2. 青岛大学医学院;
3. 滨州医学院卫生管理学院
根据2010年全球疾病负担研究报告,大气污染列为全球疾病负担的第9位,造成每年300万的超额死亡[1]。大气颗粒物对机体的损伤作用表现在对暴露器官(肺脏)的损伤及激活下游反应引起系统性(尤其是心血管系统)损伤。大气污染暴露可引发或加重肺炎、哮喘、慢性阻塞性肺疾病等呼吸系统疾病[2]。在大气污染物中,矫正其他危险因素后大气颗粒物与呼吸系统负面健康效应关联性最强[3]。流行病学研究指出大气细颗粒物暴露与肺炎急诊率和入院率相关[4-7]。动物模型研究也支持大气颗粒物可以增加肺部感染的易感性。但大气细颗粒物急性暴露是否会增加心血管疾病患者呼吸系统疾病的易感性及其作用机制仍不清楚。本研究选用ApoE-/-小鼠作为动脉粥样硬化模型,进行气管滴注染毒,观察小鼠肺脏相关炎性指标变化,探讨大气细颗粒物急性暴露对动脉粥样硬化小鼠肺脏的炎性影响及机制。结果报告如下。
1 材料与方法 1.1 PM2.5采集及其悬液制备PM2.5用Thermo Anderson G2.5大流量采样器连续采集,采样点位于上海市交通区某建筑物楼顶,周围人口密集,附近无工矿企业,采样高度为10 m。采样时间为2012年4—7月。采样流量为1 m3/min,每张膜采样时间约为96 h;采集PM2.5于玻璃纤维滤膜上,采样前将玻璃纤维滤膜在100 ℃马弗炉中加热烘干24 h,采样后将滤膜裁剪为1 cm×3 cm大小,浸入超纯水中,低温超声振荡30 min×3次,洗脱PM2.5,有效提取率约为60%(提取颗粒物之后将滤膜在同样100 ℃的马弗炉中加热烘干后的重量占提取颗粒物之前滤膜重量百分比);将洗脱所得振荡液用6层纱布过滤,滤液真空冷冻干燥,-20 ℃保存备用。空白膜的提取方法同上。染毒前,用生理盐水配制成实验所需浓度的PM2.5悬液,超声振荡10 min混匀灭菌。
1.2 大气细颗粒物成分分析离子分析应用离子色谱仪Dionex3000,阳离子检测采用AS12A-SC色谱柱、淋洗液为20 mmol/L甲烷磺酸(methane sulfonic acid,MSA),流速为1 mL/min;阴离子采用AS14A-SC色谱柱,淋洗液为3.5 mmol/L Na2CO3、1 mmol/L NaHCO3,流速1 mL/min;C2O42-检测采用AS11A-HC色谱柱,淋洗液为20 mmol/L KOH,流速为1.2 mL/min。元素分析采用电感耦合等离子体光谱仪inductively coupled plasma optical emission spectrometry(ICP-OES)/7300DV,共分析Al、As、Ba、Ca、Cr、Cu、Fe、K、Mg、Mn、Na、Pb、Sr、Ni、V、Zn、Ti 17种元素含量;碳分析仪Carbon Analyzer/DRI Model2001测定PM2.5中所含的有机碳(organic carbon,OC)和元素碳(elemental carbon,EC);gas chromatography-mass spectrometry(GC/MS)分析测定颗粒物中多环芳烃(polycyclic aromatic hydrocarbons,PAHs)含量,所用仪器为安捷伦7890GC/5975MSD,高纯氦气作载气,无分馏进样,气相色谱柱为HP-5MS,柱长30 m,质谱采用电子轰击离子化(EI)模式,电子能量70 ev,载气为高纯氦气,流速为1.0 mL/min。色谱仪柱箱的升温程序为:初始温度60 ℃,保持2 min,然后以5 ℃/min的速率升至300 ℃,保持10 min。
1.3 实验动物分组与处理Specific pathogen free(SPF)级健康雄性C57BL/6小鼠32只,C57BL/6雄性ApoE-/-小鼠(动脉粥样硬化模型)32只,购自北京大学医学部实验动物科学部,许可证号:SCXK(京)2012-0001,7周龄,体重19~21 g,小鼠在复旦大学实验动物部SPF级饲养室内喂养,饲养室温度为18~22 ℃,湿度为45%~55%,昼夜节律设计为12 h交替;适应性饲养1周后,对照小鼠给予普通饲料、ApoE-/-小鼠给予高脂饲料(0.25%胆固醇和15%可可油)喂养8周,实验时小鼠为16周龄,对照小鼠体重23~31 g,模型小鼠体重24~34 g。2种小鼠均随机分为4组,每组8只,分别为对照组,低、中、高剂量PM2.5染毒组,采用气管滴注法染毒,剂量分别为3.0、10.0和30.0 mg/kg,对照组滴注相同体积生理盐水,滴注体积约为1.5 mL/kg,隔天1次,共滴注2次。动物末次染毒24 h后,用10%水合氯醛(3 mL/kg)麻醉小鼠,用止血钳夹闭右主支气管,用37 ℃预热磷酸缓冲盐溶液(PBS)灌洗左肺,每次0.5 mL,灌洗3次,收集支气管肺泡灌洗液(BALF)。
1.4 指标与方法 1.4.1 细胞计数与分类灌洗液经4 ℃,1 500 r/min离心10 min,沉淀细胞重悬后进行细胞计数;剩余细胞悬液涂片,瑞氏-吉姆萨复合染色光镜下进行白细胞分类计数。
1.4.2 生化指标测定支气管肺泡灌洗液中白介素6(interleukin-6,IL-6)、interleukin-17(IL-17)和肿瘤坏死因子α(tumor necrosis factor alpha,TNF-α)采用双抗体夹心酶联免疫法(enzyme-linked immunosorbent assay,ELISA)测定,操作按照试剂盒说明书进行。
1.4.3 肺组织病理学观察取未灌洗的右肺,用生理盐水快速冲洗血迹,然后置于4%甲醛溶液中固定24 h,系列乙醇脱水,二甲苯透明、浸蜡、石蜡包埋后切片,片厚4 μm,置烤箱中65 ℃ 烤片2 h,石蜡切片经二甲苯脱蜡,梯度乙醇脱水后进行苏木素-伊红(hematoxylin and eosin,HE)染色,再经脱水、透明后,用中性树胶封片,光镜下观察各组织结构形态改变。
1.5 统计分析数据以x±s表示,采用SPSS 22.0软件进行统计分析,组间均数比较采用t检验或单因素方差分析,组间两两比较采用多重比较(最小显著差检验),检验水准为α=0.05。
2 结 果 2.1 PM2.5的元素和离子含量细颗粒物的主要成分为无机元素、水溶性无机盐、有机物和含碳组分;17种无机元素中Ca、Fe、K、Na、Al含量丰富,分别为423.39、40.77、414.99、292.07、122.93 ng/m43,共占PM2.5中17种元素总量的85.3%,Pb含量为41.93 ng/m3;颗粒物水溶性离子的浓度总和为22.21 μg/m3,其中SO42-占绝对优势,含量为8 930 ng/m3,其次为NH+,NO3-,Cl-,占水溶性离子总量的 92.9%;碳组分存在有机碳(OC)和元素碳(EC)2种形式,浓度分别为0.021、0.008 μg/m3。一般认为,当OC/EC超过2时,存在二次反应生成的OC。本颗粒物样品OC/EC为2.6,可能存在二次有机碳生成;总有机物浓度约为517.9 ng/m3,其中多环芳烃(PAH)浓度约为30.0 ng/m3。
2.2 PM2.5对小鼠BALF细胞计数影响(表 1) 与对照组比较,PM2.5各剂量染毒组小鼠BALF中白细胞总数均明显增多(P<0.05);与对照组比较,PM2.5各剂量染毒组小鼠BALF中性粒细胞百分比均明显升高(P<0.05);PM2.5各染毒组小鼠BALF中巨噬细胞绝对数增加,但百分比随染毒剂量升高而降低;未观察到嗜酸性粒细胞百分比变化。
2.3 PM2.5对小鼠BALF中炎性因子水平影响
(表 2)与对照组比较,PM2.5中、高剂量染毒组C57BL/6小鼠BALF中IL-6、IL-17、TNF-α水平升高,差异有统计学意义(P<0.05);与对照组比较,各剂量染毒组ApoE-/-小鼠BALF中IL-6、IL-17、TNF-α水平均升高,差异有统计学意义(P<0.05)。
2.4 PM2.5对小鼠肺组织病理结构影响(图 1)
对照组ApoE-/-小鼠肺组织结构完整,肺泡壁薄,肺泡腔清晰,肺泡支气管和毛细血管未见异常,肺泡间隔无水肿、炎症(图 1A);低剂量组ApoE-/-小鼠肺组织肺泡支气管旁可见小灶淋巴组织浸润(图 1B);中剂量组ApoE-/-小鼠肺组织肺泡壁增厚,肺泡间隔增宽,肺泡支气管旁可见灶淋巴组织浸润(图 1C);高剂量组ApoE-/-小鼠肺组织肺泡壁增厚显著,肺泡间隔增宽,可见黑色颗粒状物质沉积(箭头所示),肺泡支气管旁可见多灶淋巴组织浸润(图 1D)。
3 讨 论
大气细颗粒物与人群呼吸系统和心血管系统疾病的发病率和死亡率密切相关[8-10]。大气细颗粒物的来源、成分不同,健康效应也不尽相同。研究表明,颗粒物中硫酸盐含量与心肺系统疾病死亡率相关[11],颗粒物中硫酸盐和某些金属成分含量过高,心血管系统疾病危险性增加[12],因成分不同大气细颗粒物的毒性也存在差异[13]。本研究采集的上海交通区大气细颗粒物,含重金属如铁、铜、锌、铅等, 以及多环芳烃等有机物。考虑多种综合因素进行动物染毒剂量组的设置,包括小鼠每天的通气量、大气细颗粒物在肺部的沉积率等,同时参照Thomson等[14]研究,计算出每日小鼠沉积在肺部的细颗粒物浓度约为3 mg/kg,将该浓度设定为本研究的低剂量浓度。ApoE即载脂蛋白E,是低密度脂蛋白(low-density lipoprotein,LDL)受体的配体,与脂蛋白代谢关系密切;脂代谢异常与动脉粥样硬化的发生和发展具有密切关系,载脂蛋白E基因敲除(ApoE-/-)小鼠可出现高脂血症并形成动脉粥样硬化,是理想的动脉粥样硬化(atherosclerosis,AS)模型。
IL-6和TNF-α是重要的前炎症因子[15],IL-6主要由活化的T细胞、巨噬细胞和树突状细胞产生[16]。IL-6可以激活中性粒细胞,增强自然杀伤细胞的裂解能力,参与急性炎症反应。本研究结果显示,中、高剂量PM2.5染毒组小鼠BALF中IL-6、TNF-α水平较对照组明显升高。与已有研究结果基本一致[17-23]。另有研究发现在气管滴注 PM2.5 后,染毒大鼠 BALF 中 IL-6 水平与对照组比较未见明显改变[24]。这可能与染毒剂量不同、颗粒物成分不同有关。本研究结果还显示,PM2.5急性染毒可造成动脉粥样硬化小鼠BALF中IL-17含量剂量依赖性增加,而低剂量组C57BL/6小鼠BALF中IL-17未见改变。提示,动脉粥样硬化小鼠对大气细颗粒物污染的敏感性更强。
研究表明,PM2.5急性暴露可致肺部急性炎症[25-27]。急性炎症在宿主抵抗病原体中起重要作用,然而失控的炎症反应则会造成肺部疾病[28]。炎症的初始表现是中性粒细胞从脉管系统向损伤组织重定植[29],中性粒细胞重定植后,释放细胞因子和反应性氧族来杀灭外界异物或者被感染的细胞[30],这些细胞因子活化并诱导单核细胞的重定植[29]。因此,中性粒细胞被认为首先发生反应,单核细胞随后分化成巨噬细胞发生反应。研究指出PM2.5暴露后通过巨噬细胞和中性粒细胞双重途径诱发炎症反应[31]。本研究结果显示,PM2.5染毒组小鼠BALF中性粒细胞百分比随染毒剂量增加而升高,淋巴细胞百分比随染毒剂量升高而降低。提示PM2.5引起小鼠肺部炎症反应主要表现为中性细胞百分比的增加。与已有研究结果一致[32-33]。也有研究发现,大气细颗粒物暴露后细胞分类计数未见中性粒细胞数增加,这可能与染毒时间长短不同及动物品系不同有关[34]。
[1] | Analitis A, Katsouyanni K, Dimakopoulou K, et al. Short-term effects of ambient particles on cardiovascular and respiratory mortality[J]. Epidemiology, 2006, 17(2) : 230–233. DOI:10.1097/01.ede.0000199439.57655.6b |
[2] | Marks GB. A critical appraisal of the evidence for adverse respiratory effects due to exposure to environmental ozone and particulate pollution:relevance to air quality guidelines[J]. Aust N Z J Med, 1994, 24(2) : 202–213. DOI:10.1111/imj.1994.24.issue-2 |
[3] | Dockery DW, Pope CA, Xu X, et al. An association between air pollution and mortality in six US cities[J]. N Engl J Med, 1993, 329(24) : 1753–1759. DOI:10.1056/NEJM199312093292401 |
[4] | Krewski D, Burnett RT, Goldberg M, et al. Reanalysis of the Harvard six cities study,part I:validation and replication[J]. Inhal Toxicol, 2005, 17(7/8) : 335–342. |
[5] | Meng X, Ma Y, Chen R, et al. Size-fractionated particle number concentrations and daily mortality in a Chinese city[J]. Environ Health Perspect, 2013, 121(10) : 1174–1178. |
[6] | Chiu HF, Chang CC, Yang CY. Relationship between hemorrhagic stroke hospitalization and exposure to fine particulate air pollution in Taipei,Taiwan[J]. J Toxicol Environ Health, 2014, 77(19) : 1154–1163. DOI:10.1080/15287394.2014.926801 |
[7] | Ostro B, Broadwin R, Green S, et al. Fine particulate air pollution and mortality in nine California counties:results from CALFINE[J]. Environ Health Perspect, 2006, 114(1) : 29–33. DOI:10.1289/ehp.8335 |
[8] | Lepeule J, Laden F, Dockery D, et al. Chronic exposure to fine particles and mortality:an extended follow-up of the Harvard Six Cities study from 1974 to 2009[J]. Environ Health Perspect, 2012, 120(7) : 965–970. DOI:10.1289/ehp.1104660 |
[9] | Gold DR, Litonjua A, Schwartz J, et al. Ambient pollution and heart rate variability[J]. Circulation, 2000, 101(11) : 1267–1273. DOI:10.1161/01.CIR.101.11.1267 |
[10] | Pope CA, Burnett RT, Thurston GD, et al. Cardiovascular mortality and long-term exposure to particulate air pollution:epidemiological evidence of general pathophysiological pathways of disease[J]. Circulation, 2004, 109(1) : 71–77. |
[11] | Ostro B, Lipsett M, Reynolds P, et al. Long-term exposure to constituents of fine particulate air pollution and mortality:results from the California Teachers Study[J]. Environ Health Perspect, 2010, 118(3) : 363–369. |
[12] | Wang M, Beelen R, Stafoggia M, et al. Long-term exposure to elemental constituents of particulate matter and cardiovascular mortality in 19 European cohorts:results from the ESCAPE and TRANSPHORM projects[J]. Environ Int, 2014, 66 : 97–106. DOI:10.1016/j.envint.2014.01.026 |
[13] | Miller KA, Siscovick DS, Sheppard L, et al. Long-term exposure to air pollution and incidence of cardiovascular events in women[J]. N Engl J Med, 2007, 356(5) : 447–458. DOI:10.1056/NEJMoa054409 |
[14] | Thomson E, Kumarathasan P, Goegan P, et al. Differential regulation of the lung endothelin system by urban particulate matter and ozone[J]. Toxicol Sci, 2005, 88(1) : 103–113. DOI:10.1093/toxsci/kfi272 |
[15] | Weichenthal S, Villeneuve PJ, Burnett RT, et al. Long-term exposure to fine particulate matter:association with non-accidental and cardiovascular mortality in the agricultural health study cohort[J]. Environ Health Perspect, 2014, 122(6) : 609–615. |
[16] | Cox LA, Popken DA. Has reducing fine particulate matter and ozone caused reduced mortality rates in the United States[J]. Ann Epidemiol, 2015, 25(3) : 162–173. DOI:10.1016/j.annepidem.2014.11.006 |
[17] | Simkhovich BZ, Kleinman MT, Kloner RA. Air pollution and cardio-vascular injury epidemiology,toxicology,and mechanisms[J]. J Am Coll Cardiol, 2008, 52(9) : 719–726. DOI:10.1016/j.jacc.2008.05.029 |
[18] | Muhlfeld C, Rothen-Rutishauser B, Blank F, et al. Interactions of nanoparticles with pulmonary structures and cellular responses[J]. Am J Physiol Lung Cell Mol Physiol, 2008, 294(5) : L817–829. DOI:10.1152/ajplung.00442.2007 |
[19] | Møller P, Jackobsen NR, Folkmann JK, et al. Role of oxidative damage in toxicity of particulates[J]. Free Radic Res, 2010, 44(1) : 1–46. DOI:10.3109/10715760903300691 |
[20] | 吕鹏, 宋晓明, 刘红, 等. 大气颗粒物对大鼠血液及内皮损伤作用[J]. 中国公共卫生, 2010, 26(3) : 323–324. |
[21] | Ghio AJ, Cohen MD. Disruption of iron homeostasis as a mechanism of biologic effect by ambient air pollution particles[J]. Inhal Toxicol, 2005, 17(13) : 709–716. DOI:10.1080/08958370500224482 |
[22] | Nel A, Xia T, Mädler L, et al. Toxic potential of materials at the nanolevel[J]. Science, 2006, 311(5761) : 622–627. DOI:10.1126/science.1114397 |
[23] | Li Z, Carter JD, Dailey LA, et al. Pollutant particles produce vasoconstriction and enhance MAPK signaling via angiotensin type I receptor[J]. Environ Health Perspect, 2005, 113(8) : 1009–1014. DOI:10.1289/ehp.7736 |
[24] | 夏萍萍, 郭新彪, 邓芙蓉, 等. 气管滴注大气细颗粒物对大鼠的急性毒性[J]. 环境与健康, 2008, 25(1) : 4–6. |
[25] | Becher R, Bucht A, φvrevik J, et al. Involvement of NADPH oxidase and iNOS in rodent pulmonary cytokine responses to urban air and mineral particles[J]. Inhal Toxicol, 2007, 19(8) : 645–655. DOI:10.1080/08958370701353528 |
[26] | Quay JL, Reed W, Samet J, et al. Air pollution particles induce IL-6 gene expression in human airway epithelial cells via NF-kappa B activation[J]. Am J Respir Cell Mol Biol, 1998, 19(1) : 98–106. DOI:10.1165/ajrcmb.19.1.3132 |
[27] | Veronesi B, Oortgiesen M, Carter JD, et al. Particulate matter initiates inflammatory cytokine release by activation of capsaicin and acid receptors in a human bronchial epithelial cell line[J]. Toxicol Appl Pharmacol, 1999, 154(1) : 106–115. DOI:10.1006/taap.1998.8567 |
[28] | van Eeden SF, Tan WC, Suwa T, et al. Cytokines involved in the systemic inflammatory response induced by exposure to particulate matter air pollutants(PM10)[J]. Am J Respir Crit Care Med, 2001, 164(5) : 826–830. DOI:10.1164/ajrccm.164.5.2010160 |
[29] | Hartz AM, Bauer B, Block ML, et al. Diesel exhaust particles induce oxidative stress,proinflammatory signaling,and P-glycoprotein up-regulation at the blood-brain barrier[J]. FASEB J, 2008, 22(8) : 2723–2733. DOI:10.1096/fj.08-106997 |
[30] | Shukla A, Timblin C, BeruBe K, et al. Inhaled particulate matter causes expression of nuclear factor(NF)-kappaB-related genes and oxidant-dependent NF-kappaB activation in vitro[J]. Am J Respir Cell Mol Biol, 2000, 23(2) : 182–187. DOI:10.1165/ajrcmb.23.2.4035 |
[31] | Tornqvist H, Mills NL, Gonzalez M, et al. Persistent endothelial dysfunction in humans after diesel exhaust inhalation[J]. Am J Respir Crit Care Med, 2007, 176(4) : 395–400. DOI:10.1164/rccm.200606-872OC |
[32] | Tamagawa E, Bai N, Morimoto K, et al. Particulate matter exposure induces persistent lung inflammation and endothelial dysfunction[J]. Am J Physiol Lung Cell Mol Physiol, 2008, 295(1) : L79–L85. DOI:10.1152/ajplung.00048.2007 |
[33] | Fujimaki H, Kurokawa Y, Yamamoto S, et al. Distinct requirements for interleukin-6 in airway inflammation induced by diesel exhaust in mice[J]. Immunopharmacol Immunotoxicol, 2006, 28(4) : 703–714. DOI:10.1080/08923970601067433 |
[34] | Becker S, Mundandhara S, Devlin RB, et al. Regulation of cytokine production in human alveolar macrophages and airway epithelial cells in response to ambient air pollution particles:further mechanistic studies[J]. Toxicol Appl Pharmacol, 2005, 207(2 suppl) : 269–275. |