中国公共卫生  2016, Vol. 32 Issue (5): 708-711   PDF    
持久记忆机制研究进展
邹丹1, 邢阳2, 赵一凝3, 高丽娜3, 陈凤梅4, 郑燕4     
1. 沈阳医学院病理生理学教研室 ;
2. 沈阳医学院2015级研究生 ;
3. 沈阳医学院2013级麻醉本科 ;
4. 沈阳医学院2012级临床本科
摘要: 一生中大多数事情会被遗忘,情绪激发能够提高记忆的储存,从而有助于人们选择性地建立起对重要经历的持久记忆。神经系统介导的情绪激发和记忆有着非常紧密的联系。情绪激发时所释放的肾上腺素和皮质酮可调节长时程记忆的巩固,杏仁核在调节这些应激激素对机体的影响中起到关键作用。应激引起的杏仁核激活以及它与其他处理记忆的相关脑区相互作用是确保具有情感意义的经历被牢记的关键。
关键词记忆     情绪激发     杏仁核     应激激素    
Advances in researches on mechanism of lasting memory
ZOU Dan1, XING Yang2, ZHAO Yi-ning3, et al     
Department of Pathophysiology,Shenyang Medical College,Shenyang,Liaoning Province 110034,China
Abstract: Most of our experiences will be forgotten;emotional arousal enhances the storage of memories and can serve to create, selectively, lasting memories of our important experiences.The neural system mediated emotional arousal and memory are very closely linked.The stress hormones epinephrine and corticosterone released by emotional arousal regulate long-term memory.The amygdala plays a critical role in mediating the influences of these stress hormones.The stress-induced activation of the amygdala and its interactions with other brain regions involved in processing memory play a critical role in ensuring that emotionally significant experiences are well-remembered.In this article, the effect of the amygdala and emotional arousal during memory lasting retention is reviewed.
Key words: memory     emotional arousal     amygdala     stress hormone    

学习和记忆对生存至关重要,记忆可以使人们预测可能要发生的事情并因此而改变行为。大脑无法容纳生活中的每个细节,亦不能对这些细节产生相等的记忆。记忆是一个基本的认知过程,促进其他所有的重要的认知功能。没有记忆人们就不能思考,大多数动物也能展示出它们对经验的记忆。然而,不能把对所有经验的记忆等量化。一些新经验的记忆之所以能维持恒久,因为它们很容易被大脑处理并与已存在的记忆完好地适应并结合[1],记忆是通过重复和提取来加强的[2]。本文对脑内杏仁核及情绪激发在参与记忆持久保持中的作用研究进展综述如下。

1 情绪激发与持久记忆

激发情绪的经历更容易被记住。一些不愉快的经历:如一场车祸、一次抢劫,会比日常琐事记得更清晰[3]。愉快时刻如生日,假期和婚礼也能很好地被记住。对事件的记忆强度随事件的情感意义而变化。1989年旧金山地震时靠近当地的人们在地震数月后的记忆好于亚特兰大的居民[4]。“9.11事件”发生的3年后,那些袭击时处于曼哈顿市区的人们比那些处在距事发地几英里的人们对袭击有着更深刻的记忆[3]

记忆是通过给人留下深刻印象的事情所协助,如激情、恐惧、惊讶、羞愧、快乐。记忆巩固的时间依赖过程是通过学习后的条件刺激来调节。研究表明:训练后即刻给小鼠或大鼠实施低强度的中枢神经系统刺激可提高记忆[5]。情绪激发可诱导肾上腺素和皮质醇(大鼠为皮质酮)的释放,记忆巩固过程中,激发情绪的训练经历可使这些激素水平提高。多种训练进行后给予大鼠肾上腺素和皮质酮可增强记忆[6, 7]。此外,肾上腺素受体及糖皮质激素受体拮抗剂可阻断情绪激发及肾上腺应激激素对记忆巩固的效应[8, 9, 10]。很多研究应激激素影响作用的实验已经涉及了与应激训练相关的记忆,例如:应激刺激较小的训练后给予应激激素可提高记忆,包括奖赏记忆[11]。另据报道[12]:多因素慢性应激,可引起动物脑内神经递质、神经激素和下丘脑-垂体-肾上腺轴改变,导致动物行为和学习记忆功能损害。

2 脑内杏仁核参与记忆过程 2.1 杏仁核激活与记忆调节

肾上腺应激激素可增强大脑对引起其释放的事件进行记忆。研究表明:肾上腺素对记忆的影响可能是由投射到脑的外周迷走神经激活所引发[13]。学习后对升迷走神经进行直接电刺激可增强记忆[14]。皮质醇可自由进入大脑,并能激活脑内的糖皮质激素受体。

杏仁核可能作为调节应激激素的重要脑区影响记忆的巩固。研究发现:大鼠在训练后对其杏仁核进行短暂的低强度电刺激可增强记忆[15]。早期研究表明:大鼠训练后杏仁核内注射β-肾上腺素受体拮抗剂可损伤记忆巩固,同时注入去甲肾上腺素可阻断该损伤[16]。另据研究报道,全身性给予肾上腺素可导致脑内去甲肾上腺素的释放[17],引起记忆巩固的肾上腺素升高可被杏仁核内注入心得安阻断[18]。研究认为:在动物训练后杏仁核基底外侧区(basolateral region of amygdala,BLA)去甲肾上腺素的激活可提高大脑对训练经历的记忆能力[19]。大鼠训练后杏仁核内注射β-肾上腺素受体拮抗剂可削弱记忆并阻断全身给予皮质酮及肾上腺素提高记忆的效果[20]。这些发现表明,糖皮质激素诱导的记忆巩固需要杏仁核去甲肾上腺素受体的激活。情绪激发引起的去甲肾上腺素受体的激活似乎使糖皮质激素对记忆巩固的调节成为可能[21]

很多相关研究表明,情绪激发的训练经历可能增加杏仁核内去甲肾上腺素的释放,足休克训练增加杏仁核内去甲肾上腺素的释放[22],释放量明显增多的大鼠表现出更好的记忆保持力[23]。此外,一些提高记忆的药物,包括gamma-aminobutyric acid(GABA)能及阿片肽能受体拮抗剂,均可增加杏仁核去甲肾上腺素的释放[24]

2.2 杏仁核对其他脑区的影响

杏仁核与包括皮质在内脑区有着丰富的联系,参与记忆过程的不同方面。杏仁核通过向其他脑区投射神经纤维而影响记忆的巩固[25]。研究表明:海马参与空间学习记忆[26, 27],尾状核参与反应相关的空间线索学习记忆[28]。Packard等[29]研究发现:水迷宫实验中,杏仁核的训练后活化可增强动物对位置及线索学习的记忆。McIntyre[30]发现,在大鼠,杏仁核基底外侧区去甲肾上腺素受体的激活增强记忆巩固并提高海马内活动调节骨架蛋白(activity-regulated cytoskeletal,Arc)的表达。这些研究表明:Arc参与调节突触可塑性和记忆巩固[31]

3 情绪激发,肾上腺应激激素和人类记忆

研究表明,情绪激发对人类的影响与动物相吻合。学习中或学习后的情绪激活可增强长时程记忆,与肾上腺素及皮质醇有关。然而,影响记忆力的经历不必是强烈的情绪。研究表明,受试者面对带有轻微情绪内容的图片和文字(无论积极还是消极),其产生记忆增强的效果明显高于没有情绪内容的图片和文字[32]。因此,通过对情绪激发图片的观察可增强记忆能力[33]

3.1 情绪激发调节记忆巩固

研究表明,受试者学习之后进行情绪激发诱导可增强记忆[34]。受试者学习一组单词后立即或延迟一定时间(最长45 min)看一小段能激发情绪的喜剧或悲剧录像,一周后进行评价,结论是学习后30 min内进行录像观看无论悲、喜剧可增强记忆。大学生在讲座后观看激发情绪的视频剪辑,2周后的考试结果明显好于没有看到视频的学生[35]

大量研究表明,情绪激发对记忆巩固的影响与肾上腺素和皮质醇有关。在受试者观看一组激发情绪的图片前给予肾上腺素受体拮抗剂-心得安,一周后测试表明情绪激发对记忆的增强效果被阻断[36]。给受试者展示激发情绪的图片后立即给予肾上腺素或冷加压应激(通过将一只手放入冰水里诱导,引起肾上腺素和皮质酮的释放),可提高受试者对图片的记忆力[37, 38]。Hupbach等[39]报导:记忆检索测试后由冷加压应激引发的情绪激发提高唾液皮质醇并在测试的数天后增强对测试内容的记忆。

据报道,肾上腺素受体的激活选择性地影响因情绪激发刺激产生的记忆[40]。在聆听一些中性的和情绪化的单词后进行冷加压应激诱导可在受试后的第2天选择性地提高对情绪化的单词记忆。在冷加压应激后立即测定皮质酮和唾液α-淀粉酶(去甲肾上腺素能系统激活的2种生物标记物)的水平发现其与随后的记忆表现有高度的相关性[41]。另外,Segal等[42]指出:给受试者观察一系列情绪性和中性图片后即刻测定唾液α-淀粉酶水平,在1周记忆保持力测试研究中发现:该水平与受试者对这些情绪性图片的记忆存在明显的选择相关性。在暴露于情绪激发图片后测出的唾液α-淀粉酶水平也与随后从类似图片中成功辨别出见过的图片这一记忆力评价有很强的相关性[43]。这种辨别力有海马的参与[44]

3.2 情绪激发对记忆的影响包括杏仁核的激活

应用PET成像的最初研究中,Cahill[45]由观看情绪激发电影引起的杏仁核激活与3周后测试的对影片的记忆力有高度相关性。随后使用positron emission tomography(PET)成像技术进行研究也有类似报道[46]。使用magnetic resonance image(MRI)成像技术发现了学习过程中杏仁核激活与直接随情绪激活的强度变化而变化的记忆之间的关系,而且激发的情绪是积极还是消极并不是关键[47]。影像学研究提供的证据与动物研究获得的证据一致:情绪激活对长时程记忆巩固的影响涉及到学习过程中杏仁核与其他脑区的相互作用,包括海马[48, 49]。使用功能MRI技术对人脑进行影像学的研究发现:情绪激发对记忆的影响涉及杏仁核去甲肾上腺素能系统的激活。心得安阻断情绪激活刺激引发的杏仁核活化以及随后对该刺激的记忆[50]。给予肾上腺素能药物育亨宾及氢化可的松可增强杏仁核及海马的活化进而改善记忆[51]

4 小 结

综上所述,大部分人的大脑无法容纳生活中的每个细节,亦不能对这些细节产生相等的记忆。选择性地记住更重要的经历似乎是最好的策略,情绪激发时所释放的肾上腺素和皮质酮可调节长时程记忆的巩固,杏仁核可能作为调节应激激素的重要脑区影响记忆的巩固。脑内神经元投射复杂,神经递质种类繁多,它们是通过何种分子机制及通路在各记忆相关脑区及核团之间相互协调完成持久记忆有待进一步研究。

参考文献
[1] Craik FIM, Lockhart RS. Levels of processing:a framework for memory research[J]. J Verbal Learn and Verbal Behav, 1972, 11 :671–684 .
[2] Roediger HL, Butler AC. The critical role of retrieval practice in long-term retention[J]. Trends Cogn Sci, 2011, 15 (1) :20–27 .
[3] Sharot T, Martorella EA, Delgado MR, et al. How personal experience modulates the neural circuitry of memories of September 11[J]. Proc Natl Acad Sci USA, 2007, 104 (1) :389–394 .
[4] Neisser U. Remembering the earthquake:direct experience vs.hearing the news[J]. Memory, 1996, 4 (4) :337–357 .
[5] Mcgaugh JL, Roozendaal B. Drug enhancement of memory consolidation:historical perspective and neurobiological implications[J]. Psychopharmacology, 2009, 202 (1/3) :3–14 .
[6] Roozendaal B. Basolateral amygdala noradrenergic activity mediates corticosterone-induced enhancement of auditory fear conditioning[J]. Neurobiol Learn Mem, 2006, 86 (3) :249–255 .
[7] Berlau DJ, McGaugh JL. Enhancement of extinction memory consolidation:the role of the noradrenergic and GABAergic systems within the basolateral amygdala[J]. Neurobiol Learn Mem, 2006, 86 (2) :123–132 .
[8] Roozendaal B, McGaugh JL. Memory modulation[J]. Behav Neurosci, 2011, 125 (6) :797–824 .
[9] Krugers HJ, Zhou M, Joels M, et al. Regulation of excitatory synapses and fearful memories by stress hormones[J]. Front Behav Neurosci, 2011, 5 (5) :1082–1082 .
[10] Parfitt GM, Barbosa AK, Campos RC, et al. Moderate stress enhances memory persistence:Are adrenergic mechanisms involved?[J]. Behav Neurosci, 2012, 126 (5) :729–734 .
[11] Dornelles A, de Lima MN, Grazziotin M, et al. Adrenergic enhancement of consolidation of object recognition memory[J]. Neurobiol Learn Mem, 2007, 88 (1) :137–142 .
[12] 李亚, 陈亚静, 史建勋, 等. 慢性应激对小鼠学习记忆功能影响及突触作用[J]. 中国公共卫生,2012,28 (12) :1602–1604.
[13] McIntyre CK, McGaugh JL, Williams CL. Interacting brain systems modulate memory consolidation[J]. Neurosci Biobehav Rev, 2012, 36 (7) :1750–1762 .
[14] Hassert DL, Miyashita T, Williams CL. The effects of peripheral vagal nerve stimulation at a memory-modulating intensity on norepinephrine output in the basolateral amygdala[J]. Behav Neurosci, 2004, 118 (1) :79–88 .
[15] Bass DI, Partain KN, Manns JR. Event-specific enhancement of memory via brief electrical stimulation to the basolateral complex of the amygdala in rats[J]. Behav Neurosci, 2012, 126 (1) :204–208 .
[16] Kesner RP, Ellis ME. Memory consolidation:brain region and neurotransmitter specificity[J]. Neurosci Lett, 1983, 39 (3) :295–300 .
[17] Gold PE, van Buskirk R. Posttraining brain norepinephrine concentrations:correlation with retention performance of avoidance training and with peripheral epinephrine modulation of memory processing[J]. Behav Biol, 1978, 23 (4) :509–520 .
[18] Liang KC, Juler RG, McGaugh JL. Modulating effects of post-training epinephrine on memory:involvement of the amygdala noradrenergic system[J]. Brain Res, 1986, 368 (1) :125–133 .
[19] Beldjoud H, Barsegyan A, Roozendaal B, et al. Noradrenergic activation of the basolateral amygdala enhances object recognition memory and induces chromatin remodeling in the insular cortex[J]. Front Behav Neurosci, 2015, 9 :108.
[20] Roozendaal B, Okuda S, Van der Zee EA, et al. Glucocorticoid enhancement of memory requires arousal-induced noradrenergic activation in the basolateral amygdala[J]. Proc Natl Acad Sci USA, 2006, 103 (17) :6741–6746 .
[21] Okuda S, Roozendaal B, McGaugh JL. Glucocorticoid effects on object recognition memory require training-associated emotional arousal[J]. Proc Natl Acad Sci USA, 2004, 101 (3) :853–858 .
[22] Quirarte GL, Galvez R, Roozendaal B, et al. Norepinephrine release in the amygdala in response to footshock and opioid peptidergic drugs[J]. Brain Res, 1998, 808 (2) :134–140 .
[23] McIntyre CK, Hatfield T, McGaugh JL. Amygdala norepinephrine levels after training predict inhibitory avoidance retention performance in rats[J]. Eur J Neurosci, 2002, 16 (7) :1223–1226 .
[24] Hatfield T, Spanis C, McGaugh JL. Response of amygdalar norepinephrine to footshock and GABAergic drugs using in vivo microdialysis and HPLC[J]. Brain Res, 1999, 835 (2) :340–345 .
[25] Stefanik MT, Khaled M, Kupchik YM, et al. Optogenetic inhibition of cocaine seeking in rats[J]. Addict Biol, 2013, 18 (1) :50–53 .
[26] Sirichoat A, Chaijaroonkhanarak W, Prachaney P, et al. Effects of asiatic acid on spatial working memory and cell proliferation in the adult rat hippocampus[J]. Nutrients, 2015, 7 :8413–8423 .
[27] 侯学东, 刘正琦, 文涛. 铅暴露对大鼠脑海马mGluR5表达和学习记忆影响[J]. 中国公共卫生,2014,30 (4) :451–453.
[28] Packard MG, Goodman J. Emotional arousal and multiple memory systems in the mammalian brain[J]. Front Behav Neurosci, 2012, 6 (5) :14–14 .
[29] Packard MG, Cahill L, McGaugh JL. Amygdala modulation of hippocampal dependent and caudate nucleus-dependent memory processes[J]. Proc Natl Acad Sci USA, 1994, 91 (18) :8477–8481 .
[30] McIntyre CK. Memory-influencing intra-basolateral amygdala drug infusions modulate expression of Arc protein in the hippocampus[J]. Proc Natl Acad Sci USA, 2005, 102 (30) :10718–10723 .
[31] Guzowski JF, Lyford GL;Stevenson GD, et al. Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory[J]. J Neurosci, 2000, 20 (11) :3993–4001 .
[32] Kensinger EA, Addis DR, Atapattu RK. Amygdala activity at encoding corresponds with memory vividness and with memory for select episodic details[J]. Neuropsychologia, 2011, 49 (4) :663–673 .
[33] Steidl S, Razik F, Anderson AK. Emotion enhanced retention of cognitive skill learning[J]. Emotion, 2011, 11 (1) :12–19 .
[34] Nielson KA, Powless M. Positive and negative sources of emotional arousal enhance long-term word-list retention when induced as long as 30 min after learning[J]. Neurobiol Learn Mem, 2007, 88 (1) :40–47 .
[35] Nielson KA, Arentsen TJ. Memory modulation in the classroom:selective enhancement of college examination performance by arousal induced after lecture[J]. Neurobiol Learn Mem, 2012, 98 (1) :12–16 .
[36] Cahill L, Prins B, Weber M, et al. β-adrenergic activation and memory for emotional events[J]. Nature, 1994, 371 (6499) :702–704 .
[37] Cahill L, Alkire MT. Epinephrine enhancement of human memory consolidation:interaction with arousal at encoding[J]. Neurobiol Learn Mem, 2003, 79 (2) :194–198 .
[38] Cahill L, Gorski L, Le K. Enhanced human memory consolidation with postlearning stress:interaction with the degree of arousal at encoding[J]. Learn Mem, 2003, 10 (4) :270–274 .
[39] Hupbach A, Fieman R. Moderate stress enhances immediate and delayed retrieval of educationally relevant material in healthy young men[J]. Behav Neurosci, 2012, 126 (6) :819–825 .
[40] Maheu FS, Joober R, Beaulieu S, et al. Differential effects of adrenergic and corticosteroid hormonal systems on human short-and long-term declarative memory for emotionally arousing material[J]. Behav Neurosci, 2004, 118 (2) :420–428 .
[41] Smeets T, Otgaar H, Candel I, et al. True or false? Memory is differentially affected by stress-induced cortisol elevations and sympathetic activity at consolidation and retrieval[J]. Psychoneuroendocrinology, 2008, 33 (10) :1378–1386 .
[42] Segal SK, Cahill L. Endogenous noradrenergic activation and memory for emotional material in men and women[J]. Psychoneuro-endocrinology, 2009, 34 (9) :1263–1271 .
[43] Segal SK, Stark SM, Kattan D, et al. Norepinephrine-mediated emotional arousal facilitates subsequent pattern separation[J]. Neurobiol Learn Mem, 2012, 97 (4) :465–469 .
[44] Yassa MA, Stark CE. Pattern separation in the hippocampus[J]. Trends Neurosci, 2011, 34 (10) :515–525 .
[45] Cahill L, Haier RJ, Fallon J, et al. Amygdala activity at encoding correlated with long-term,free recall of emotional information[J]. Proc Natl Acad Sci USA, 1996, 93 (15) :8016–8021 .
[46] Hamann SB, Ely TD, Hoffman JM, et al. Ecstasy and agony:activation of the human amygdala in positive and negative emotion[J]. Psychol Sci, 2002, 13 (2) :135–141 .
[47] Kensinger EA, Corkin S. Two routes to emotional memory:distinct neural processes for valence and arousal[J]. Proc Natl Acad Sci USA, 2004, 101 (9) :3310–3315 .
[48] Ritchey M, LaBar KS, Cabeza R. Level of processing modulates the neural correlates of emotional memory formation[J]. J Cogn Neurosci, 2011, 23 (4) :757–771 .
[49] Schwarze U, Bingel U, Sommer T. Event-related nociceptive arousal enhances memory consolidation for neutral scenes[J]. J Neurosci, 2012, 32 (4) :1481–1487 .
[50] Stegeren AHV, Wolf OT, Everaerd W, et al. Endogenous cortisol level interacts with noradrenergic activation in the human amygdala[J]. Neurobiol Learn Mem, 2007, 87 (1) :57–66 .
[51] Stegeren AHV, Benno R, Merel K, et al. Interacting noradrenergic and corticosteroid systems shift human brain activation patterns during encoding[J]. Neurobiol Learn Mem, 2010, 93 (1) :56–65 .