药学学报  2021, Vol. 56 Issue (11): 2977-2984     DOI: 10.16438/j.0513-4870.2021-0984   PDF    
甲磺司特通过抑制GATA3介导的Th2细胞分化治疗肺纤维化
刘畅1,2, 刘姗姗1, 李云炫3, 花芳1, 吕晓希1     
1. 中国医学科学院、北京协和医学院药物研究所, 北京 100050;
2. 首都儿科研究所附属儿童医院, 北京 100020;
3. 中国医学科学院、北京协和医学院医药生物技术研究所, 北京 100050
摘要: 肺纤维化是威胁人类健康的慢性呼吸系统炎性疾病。肺部组织局部的免疫微环境调控了纤维化疾病进程。本研究观察了甲磺司特抗肺纤维化疗效及其生物学机制。甲磺司特是辅助性T细胞2(T helper 2,Th2)细胞因子抑制剂,用于临床支气管哮喘的治疗,但其是否能用于慢性肺纤维化的治疗及抑制Th2细胞因子释放的生物学机制并不清晰。通过体内及体外研究发现,甲磺斯特可以显著抑制多次博莱霉素损伤所致慢性肺纤维化发病,改善肺功能,减少肺部胶原沉积。同时甲磺司特通过抑制Th2细胞分化,显著减少Th2型细胞因子释放,但并不影响辅助性T细胞1(T helper 1,Th1)细胞分化及Th1型细胞因子释放。进一步研究显示甲磺司特通过抑制信号传导及转录激活蛋白5(signal transducer and activator of transcription 5,STAT5)及哺乳动物雷帕霉素靶标(mammalian target of rapamycin,mTOR)的磷酸化,下调GATA结合蛋白3(GATA-binding protein 3,GATA3)的表达及活性抑制Th2细胞分化。肺部过表达GATA3可以翻转甲磺司特的抗肺纤维化疗效。本实验所有动物实验均通过中国医学科学院药物研究所伦理审查委员会审查。本研究不仅阐释了甲磺司特的药理学作用机制,还为临床抗肺纤维化药物治疗提供了新的选择。
关键词: 博莱霉素    免疫    细胞因子    Th2型细胞    呼吸系统炎性疾病    
Suplatast tosilate attenuates pulmonary fibrosis by inhibiting the GATA3 induced Th2 differentiation
LIU Chang1,2, LIU Shan-shan1, LI Yun-xuan3, HUA Fang1, LÜ Xiao-xi1     
1. Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China;
2. Drug Clinical Trial Institution, Children's Hospital, Capital Institute of Pediatrics, Beijing 100020, China;
3. Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
Abstract: Pulmonary fibrosis (PF) is a chronic respiratory inflammation disease that threatens human health. The topical immune microenvironment of lung tissue regulates progression of fibrosis. In this study, the efficacy and molecular mechanism of suplatast tosilate (ST) against PF were observed. ST is a T helper 2 (Th2) cytokine inhibitor for clinical treatment of bronchial asthma. But whether it can be applied to therapy of chronic PF and the biomechanism of ST inhibiting Th2 cytokine release are not clear. Using in vivo and in vitro experiments, we found that ST can significantly suppress the pathogenesis of chronic PF induced by multiple bleomycin injury, improve the lung function, and decrease the deposition of collagen in lung tissue. In addition, ST decreases Th2 cytokine releasing through restraining Th2 cell differentiation in the meantime, but did not influence the T helper 1 (Th1) cell differentiation and Th1 cytokine releasing. Further studies showed that ST inhibits Th2 cell differentiation by down-regulating GATA-binding protein 3 (GATA3) expression and activity through inhibiting the phosphorylation of signal transducer and activator of transcription 5 (STAT5) and mammalian target of rapamycin (mTOR). The excessive expression of GATA3 in lungs can reverse the anti-PF effect of ST. All procedures involving animal treatment were approved according to the Committee on the Ethics of Animal Experiments of the Institute of Materia Medica, Chinese Academy of Medical Sciences. Our research not only clarifies the pharmacological mechanism of ST, but also provides a new selection for clinical anti-PF drug therapy.
Key words: bleomycin    immune    cytokine    Th2 cell    respiratory inflammatory disease    

肺纤维化是由多种病因所导致的肺上皮损伤及大量细胞外基质沉积所致病理改变。肺纤维化存在于多种慢性呼吸系统炎性疾病发病过程中, 如肺炎、哮喘和慢性阻塞性肺病(chronic obstructive pulmonary disease, COPD) 等[1]。肺纤维化患者通常临床预后不佳, 特发性肺纤维化(idiopathic pulmonary fibrosis, IPF) 患者在诊断后中位生存时间仅为3~5年[2]。在肺纤维化发病过程中, 内、外致病源造成肺泡上皮损伤的同时也会引发免疫细胞生物学功能变化。受损组织免疫微环境的改变可诱导多种免疫细胞极化方向的改变, 包括T细胞、巨噬细胞等。CD4+ T细胞是调节机体免疫微环境的重要细胞组成部分, 辅助性T细胞1 (T helper 1, Th1) 及其细胞因子干扰素γ (interferon-γ, IFN-γ) 及肿瘤坏死因子-α (tumor necrosis factor-α, TNF-α) 已被证实具有一定的抗纤维化功能, 而辅助性T细胞2 (T helper 2, Th2) 及其细胞因子白细胞介素-4 (interleukin-4, IL-4) 和IL-6等则促进了肺纤维化发生及发展[3]。IPF患者组支气管灌洗液(bronchoalveolar lavage fluid, BALF) 和肺组织内IFN-γ及IL-2的含量降低, 而IL-4和IL-5表达升高[4]。因此, 调节肺组织局部, 特别是纤维化部位的Th1/Th2平衡将有助于肺纤维化疾病转归。目前肺纤维化发病机制尚不清晰, 临床上缺乏安全有效的治疗手段。甲磺司特(suplatast tosilate, ST) 是日本大鹏Taiho公司开发的一种Th2细胞因子抑制剂, 可明显抑制支气管壁中嗜酸性细胞的产生, 临床用于治疗过敏性疾病如支气管哮喘、特应性皮炎和过敏性鼻炎[5]。有证据表明甲磺司特可以抑制Th2型细胞因子的释放, 并抑制肥大细胞增殖及活化[6, 7], 但具体分子生物学机制不明。本研究观察了甲磺司特是否具有抑制肺纤维化发生及发展的药理学作用, 同时分析了甲磺司特抑制Th2细胞因子释放的分子机制。本研究不仅阐述了治疗肺纤维化的干预模式, 更对肺纤维化患者的临床药物治疗提供了新的理论支持。

材料与方法

试剂及仪器   博莱霉素(bleomycin, BLM) 购自日本化药株式会社; 羟脯氨酸检测试剂盒购自南京建成生物工程技术有限公司; Masson三色染色试剂盒购自上海碧云天生物技术有限公司。GATA3-RE Luciferase质粒购自Novus biologicals公司, TBRE-TK Luciferase质粒获得自Addgene公司。荧光定量PCR引物: T细胞内T-box (T-box expressed in T cells, T-bet): 5'-AAC CAGTATCCTGTTCCCAGC-3', anti-sense: 5'-TGTCG CCACTGGAAGGATAG-3', GATA结合蛋白(GATA-binding protein 3, GATA3): sense: 5'-CTCCTTTTTGCT CTCCTTTTC-3', anti-sense: 5'-AAGAGATGAGGACT GGAGTG-3'。甲磺司特由重庆植恩药业有限公司提供。小鼠GATA3过表达腺病毒购自汉恒生物公司。PCR仪和荧光定量PCR仪购自美国Bio-Rad公司; ImageQuant LAS 4000 mini成像系统购自美国通用电气公司; 流式细胞分析仪购自美国BD公司。

肺纤维化动物模型  本实验所有动物实验均通过中国医学科学院药物研究所伦理审查委员会审查。雄性C57BL/6J小鼠, SPF级别, 20 g, 6~8周龄, 购自斯贝福(北京) 生物技术有限公司(实验动物许可证号002802)。多次博莱霉素诱导肺纤维化模型制备方法: 小鼠隔夜禁食, 使用三溴乙醇麻醉小鼠, 气管内给予博莱霉素(1 U·kg-1)。使用气管插管或滴鼻方法向气管内给予50 μL博莱霉素[8], 并迅速旋转操作板, 使博莱霉素能够均匀进入肺叶, 而后直立放置5 min。整个操作在60 ℃左右的手术操作台进行。小鼠2周造模1次, 总共6次[9]。于最后一次造模后10天开始给予甲磺司特50 mg·kg-1灌胃, 连续30天后取材。过表达GATA3实验中, 于最后一次造模后10天向每只小鼠气管内滴注GATA3-Ad腺病毒1×108 U。

小鼠肺功能检测  小鼠使用三溴乙醇麻醉后置于Flexivent小动物肺功能系统(flexiVent, SCIREQ Inc., Montreal, Canada) 上。小鼠设定通气量为10 mL·kg-1, 呼吸频率为每分钟150次, 小动物肺功能分析仪检测小鼠的吸气、呼气气道阻力和肺顺应性等数据, 并进行数据分析。

羟脯氨酸含量检测  称量小鼠左肺湿重, 匀浆后取200 μL上清, 在玻璃试管中加入550 μL水解液, 混匀后在95 ℃水解20 min。调节pH值后定容, 使用活性炭处理后, 离心取上清。按照试剂盒说明书进行操作, 测各管的吸光度, 使用吸光度计算羟脯氨酸的含量, 详见南京建成公司羟脯氨酸测定试剂盒说明书。

小鼠脾脏CD4+ T细胞分离  取小鼠脾脏, 通过机械分离法制备单细胞悬液, 使用美天旎小鼠CD4+ T细胞分离试剂盒分离脾脏内T细胞, 具体操作见说明书。分离后的T细胞使用CD4抗体进行流式细胞术检测, CD4+细胞比例大于90%。

Th1及Th2细胞诱导分化  用CD3和CD28抗体包被48孔板, 每孔加入5×105个细胞。在培养基中加入相应量的细胞因子进行诱导[10]。Th1诱导剂: 15 ng·mL-1重组IL-12、30 U·mL-1重组IL-2和5 000 ng·mL-1 anti-IL-4。Th2诱导剂: 10 ng·mL-1重组IL-4、30 U·mL-1重组IL-2、2 000 ng·mL-1可溶性anti-CD28, 和5 000 ng·mL-1 anti-IFN-γ。37 ℃、5% CO2条件培养3天后进行流式细胞术检测。

统计学分析  使用GraphPad Prism 5统计分析软件进行数据统计和计算, 文中的结果采用均值(x) ±标准差(standard error of mean, SEM) 表示, 两组之间的均值比较采用Student's t检验, 多于两组的组间分析使用one-way ANOVA Tukeys' multiple comparison检验。

结果 1 甲磺司特减轻慢性肺纤维化病理改变

本研究使用多次博莱霉素(multiple bleomycin, mBLM) 所诱导肺纤维化模型, 观察到慢性肺纤维化小鼠肺部有大量炎性细胞浸润, 同时有明显胶原沉积和纤维化病理改变(图 1A)。纤维化小鼠肺部羟脯氨酸含量显著增加(图 1B), 肺指数明显升高(图 1C)。同时肺功能测定表明慢性肺纤维化小鼠肺深吸气量(inspiratory capacity, IC) 显著降低; 肺动态阻力(respiratory system resistance, Rrs) 显著增加; 动态弹性(respiratory system elastance, Ers) 显著增加; 动态顺应性(respiratory system compliance, Crs) 显著降低, 证明小鼠肺部已经出现明显纤维化病理改变(图 1D)。甲磺司特治疗30天显著减少炎性细胞浸润和细胞外基质沉积; 降低肺部羟脯氨酸含量及肺重指数, 明显改善小鼠肺功能(图 1A~D)。以上结果表明, 甲磺司特对于mBLM所致慢性肺纤维化具有较佳的治疗效果。

Figure 1 Suplatast tosilate (ST) attenuates pulmonary fibrosis (PF) development. A: Hematoxylin-eosin staining (HE, up) and Masson staining (down) were analyzed to evaluate the lung fibrotic changes of multiple bleomycin (mBLM)-challenged mice along with ST treatment. Scale bars, 2 mm; B, C: Hydroxyproline content (B) and lung index (C) were assessed to evaluate the PF changes; D: Pulmonary function indices including inspiratory capacity (IC), respiratory system resistance (Rrs), respiratory system elastance (Ers), and respiratory system compliance (Crs) were detected in indicated mice. n = 8, mean ± SEM. Statistical significance among groups was determined by one-way ANOVA
2 甲磺司特抑制Th2细胞分化

以往的研究表明甲磺司特是特异性Th2细胞因子抑制剂。因此, 本研究首先观察了小鼠肺部CD4+ T辅助细胞的极化方向。mBLM组小鼠肺部Th2细胞数量显著增加, 而甲磺司特治疗后Th2细胞比例明显降低, 同时Th1细胞比例显著增加(图 2A)。此外, mBLM组小鼠BALF内Th1型细胞因子IFN-γ量有增加趋势, 而TNF-α量显著增加, 甲磺司特治疗后IFN-γ水平明显提升, 同时轻微增加TNF-α水平(图 2B)。mBLM小鼠BALF内Th2型细胞因子IL-4、IL-6及IL-13的水平均显著上调, 经甲磺司特治疗后, 这些Th2型细胞因子数量均明显降低(图 2C)。由于甲磺司特不仅降低了Th2型细胞因子含量, 同时还减少了Th2细胞比例, 因此本研究观察了甲磺司特是否能够直接抑制辅助性T细胞0 (T helper 0, Th0) 向Th2细胞分化。通过体外诱导实验, 观察到甲磺司特可以抑制Th0细胞向Th2细胞分化(图 2D), 但不抑制Th0细胞向Th1细胞分化(图 2E)。这些结果说明, 甲磺司特是通过抑制Th2细胞分化降低肺纤维化组织中Th2细胞因子含量的。

Figure 2 ST promotes T helper 1 (Th1) polarization and restrains T helper 2 (Th2) polarization. A: Flow cytometry analyses (left) and quantitative diagram (right) of Th1 and Th2 cell percentage in bronchoalveolar lavage fluid (BALF) from indicated mice (n = 6); B: Contents of Th1 cytokines were measured in BALF (n = 6); C: Contents of Th2 cytokines were detected in BALF (n = 6); D: Th2 polarization proportion in splenic T cells was measured by flow cytometry after indicated treatment (n = 5, Th2 inducer: 10 ng·mL-1 IL-4, 30 U·mL-1 IL-2, 2 000 ng·mL-1 soluble anti-CD28, and 5 000 ng·mL-1 anti-IFN-γ; E: Proportion of Th1 differentiation in splenic T cells was analyzed by flow cytometry after indicated exposure (n = 5, Th1 inducer: 15 ng·mL-1 IL-12, 30 U·mL-1 IL-2, and 5 000 ng·mL-1 anti-IL-4). Mean ± SEM. Statistical significance among groups was determined by one-way ANOVA. PBS: Phosphate buffer saline; IFN-γ: Interferon-γ; TNF-α: Tumor necrosis factor-α; IL: Interleukin
3 甲磺司特抑制GATA3表达及活性

辅助性T细胞的分化受到多种核因子的调控, 其中T-bet主要介导Th1型细胞分化, 而GATA3介导了Th2型细胞分化。本研究发现甲磺司特可以剂量依赖性降低Th2型核因子GATA3下游的转录活性(图 3A), 同时抑制诱导条件下的Th2细胞内GATA3的mRNA和蛋白水平(图 3BC)。但同时观察到甲磺司特并不抑制Th1型核因子T-bet结合位点T-box的下游转录活性及诱导条件下的T-bet mRNA及蛋白水平(图 3D~F)。

Figure 3 ST down-regulates expression of GATA-binding protein 3 (GATA3). A: HEK293 cells were transfected with GATA3-luc reporter gene plasmid. Luciferase assays were performed to evaluate the function of GATA3 after ST treatment (n = 5); B: The mRNA levels of GATA3 in Th2 cells with ST treatment. Th2 cells were generated from splenic T cells with Th2 inducers (n = 6); C: Western blot of GATA3 expression in Th2 cells after ST 500 μmol·L-1 exposure (n = 5); D: HEK293 cells were transfected with TBRE-TK-luc reporter gene plasmid. Luciferase assays were performed to evaluate the function of T-bet after ST treatment (n = 5); E: RT-PCR assays showed the mRNA levels of T-bet in Th1 cells after ST exposure. Th1 cells were differentiated from splenic T cells with Th1 inducers (n = 6); F: Western blot of T-bet expression in Th1 cells after ST 500 μmol·L-1 exposure (n = 5). Mean ± SEM. Statistical significance between the two groups was determined by unpaired two-tailed Student's t-test, statistical significance among groups was determined by one-way ANOVA. Th2 inducer: 10 ng·mL-1 IL-4, 30 U·mL-1 IL-2, 2 000 ng·mL-1 soluble anti-CD28, and 5 000 ng·mL-1 anti-IFN-γ; Th1 inducer: 15 ng·mL-1 IL-12, 30 U·mL-1 IL-2, and 5 000 ng·mL-1 anti-IL-4
4 甲磺司特抑制信号传导及转录激活蛋白5 (signal transducer and activator of transcription 5, STAT5)及哺乳动物雷帕霉素靶标(mammalian target of rapamycin, mTOR) 信号所介导的Th2型细胞分化

由于甲磺司特可以抑制由IL-4和IL-2所诱导的Th2细胞极化方向, 因此本研究进一步观察了IL-4及IL-2下游信号通路, 分析其抑制GATA3的分子机制。目前的研究证明, IL-4主要通过诱导信号传导及转录激活蛋白6 (signal transducer and activator of transcription 6, STAT6) 磷酸化活化GATA3, 而IL-2主要通过STAT5及mTOR介导GATA3活化。本研究发现甲磺司特并不抑制Th2细胞内STAT6的磷酸化(图 4A), 但可以显著降低STAT5及mTOR的磷酸化水平(图 4BC)。因此, 甲磺司特是通过抑制IL-2所介导的GATA3阻碍Th0细胞向Th2细胞分化。

Figure 4 ST inhibits upstream signaling pathways of GATA-binding protein 3 (GATA3). A: Western blot of phosphorylated and total signal transducer and activator of transcription 6 (STAT6) expression in differentiated Th2 cells with ST 500 μmol·L-1 treatment. Quantitative diagram demonstrated the ratio of p-STAT6 to STAT6 (n = 3); B: Western blot of phosphorylated and total signal transducer and activator of transcription 5 (STAT5) expression in Th2 cells after ST 500 μmol·L-1 treatment. The proportion of p-STAT5 to STAT5 was quantified (n = 3); C: Western blot of phosphorylated and total mammalian target of rapamycin (mTOR) expression along with ratio of p-mTOR/mTOR in differentiated Th2 cells with ST exposure (n = 3). Mean ± SEM. Statistical significance between the two groups was determined by unpaired two-tailed Student's t-test
5 甲磺司特通过抑制GATA3治疗肺纤维化

为了进一步验证甲磺司特抗肺纤维化作用是依赖于GATA3, 本研究在mBLM模型中使用甲磺司特进行药物治疗, 同时肺部给予小鼠GATA3-Ad后观察甲磺司特的抗肺纤维化效果。结果表明, 在小鼠肺部过表达GATA3后逆转了甲磺司特的抗炎、抗纤维化作用(图 5A)。GATA3过表达的甲磺司特治疗组肺部羟脯氨酸含量和肺重指数显著高于甲磺司特治疗组(图 5BC)。且GATA3过表达的甲磺司特治疗组小鼠肺功能也显著差于甲磺司特治疗组(图 5D)。以上结果说明, 甲磺司特的抗肺纤维化效果是依赖于其对GATA3的抑制作用。

Figure 5 Overexpression of GATA3 relieves the anti-fibrosis effect of ST. A: HE (up) and Masson staining (down) were performed to evaluate the lung fibrotic changes of mBLM-exposed mice along with indicated treatment. Scale bars, 2 mm; B-D: Hydroxyproline content (B), lung index (C), and Crs (D) were assessed to evaluate the PF changes of treated mice. n = 6, mean ± SEM. Statistical significance among groups was determined by one-way ANOVA
讨论

目前, 临床用于肺纤维化的药物治疗手段十分有限。早期使用激素类药物进行治疗并不能显著改善患者肺功能或改善临床结局, 证明单纯的免疫抑制并不是治疗纤维化的有效策略[11], 而临床已有的针对特发性肺纤维化的药物也仅能延缓疾病进展[12, 13]。肺纤维化在疾病发病过程中伴随着长期慢性炎症, 但有些免疫细胞及细胞因子是组织损伤后修复的重要基础。Th1型细胞因子包括IFN-γ、IL-12、IL-2、IL-18及肿瘤坏死因子β (tumor necrosis factor β, TNF-β), Th2型细胞因子包括IL-4、IL-10、IL-13及单核细胞趋化蛋白1 (monocyte chemoattractant protein-1, MCP-1)[14]。目前的研究证据表明, Th1型细胞因子参与了组织损伤后修复重建, 而Th2型细胞因子所介导的体液免疫反应在过敏、IPF、哮喘、COPD等疾病中占据主导地位[15]。当机体以Th1型免疫反应为主导时组织可向正确方向转归, 但单纯的IFN-γ治疗对于IPF患者效果并不理想[16]。小鼠肺纤维化组织内IL-5、MCP-1的表达增加, 而IPF患者的肺组织中同样伴有IL-4、IL-5、IL-13等Th2型细胞因子的增加[3], 这说明调控机体免疫平衡是治疗肺纤维化的合理策略。

GATA3是GATA家族中的一员, GATA3在Th0细胞中表达较低, 而在经过外源性IL-4及IL-2诱导分化后GATA3的表达迅速上调[17]。过表达GATA3也可诱导Th0细胞向Th2细胞分化[18]。除此之外, GATA3也是调节肥大细胞活化的关键核因子。IL-4诱导的GATA3表达主要通过STAT6信号[19], 而IL-2则可通过STAT5及mTOR信号通路促进GATA3表达[20, 21]。当STAT6缺失时IL-4诱导的GATA3表达受到抑制, 而本研究表明甲磺司特主要是通过抑制IL-2所诱导的GATA3表达。甲磺司特可以显著抑制STAT5和mTOR的磷酸化, 进而降低肺纤维化组织中Th2细胞比例。作为Th2型免疫反应重要转录因子, Th2型细胞因子IL-5及IL13的启动子区域都包含了GATA3结合位点[22], GATA3也可通过染色质重组调控IL-4的表达, 因此GATA3可介导自身的正反馈调控[23]。IL-4、IL-5和IL-13三个基因位于同一个DNA位点上, 因此GATA3对于这些细胞因子的转录可能存在整体性。本研究结果显示, 甲磺司特可以抑制多种Th2型细胞因子释放, 这可能与GATA3的转录调控特异性密切相关。此外, 甲磺司特并不抑制Th1型免疫反应, 特别是在mBLM动物肺部, 甲磺司特增加了Th1型细胞数量, 这可能同样与GATA3功能相关。GATA3不仅仅促进Th2细胞分化, 还可以抑制Th0细胞向Th1细胞分化, 具体的生物学机制可能为GATA3下调白细胞介素12受体(interleukin-12 receptor, IL-12R) 的表达所致[18], 而甲磺司特是否可以增加CD4+ T细胞表面IL-12R的表达需要进一步明确。

甲磺司特(二甲基硫对甲苯磺酸盐) 是一种新型Th2细胞因子抑制剂, 大量证据表明, 甲磺司特不仅可以抑制Th2细胞因子(IL-4、IL-5) 的合成, 还可以抑制辅助性T细胞、单核细胞和嗜酸性粒细胞的迁移, 减轻气道嗜酸性粒细胞炎症, 降低血清组胺和血清免疫球蛋白E (immune globulin E, IgE) 水平; 同时抑制特异性IgE抗体介导的肥大细胞脱颗粒和炎性介质释放。目前, 甲磺司特用于治疗轻、中度哮喘与支气管哮喘、过敏性鼻炎、变应性皮炎和嗜酸粒细胞增多综合征等疾病。同时, 甲磺司特还被发现可以通过抑制氧化应激治疗照射所致肺纤维化, 并通过抑制巨噬细胞中MCP-1治疗单次BLM所诱导肺纤维化[6, 24]。本研究显示甲磺司特可以用于慢性肺纤维化的治疗, mBLM模型较单次气管注射博莱霉素所诱导急性肺纤维化模型更加贴近临床肺纤维化患者病理改变及病程, 且该模型不会出现自愈现象, 因此更加适合临床药物治疗评价。本研究不仅显示了甲磺司特的分子机制, 更为临床肺纤维化患者提供了全新药物治疗的选择。

作者贡献: 刘畅负责原代T细胞分离培养及表型分析实验; 刘姗姗、李云炫参与动物实验及细胞实验; 花芳参与了数据分析及文献整理; 吕晓希为文章框架的构思者及负责人。

利益冲突: 所有作者均声明不存在利益冲突。

参考文献
[1]
Lederer DJ, Martinez FJ. Idiopathic pulmonary fibrosis[J]. N Engl J Med, 2018, 378: 1811-1823. DOI:10.1056/NEJMra1705751
[2]
Martinez FJ, Collard HR, Pardo A, et al. Idiopathic pulmonary fibrosis[J]. Nat Rev Dis Primers, 2017, 3: 17074. DOI:10.1038/nrdp.2017.74
[3]
Gieseck RL, Wilson MS, Wynn TA. Type 2 immunity in tissue repair and fibrosis[J]. Nat Rev Immunol, 2018, 18: 62-76. DOI:10.1038/nri.2017.90
[4]
She YX, Yu QY, Tang XX. Role of interleukins in the pathogenesis of pulmonary fibrosis[J]. Cell Death Discov, 2021, 7: 52.
[5]
Hendeles L, Asmus M, Chesrown S. Evaluation of cytokine modulators for asthma[J]. Paediatr Respir Rev, 2004, 5(Suppl A): S107-S112.
[6]
Furonaka M, Hattori N, Tanimoto T, et al. Suplatast tosilate prevents bleomycin-induced pulmonary fibrosis in mice[J]. J Pharmacol Exp Ther, 2009, 328: 55-61. DOI:10.1124/jpet.108.141721
[7]
Murakami T, Yamanaka K, Tokime K, et al. Topical suplatast tosilate (IPD) ameliorates Th2 cytokine-mediated dermatitis in caspase-1 transgenic mice by downregulating interleukin-4 and interleukin-5[J]. Br J Dermatol, 2006, 155: 27-32. DOI:10.1111/j.1365-2133.2006.07241.x
[8]
Lv XX, Liu SS, Li YX, et al. A simple method and the application of mouse tracheal intubation[J]. Acta Pharm Sin (药学学报), 2020, 55: 1187-1192.
[9]
Cao Z, Lis R, Ginsberg M, et al. Targeting of the pulmonary capillary vascular niche promotes lung alveolar repair and ameliorates fibrosis[J]. Nat Med, 2016, 22: 154-162. DOI:10.1038/nm.4035
[10]
Flaherty S, Reynolds JM. Mouse naïve CD4+ T cell isolation and in vitro differentiation into T cell subsets[J]. J Vis Exp, 2015, 16: 52739.
[11]
Idiopathic Pulmonary Fibrosis Clinical Research Network, Raghu G, Anstrom KJ, et al. Prednisone, azathioprine, and N-acetylcysteine for pulmonary fibrosis[J]. N Engl J Med, 2012, 366: 1968-1977. DOI:10.1056/NEJMoa1113354
[12]
Li YX, Lv XX, Liu C, et al. Pirfenidone and nintedanib inhibit the lung alveolar regeneration in chronic pulmonary fibrosis mouse[J]. Acta Pharma Sin (药学学报), 2020, 55: 861-867.
[13]
Ren Q, Zhang LY, Li Z. Advances in the research of anti-organ fibrosis drugs[J]. Acta Pharm Sin (药学学报), 2020, 55: 2510-2528.
[14]
Zhou L, Chong MM, Littman DR. Plasticity of CD4+ T cell lineage differentiation[J]. Immunity, 2009, 30: 646-655. DOI:10.1016/j.immuni.2009.05.001
[15]
Wynn TA. Fibrotic disease and the TH1/TH2 paradigm[J]. Nat Rev Immunol, 2004, 4: 583-594. DOI:10.1038/nri1412
[16]
Vu TN, Chen X, Foda HD, et al. Interferon-γ enhances the antifibrotic effects of pirfenidone by attenuating IPF lung fibroblast activation and differentiation[J]. Respir Res, 2019, 20: 206. DOI:10.1186/s12931-019-1171-2
[17]
Zheng W, Flavell RA. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells[J]. Cell, 1997, 89: 587-596. DOI:10.1016/S0092-8674(00)80240-8
[18]
Ouyang W, Ranganath SH, Weindel K, et al. Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism[J]. Immunity, 1998, 9: 745-755. DOI:10.1016/S1074-7613(00)80671-8
[19]
Onderdijk AJ, Baerveldt EM, Kurek D, et al. IL-4 downregulates IL-1β and IL-6 and induces GATA3 in psoriatic epidermal cells: route of action of a Th2 cytokine[J]. J Immunol, 2015, 195: 1744-1752. DOI:10.4049/jimmunol.1401740
[20]
Zhu J, Cote-Sierra J, Guo L, et al. Stat5 activation plays a critical role in Th2 differentiation[J]. Immunity, 2003, 19: 739-748. DOI:10.1016/S1074-7613(03)00292-9
[21]
Wan YY. GATA3: a master of many trades in immune regulation[J]. Trends Immunol, 2014, 35: 233-242. DOI:10.1016/j.it.2014.04.002
[22]
Kishikawa H, Sun J, Choi A, et al. The cell type-specific expression of the murine IL-13 gene is regulated by GATA-3[J]. J Immunol, 2001, 167: 4414-4420. DOI:10.4049/jimmunol.167.8.4414
[23]
Ansel KM, Djuretic I, Tanasa B, et al. Regulation of Th2 differentiation and IL4 locus accessibility[J]. Annu Rev Immunol, 2006, 24: 607-656. DOI:10.1146/annurev.immunol.23.021704.115821
[24]
Izumi Y, Nakashima T, Masuda T, et al. Suplatast tosilate reduces radiation-induced lung injury in mice through suppression of oxidative stress[J]. Free Radic Biol Med, 2019, 136: 52-59. DOI:10.1016/j.freeradbiomed.2019.03.024