药学学报  2019, Vol. 54 Issue (7): 1234-1240     DOI: 10.16438/j.0513-4870.2018-1031   PDF    
网络药理学预测瓜蒌抗心肌缺血再灌注损伤作用机制及验证研究
邹纯才, 洪国君, 鄢海燕     
皖南医学院药学院, 安徽 芜湖 241002
摘要: 基于网络药理学及大鼠(本实验所用动物经皖南医学院医学伦理委员会批准同意)心肌缺血再灌注损伤(myocardial ischemia-reperfusion injury,MIRI)模型验证的方法分析瓜蒌抗MIRI的作用机制。依据口服生物利用度(oral bioavailability,OB)≥ 30%、类药性(drug like,DL)≥ 0.18,通过TCMSP、TCM Database@Taiwan数据库筛选化合物。利用DRAR-CPI数据库获取化合物的PDB ID值(Z'-score < -0.5),并由UniProt数据库转换成靶点蛋白。通过CooLGeN数据库,以"myocardial ischemia reperfusion injury"为关键词,收集人类基因靶点蛋白。利用DAVID数据库进行与MIRI相关靶点蛋白的GOTERM_BP_DIRECT富集分析和Kyoto Encyclopedia of Genes and Genomes(KEGG)_PATHWAY通路注释分析,使用Gephi0.9.2软件构建成分-靶点蛋白-信号通路网络。以复方丹参滴丸(85.05 mg·kg-1)为阳性对照,瓜蒌滴丸(0.2、1.0和2.0 g·kg-1)预处理MIRI大鼠,采用蛋白质免疫印迹(Western blot)法对丝裂原激活的蛋白激酶(mitogen-activated protein kinase,MAPK)信号通路相关蛋白表达进行分析。网络药理学发现,瓜蒌中schottenol等12个化合物通过多靶点、多生物途径及多通路方式协同发挥抗MIRI作用,涉及ERK2(extracellular regulated protein kinase 2,ERK2)、JNK1(c-jun-N-terminal kinase-1,JNK1)、p38MAPK等靶点蛋白及MAPK等信号通路。Western blot结果显示,瓜蒌滴丸预处理MIRI大鼠后,MAPK信号通路相关蛋白p-ERK1/2表达呈剂量依赖性上调,p-p38MAPK、p-JNK1表达呈剂量依赖性下调,与模型组比较,中、高剂量组(1.0、2.0 g·kg-1)的ERK1/2、JNK1及p38MAPK蛋白磷酸化表达均有显著性差异(P < 0.01),瓜蒌滴丸可通过调控MAPK信号通路的ERK1/2、JNK1、p38MAPK靶点蛋白及其磷酸化发挥抗大鼠MIRI作用。本文运用网络药理学阐释了瓜蒌抗MIRI的作用靶点和通路并进行了验证,为深入探讨瓜蒌抗MIRI的作用机制提供了依据。
关键词: 瓜蒌     网络药理学     心肌缺血再灌注损伤     MAPK信号通路    
Predicting and validating the mechanism of Trichosanthes mediated anti-myocardial ischemia-reperfusion injury by network pharmacology
ZOU Chun-cai, HONG Guo-jun, YAN Hai-yan     
Pharmacy School of Wannan Medical College, Wuhu 241002, China
Abstract: Network pharmacology and rat ischemia-reperfusion injury (MIRI) model was used to analyze the mechanism of cardiac protection by Trichosanthes. The animal experiments were approved by the Medical Ethics Committee of Wannan Medical College. Compounds were screened by TCMSP database and TCM Database@Taiwan according to oral bioavailability (OB > 30%) and drug like activity (DL > 0.18). The PDBID value of the compound (Z'-score < 0.5) was obtained in DRAR-CPI database and converted into a target protein by UniProt database. Human genes of target proteins were identified using the term "myocardial ischemia reperfusion injury" as the keyword through the CoolGeN database. GOTERM_BP _DIRECT enrichment analysis of target proteins related to MIRI and KEGG PATHWAY annotation analysis were performed using the DAVID database. The component-target protein-signal pathway network was constructed using Giphi0.9.2 software. The expression of mitogen-activated protein kinase (MAPK) signaling pathway-related proteins in MIRI rats pretreated with Trichosanthes (0.2, 1.0 and 2.0 g·kg-1) was analyzed by Western blot with compound Danshen (85.05 mg·kg-1) as a positive control. Network pharmacology found that 12 compounds, including schottenol in Trichosanthes, synergistically inhibit MIRI through multiple targets or biological pathways, involving target proteins such as extracellular regulated protein kinase 2 (ERK2), c-jun-N-terminal kinase-1 (JNK1) and p38MAPK in MAPK signaling pathways. Western blot results showed that phosphorylation of ERK1/2 was dose-dependently up-regulated in MIRI rats pretreated with Trichosanthes, while the level of p38MAPK or JNK1 phosphorylation was down-regulated in a dose-dependent manner. Compared with the control group, phosphorylation of ERK1/2, JNK1 and p38MAPK protein showed significant difference in medium and high dose groups (1.0 and 2.0 g·kg-1) (P < 0.01). Therefore, Trichosanthes could play an anti-MIRI role by regulating phosphorylation of ERK1/2, JNK1 and p38MAPK proteins in rats. In conclusion, the targets and pathways of Trichosanthes on anti-MIRI were revealed by network pharmacology and verified in rat MIRI model, providing the scientific basis for further study on the mechanism of Trichosanthes for cardiac protection.
Key words: Trichosanthes     network pharmacology     myocardial ischemia reperfusion injury     MAPK signaling pathway    

瓜蒌为葫芦科植物栝楼(Trichosanthes kirilowii Maxim.)或双边栝楼(Trichosanthes rosthornii Harms.)的干燥成熟果实, 具宽胸散结之功效, 用于胸痹心痛等[1]

心肌缺血再灌注损伤(myocardial ischemia-reperfusion injury, MIRI)是指心脏的血液供应由缺少至恢复所致的心肌损伤加重。课题组通过瓜蒌及瓜蒌滴丸预处理抗大鼠MIRI的药效学研究发现, 与模型组比较, 瓜蒌及瓜蒌滴丸均可有效抑制MIRI大鼠心电图ST段的抬高(P < 0.01), 降低MIRI大鼠血浆肌酸激酶同工酶MB (creatine kinase-MB, CK-MB)、肌红蛋白(myoglobin, MYO)、心肌肌钙蛋白-T (cardiac troponin-T, cTnT)含量(P < 0.01), 有显著的抗大鼠MIRI作用[2]

新药研发中常遵循的“一个药物、一个基因、一种疾病”模式可能是导致许多新药临床试验失败的主要原因之一。临床上的多种疾病, 如MIRI是多基因、多因素作用的疾病[3], 仅针对单一作用靶点治疗难以达到预期效果。网络药理学强调信号通路的多靶点多途径调节, 在新药研发特别是在中药的创新药物研发中可发挥重要作用。为综合分析瓜蒌抗MIRI的作用机制, 本课题采用网络药理学方法[4, 5], 预测瓜蒌可能的靶点蛋白及信号通路, 并结合Western blot法测定MIRI大鼠ERK1/2、JNK1、p38MAPK蛋白及其磷酸化的表达加以验证, 以期为瓜蒌抗MIRI作用机制的深入研究提供参考。

材料与方法

实验动物  SPF级Sprague Dawley (SD)大鼠, 雄性, 体重180~220 g, 由南京青龙山动物养殖场提供, 合格证号: SCXK (苏) 2017-0001, 本实验所用动物经皖南医学院医学伦理委员会批准同意。

药品与试剂 瓜蒌滴丸(批号: 20170801, 中国发明专利申请号: 201710792082.1。平均丸重0.03 g, 每丸含瓜蒌提取物0.01 g, 相当于瓜蒌饮片0.2 g); 放射免疫沉淀法(radio-immunoprecipitation assay, RIPA)细胞裂解液(directory number: 13A10A05)、十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(sodium dodecyl sulfate-polyacrylamide gel electrophoresis, SDS-PAGE)蛋白上样缓冲液(变性) (1×) (directory number: 13D23C38)、三羟甲基氨基甲烷-缓冲生理盐水(tris-buffered saline, TBS)漂洗缓冲液(干粉, NO.13B11B44)、封闭蛋白TBS缓冲系统封闭液(干粉, NO.13E07A43)、甘油醛-3-磷酸脱氢酶(glyceraldehyde-3-phosphate dehydrogenase, GAPDH, NO.2P9378BP78)、ERK1/2 (NO.BST17874326)、JNK1 (NO.12CM609)、p38MAPK (NO.12C63)、一抗二抗稀释液(Directory number: 13D19B17)均购自美国博士德生物工程有限公司; p-ERK1/2 (NO.AH07137723)、p-JNK1 (NO.AH08079092)、p-p38MAPK (NO.AH06044692)均购自北京博奥森生物技术有限公司, Tris (NO.117W0710)、SDS (NO. 7141031)、glycine (NO.418Q0614)购自北京索莱宝科技有限公司。

仪器 HX-300小动物呼吸机、BL-420生物机能采集系统(成都泰盟软件有限公司); MINI PROTEAN电泳系统、MINI PROTEAN转膜系统(美国Bio-Rad公司); Alpha荧光化学凝胶成像系统Fluor Chem FC3 (美国Protein Simple公司)。

化合物的筛选  依据口服生物利用度(oral bioavailability, OB) ≥30%、类药性(drug like, DL) ≥0.18, 通过TCM Database@Taiwan (http://tcm.cmu.edu.tw/)、TCMSP数据库(http://lsp.nwsuaf.edu.cn/tcmsp.php)筛选到11个化合物, 腺苷(adenosine)为文献[6]报道的瓜蒌中药效成分。采用ChemBioDrawUltta 14.0软件绘制12个化合物分子结构式, 以MDL SDfile (*.sdf)文件格式保存备用, 见图 1

Figure 1 Information on main compounds in Trichosanthes

成分-蛋白靶点-信号通路网络分析和构建 利用DRAR-CPI数据库(http://cpi.bio-x.cn/drar)获取图 1中12种成分的PDB ID值(Z'-score < -0.5), 并由UniProt数据库(http://www.uniprot.org/)转换成靶点蛋白。通过CooLGeN数据库(http://ci.smu.edu.cn/CooLGeN/Home.php), 以“myocardial ischemia reperfusion injury”为关键词, 收集人类基因靶点蛋白。利用DAVID数据库(https://david.ncifcrf.gov/tools.jsp)进行靶点蛋白的GOTERM_BP_DIRECT富集分析和Kyoto Encyclopedia of Genes and Genomes (KEGG)_PATHWAY通路注释分析(标示符为official_gene_symbol, 物种注释为Homo sapiens)。根据预测结果, 使用Gephi0.9.2软件构建成分-靶点蛋白-信号通路网络。

动物分组及给药 SPF级SD大鼠随机分为6组, 每组6只, 假手术组、模型组、瓜蒌滴丸组(0.2、1.0和2.0 g·kg-1)、复方丹参滴丸组85.05 mg·kg-1, 每日1次, 连续7天, 10 mL·kg-1灌胃。

大鼠MIRI模型的制备 大鼠末次给药后1 h, 经腹腔注射10%水合氯醛(3 mL·kg-1)麻醉, 气管插管, 监测心电图, 结扎左冠状动脉30 min后解结扎120 min, MIRI造模结束, 取心脏, -80 ℃冰箱保存, 备用。

心肌组织蛋白提取及Western blot法分析  按心脏重量(g):裂解液(mL) = 1:8加入RIPA裂解液, 加入蛋白酶抑制剂(磷酸化蛋白还需加入磷酸化酶抑制剂)匀浆, 冰上孵育2 h后, 12 000 r·min-1, 离心15 min, 取上清液, 煮沸15 min, 加入SDS-PAGE蛋白上样缓冲液, 制备上样样品。用PAGE分离蛋白样品, 根据说明书提供的分子量条带选定切胶范围, 湿法转膜, 5%脱脂奶粉TBST (Tris-buffered saline and tween 20)溶液封闭2 h, 一抗、二抗孵育, Alpha荧光化学凝胶成像系统观察ERK1/2、JNK1、p38MAPK及其磷酸化蛋白的表达情况。

统计学分析 应用SPSS13.0软件进行统计分析, 各统计指标以均数±标准差(x ± s)表示, 两组间比较用t检验。P < 0.05为差异有统计学意义, P < 0.01为差异有显著统计学意义。

结果 1 靶点的预测

通过DRAR-CPI数据库得到瓜蒌中12个成分的262个靶点蛋白, 结合CooLGeN数据库搜索结果, 发现有39个靶点蛋白与MIRI相关。利用DAVID数据库对39个靶点蛋白进行KEGG_PATHWAY通路注释分析, 取P < 0.05, 结果见表 1

Table 1 Main potential target information related to myocardial ischemia reperfusion injury in Trichosanthes (P < 0.05)
2 靶点生物功能分析

利用DAVID数据库进行GOTERM_BP_DIRECT富集分析, 结果见图 2。结果显示, 生物学过程与信号转导、蛋白激酶级联、细胞凋亡调控、刺激反应、磷酸化等相关性较大, 表明瓜蒌通过改善这些生物学过程可能是其发挥抗MIRI的机制之一。

Figure 2 Enriched gene ontology terms for biological processes from main active ingredients of Trichosanthes
3 靶点信号通路分析

利用DAVID数据库进行KEGG_PATHWAY富集分析, P < 0.05的信号通路结果见表 2。选取通路P值较小且靶点蛋白富集的10条通路, 见图 3, 主要为癌症的途径、神经营养因子信号通路、黏着斑、MAPK信号通路、NOD样受体信号通路、结直肠癌、孕酮介导卵母细胞成熟、前列腺癌、Toll样受体信号通路、T细胞受体信号通路。

Table 2 KEGG signaling pathway enrichment analysis of potential anti-myocardial ischemia reperfusion injury targets in Trichosanthes

Figure 3 Enriched KEGG pathways of potential targets from main active ingredients of Trichosanthes
4 活性成分-靶点蛋白-信号通路网络的构建

使用Gephi 0.9.2软件构建活性成分-靶点蛋白-信号通路网络, 见图 4。由图 4可知, 瓜蒌中的12个活性成分和23个靶点蛋白、28条作用通路间存在复杂的网络关系, 瓜蒌中活性成分可通过多靶点蛋白、多信号通路发挥作用。其中, 槲皮素(quercetin)、维生素-E (vitamin-E)、7-氧代二氢栝楼仁二醇(7-oxo-dihydrokaro-unidiol)、5-脱氢栝楼仁二醇(5-dehydrokarounidiol)、葫芦二烯醇(10α-cucurbita-5, 24-diene-3β-ol)、α-菠甾醇(spinasterol)、24α/R-豆甾-7-烯醇(schottenol)、腺苷(adenosine)等8种成分通过调控MAPK信号通路的ERK2、JNK1、p38MAPK、AKT1、FGFR1、CASP3和RAC1等7个靶点蛋白发挥抗MIRI作用。

Figure 4 Compounds ()-target protein ()-pathways () network
5 瓜蒌滴丸对MIRI大鼠ERK1/2、JNK1、p38MAPK及其磷酸化表达的影响

鉴于MAPK级联是细胞内重要的跨膜信号转导系统, 主要由ERK、JNK、p38MAPK组成, 并构成基本的信号转导途径。为此, 本课题以复方丹参滴丸(85.05 mg·kg-1)为阳性对照, 瓜蒌滴丸(0.2、1.0和2.0 g·kg-1)预处理MIRI大鼠, 采用Western blot法对MAPK信号通路中相关的ERK1/2、JNK1、p38MAPK蛋白及其磷酸化表达进行分析, 以验证瓜蒌是否可作用于ERK1/2、JNK1和p38MAPK蛋白并影响MAPK信号通路。

各组MIRI大鼠ERK1/2、JNK1、p38MAPK及其磷酸化的表达结果, 见图 5。由图 5可知, 与假手术组比较, 模型组ERK1/2、JNK1及p38MAPK的磷酸化水平呈剂量依赖性上调; 与模型组比较, 瓜蒌滴丸低、中、高剂量组的ERK1/2磷酸化水平呈剂量依赖性上调, 且中、高剂量组有显著性差异(P < 0.01);瓜蒌滴丸低、中、高剂量组的JNK1、p38MAPK磷酸化水平呈剂量依赖性下调, 且中、高剂量组有显著性差异(P < 0.01)。

Figure 5 The protein expressions of MAPK pathway were determined by Western blot analysis (A) and quantitative graphs (B: p-ERK1/ERK1; C: p-ERK2/ERK2; D: p-JNK1/JNK1; E: p-p38MAPK/p38MAPK). 1: Normal group; 2: Sham operation group; 3: Model group; 4: Compound Danshen dropping pills group; 5: Trichosanthes dropping pills group (0.2 g·kg-1); 6: Trichosanthes dropping pills group (1.0 g·kg-1); 7: Trichosanthes dropping pills group (2.0 g·kg-1). n = 6, x ± s. *P < 0.05, **P < 0.01 vs model group; ##P < 0.01 vs Sham operation group
讨论

本文通过对瓜蒌中12个化合物及其涉及到的MIRI靶点蛋白和作用通路进行网络药理学分析, 发现24α/R-豆甾-7-烯醇等12个化合物通过多靶点、多生物途径及多通路方式协同发挥作用, 涉及癌症、MAPK等信号通路, 部分功能及信号通路已有文献报道, 如瓜蒌皮通过降低细胞内c-fos、c-myc mRNA原癌基因高表达, 抑制血小板源生长因子BB (platelet-derived growth factor-BB, PDGF-BB)所致的增殖[7], 改善血管钙化和血管L-精氨酸/NO途径紊乱, 抑制氧化应激和减少炎症因子释放, 降低caspase-3活性和下调NF-κB及血管内皮细胞黏附分子-1表达等途径, 可改善血管内皮功能障碍[8, 9]、抑制体外高糖诱导的人脐静脉内皮细胞凋亡[10]及动脉粥样硬化的形成[11]。此外, 瓜蒌皮中的低聚糖具有血管紧张素转化酶抑制作用[12]; 瓜蒌皮注射液可促进血管内皮生长因子的表达, 提高缺血缺氧内皮祖细胞的生存能力[13]

MAPK通路包括MAPK激酶激酶(MAP kinase kinase kinase, MKKK)、MAPK激酶(MAP kinase kinase, MKK)和MAPK三级激酶模式。MAPK级联是细胞内重要的跨膜信号转导系统, 是多种信号通路的中心, 通过依次磷酸化激活3种激酶, 将上游信号传递至下游应答分子, 在基因表达调控和细胞质功能活动中发挥关键作用。

MAPK信号转导通路主要通过ERK1/2、JNK、p38MAPK等3条主要通路参与调节细胞的分化、增殖和凋亡等生命过程[14]。ERK1/2通路一般由细胞外促有丝分裂原刺激激活[14], 参与细胞的增殖分化的调控; JNK和p38MAPK通路一般由各种应激刺激如细胞因子激活[15], 参与应激反应, 介导炎症和凋亡等。在未受刺激的细胞内, MAPK处于静止状态。心肌缺血再灌注时, MAPK可通过级联反应激活下游的ERK1/2、JNK和p38MAPK通路, 使ERK1/2、JNK和p38MAPK磷酸化水平上调。磷酸化的ERK1/2能够抑制内质网应激, 使心肌细胞凋亡减少, 产生心肌保护作用[16]; 磷酸化的JNK、p38MAPK可加剧炎症反应, 诱导凋亡, 增大心肌梗死面积[17]。本研究结果显示, 瓜蒌滴丸可呈剂量依赖性上调ERK1/2磷酸化表达, 下调JNK1、p38MAPK磷酸化表达, 通过调控MAPK信号转导通路ERK1/2、JNK、p38MAPK靶点蛋白及其磷酸化发挥抗MIRI作用, 验证了网络药理学的预测结果, 为深入阐明瓜蒌抗MIRI作用机制提供了科学依据。

参考文献
[1] China Pharmacopoeia Committee. Chinese Pharmacopoeia Vol Ⅰ (中国药典.一部) [S]. Beijing: China Medical Science Press, 2015: 112.
[2] Zou CC, Zong QN, Yan HY. Study on the spectrum-activity relationship of Trichosanthis Fructus and Trichosanthes Strip Pieces on rat anti-myocardial ischemia-reperfusion injury[J]. China J Chin Mater Med (中国中药杂志), 2018, 43: 92–99.
[3] Zou CC, Yan HY, Wei ML. Study of the anti-heart failure mechanisms of compatibility of Gualou with Xiebai in basis of network pharmacology[J]. Acta Pharm Sin (药学学报), 2018, 53: 1406–1413.
[4] Wu D, Gao Y, Xiang H, et al. Exploration into mechanism of antidepressant of Bupleuri radix based on network pharmacology[J]. Acta Pharm Sin (药学学报), 2018, 53: 210–219.
[5] Sun LM, Liu LF, Zhu HX, et al. Network pharmacology-based study on intervention mechanism of Huanglian Jiedu decoction in the treatment of Alzheimer's disease[J]. Acta Pharm Sin (药学学报), 2017, 52: 1268–1275.
[6] Liu DL, Qu GX, Wang NL, et al. Antiplatelet aggregation constituents from Trichosanthes kirilowii[J]. Chin Tradit Herb Drugs (中草药), 2004, 35: 1334–1336.
[7] Yan Z, Qiu M, Guo XH, et al. Effect of extractive of Pericarpium Trichosanthis on cell cycle of rat vascular smooth cell proliferation induced by PDGF-BB[J]. Chin J Arterioscler (中国动脉硬化杂志), 2012, 20: 899–902.
[8] Liu Y. EPT Protects against Low-density Lipoprotein-induced Endothelial Dysfunction by DDAH/ADMA Pathway (瓜蒌皮提取物对低密度脂蛋白所致血管内皮功能障碍的保护作用与DDAH/ADMA途径的关系)[D]. Hengyang: University of South China, 2010.
[9] Tan B, Liu Y, Gu B, et al. Protective effect of EPT against damages of the endothelium induced by low-density lipoprotein in rats[J]. Mod Med J Chin (中国现代医药杂志), 2010, 12: 9–11.
[10] Liu SY, Gu B, Lu XH, et al. Effects of extractive Pericarpium Trichosanthes on apoptosis of HUVECs induced by high glucose[J]. Chin Pharmacol Bull (中国药理学通报), 2015, 31: 988–993.
[11] Wang DM. Experimental Studies on Effects and Mechanisms of Extract of Trichosanthes Kirilowii Pericarp in Anti-atherosclerosis (瓜蒌皮提取液的抗动脉粥样硬化作用及机制的实验研究)[D]. Beijing: Peking University, 2008.
[12] Wang HJ, Ke Y, Ye G. Bioactivity-guided isolation of anti-angiotensin converting enzyme constituents from Trichosanthis Pericarpium[J]. China J Chin Mater Med (中国中药杂志), 2017, 42: 3131–3135.
[13] Zhao QT. Protective effect of Trichosanthes pericarpium injection on hypoxic-ischemic endothelial progenitor cells[J]. Chin Tradit Pat Med (中成药), 2015, 37: 247–251.
[14] Lewis TS, Shapiro PS, Ahn NG. Signal transduction through MAP kinase cascades[J]. Adv Cancer Res, 1998, 74: 49–139. DOI:10.1016/S0065-230X(08)60765-4
[15] Irving EA, Bamford M. Role of mitogen-and stress activated kinases in ischemic injury[J]. J Cereb Blood Flow Metab, 2002, 22: 631–647. DOI:10.1097/00004647-200206000-00001
[16] Tao JP, Zhu W, Li YP, et al. Apelin-13 protects the heart against ischemia-reperfusion injury through inhibition of ER-dependent apoptotic pathways in a time-dependent fashion[J]. Am J Physiol Heart Circ Physiol, 2011, 301: H1471–H1486. DOI:10.1152/ajpheart.00097.2011
[17] Bogoyevitch MA, Ngoei KR, Zhao TT, et al. C-Jun N-terminal kinase (JNK) signaling: recent advances and challenges[J]. Biochim Biophys Acta, 2010, 1804: 463–475. DOI:10.1016/j.bbapap.2009.11.002