药学学报  2017, Vol. 52 Issue (7): 1041-1047   PDF    
制首乌中顺式二苯乙烯苷转化量与特异质肝损伤的相关性研究
张乐1,2, 柏兆方2, 李春雨2,4, 胡黄婉茵1,2, 沙孟晨2, 刘振兴2, 何琴2, 李雨萌2, 刘友平1, 肖小河2,3, 王伽伯2     
1. 成都中医药大学药学院, 四川 成都 611137;
2. 解放军302医院全军中医药研究所, 北京 100039;
3. 解放军302医院中西医结合肝病诊疗与研究中心, 北京 100039;
4. 中国医学科学院肿瘤医院, 北京 100021
摘要: 考察制首乌中易感物质顺式二苯乙烯苷(顺式-2,3,5,4'-四羟基二苯乙烯-2-O-β-D-葡萄糖苷,cis-SG)转化量与特异质肝损伤的相关性,并探讨其可能的安全限度。通过光照将制首乌50%乙醇提取液中反式二苯乙烯苷(反式-2,3,5,4'-四羟基二苯乙烯-2-O-β-D-葡萄糖苷,trans-SG)转化为cis-SG,得到不同转化量的样品,分别在正常大鼠和内毒素(2.8 mg·kg-1,iv)复制的易感性模型大鼠上给药(7.56 g·kg-1,ig),考察血浆生化指标、炎症因子及组织病理的改变等,比较大鼠肝损伤作用的差异。结果表明,所有制首乌样品在正常大鼠上均未引起肝损伤;在内毒素模型上,未光照、光转化cis-SG含量0.10%的制首乌样品均未见明显的肝损伤,而光转化cis-SG含量0.35%和0.70%的制首乌样品均引起明显肝脏病理改变,表现为肝细胞肿胀坏死、大量炎症细胞浸润,肝组织核转录因子-κB(NF-κB)p65表达量、细胞凋亡率均显著增加(P < 0.05),同时血浆ALT、AST、TNF-α和IL-6含量均显著增加(P < 0.05),过氧化物酶体增殖物激活受体-γ(PPAR-γ)含量显著降低(P < 0.05)。同时,临床上制首乌引起肝损伤患者的余留药物含量分析发现,其cis-SG含量( > 0.40%)均高于产地收集饮片( < 0.10%)。综合实验评价和临床分析结果提示,易感物质cis-SG含量与制首乌特异质肝损伤存在一定的量-毒关系;为降低临床用药风险,初步建议可将cis-SG含量0.10%作为何首乌生产炮制过程的质控限度。
关键词: 制首乌     特异质肝损伤     内毒素模型     顺式二苯乙烯苷     限度    
Study on idiosyncratic liver injury and content of cis-2, 3, 5, 4'-tetrahy droxystilbene-2-O-β-D-glucoside in radix Polygoni multiflori Preparata
ZHANG Le1,2, BAI Zhao-fang2, LI Chun-yu2,4, HU Huang-wan-yin1,2, SHA Meng-chen2, LIU Zhen-xing2, HE Qin2, LI Yu-meng2, LIU You-ping1, XIAO Xiao-he2,3, WANG Jia-bo2     
1. School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
2. China Military Institute of Chinese Medicine, 302 Military Hospital, Beijing 100039, China;
3. Integrative Medicine Center, 302 Military Hospital, Beijing 100039, China;
4. Cancer Hospital, Chinese Academy of Medical Sciences, Beijing 100021, China
Abstract: This study was designed to investigate the correlation between idiosyncratic liver injury and content of cis-2, 3, 5, 4'-tetrahydroxystilbene-2-O-β-D-glucoside(cis-SG)in radix Polygoni multiflori Preparata(RPMP). In order to compare the effect of hepatotoxicity of different cis-SG contents in RPMP, rats were administered with 50% alcohol extracts of RPMP(7.56 g·kg-1, via intragastric administration)alone or co-treated with lipopolysaccharide(LPS, 2.8 mg·kg-1, via tail vein injection). The results showed that no significant alterations of plasma ALT and AST activities were observed in the normal rats. In the LPS treated rats, the group without light treatment and the group with 0.10% cis-SG after light treatment did not exhibit obvious injury in liver. The group with 0.35% cis-SG after light treatment and the group with 0.70% cis-SG after light treatment showed significant increases in ALT, AST, TNF-α, IL-6, NF-κB p65 and apoptosis rate(P < 0.05), causing pathological changes in the liver tissue. Through the content analysis of drug in patients with liver injury, we found that the content of cis-SG( > 0.40%)was generally higher than that of pieces collected from different origins( < 0.10%). The comparative analysis of experiments and clinical data showed that there was a relationship between the content of cis-SG and idiosyncratic liver injury. In order to reduce the risk of clinical medication, the content of cis-SG of 0.10% should be a limit of quality control in the production processing of Polygonum multiflorum.
Key words: radix Polygoni multiflori Preparata     idiosyncratic liver injury     endotoxin model     cis-2, 3, 5, 4'-tetrahydroxystilbene-2-O-β-D-glucoside     limit    

何首乌为蓼科植物何首乌Polygonum multiflorum Thunb.的干燥块根, 临床应用有生首乌和制首乌之别, 生品能够解毒、消痈、截疟和润肠通便, 炮制品可以补肝肾、益精血和乌须发等[1], 传统认为无毒。然而, 近年来有关何首乌及其制剂导致肝损伤不良反应的报道大量增加[2], 引起国内外广泛关注。本课题组[3]前期研究提示何首乌引起的肝损伤可能是一种特异质肝损伤, 并建立了内毒素[脂多糖(lipopolysa ccharide, LPS)]诱导的何首乌特异质肝损伤评价模型。在此基础上, 课题组在整体动物水平, 采用中药活性物质敲出/敲入策略[4]和单体化合物验证, 研究发现顺式二苯乙烯苷(顺式-2, 3, 5, 4'-四羟基二苯乙烯-2-O-β-D-葡萄糖苷, cis-SG)是何首乌重要的易感物质[5, 6]。易感物质是药物含有的对某种疾病易感的成分, 通过控制易感物质含量的高低可以有效降低发生的疾病风险。何首乌中天然存在的主要是反式二苯乙烯苷(反式-2, 3, 5, 4'-四羟基二苯乙烯-2-O-β-D-葡萄糖苷, trans-SG), cis-SG是在光照条件下由trans-SG转化而来, 提示在何首乌晾晒、提取、干燥和贮存等生产炮制环节及平常所泡药酒阶段, trans-SG均有可能发生光转化生成cis-SG。针对这一现象和问题, 本文拟考察cis-SG转化量与制首乌特异质肝损伤的相关性, 并探讨其可能的安全限度, 为从质量角度建立何首乌肝损伤风险控制手段提供参考。

材料与方法

实验动物  SPF级雄性SD大鼠, 体重180~200 g, 购于军事医学科学院实验动物中心, 合格证号SCXK-(军) 2012-0004, 于解放军302医院实验动物中心分笼饲养, 自由饮水和进食。实验动物中心室温(25 ± 2) ℃, 湿度50%~70%, 室内保持12 h照明与黑暗交替, 并定期进行消毒。

药品与试剂  制何首乌(radix Polygoni multiflori Preparata, RPMP, 批号15050401) 购于北京绿野药业有限公司, 其炮制标准执行《中国药典》和《北京市中药饮片炮制规范》[7, 8]; cis-SG (批号16091802, 供含量测定用, 以98%计)、trans-SG (批号16081506, 供含量测定用, 以98%计)均购于成都普菲德生物技术有限公司; LPS (批号046M4045V)、戊巴比妥钠(批号57-33-0)、乙腈(色谱级, 批号WXBB6406V)购于美国Sigma公司; 10%中性甲醛(固定液) (批号20160620) 购于北京中科万邦生物科技有限公司; AST测定试剂盒(MDH法)、ALT测定试剂盒(乳酸脱氢酶法)均购于美国Beckman Coulter公司; 大鼠IL-6酶联免疫吸附测定试剂盒(SEA079Ra 96T)、大鼠TNF-α酶联免疫吸附测定试剂盒(SEA133Ra 96T)和大鼠PPAR-γ酶联免疫吸附测定试剂盒(SEA886Ra 96T)均购于美国Cloud-Clone公司; 水为超纯水, 其余试剂均为分析纯。

仪器  Agilent1200高效液相色谱仪(HP-12000 DAD检测器) (美国Agilent科技有限公司); ZF-1型三用紫外分析仪(北京启航博达科技有限公司); XS205DU电子天平(瑞士Mettler Toledo公司); 旋转蒸发仪R205B (SENCO) (上海申生科技有限公司); KQ-500DE型数控超声波清洗器(昆山市超声仪器有限公司); AU5400全自动生化分析仪(日本OLYMPUS光学株式会社); ELx808吸收光酶标仪(美国BioTek公司); KD-P摊片机(浙江省金华市科迪仪器设备有限公司); Leica RM2235石蜡切片机[徕卡显微系统(上海)有限公司]; JB-L7石蜡包埋机(武汉俊杰电子有限公司); Nikon Ni-U三人共览显微镜(日本Nikon公司)等。

样品制备  基于本课题组前期实验结果, 何首乌50%乙醇提取物对肝细胞毒性影响最大, 故本实验采用50%乙醇提取制首乌[9]

未光照样品制备  取制首乌粗粉适量, 加8倍量50%乙醇超声提取, 共提取2次, 每次30 min, 合并提取液, 减压浓缩回收乙醇得浓缩液, 临用前用去离子水按生药量配制成相应浓度。

光照样品制备  各取3份制首乌粗粉适量, 分别加8倍量50%乙醇超声提取, 共提取2次, 每次30 min, 合并提取液, 置于平皿内, 在365 nm紫外灯下照射一定时间至溶液中trans-SG转化为cis-SG且cis-SG含量分别为0.10%、0.35%和0.70%左右, 减压浓缩回收乙醇得浓缩液, 临用前用去离子水按生药量分别配制成相应浓度。

样品中cis-SG含量测定

色谱条件  ZORBAX Eclipse Plus C18色谱柱(250 mm × 4.6 mm, 5 μm); 流动相为水(A)-乙腈(B); 检测波长280 nm; 柱温30 ℃; 流速1 mL·min-1; 线性梯度洗脱, 0~8 min, 5%~35% A, 8~10 min, 35%~45% A, 10~15 min, 45%~80% A, 15~18 min, 80%~5% A.; 进样量10 μL。

混合对照品溶液的制备  取cis-SG对照品和trans-SG对照品适量, 精密称定, 加甲醇制成每1 mL各含0.2 mg的混合对照品溶液。

供试品溶液的制备  分别取上述未经光照和光照后的制首乌浓缩液适量, 用甲醇稀释一定倍数, 过0.22 μm微孔滤膜, 取续滤液, 得供试品溶液。

样品测定  各供试品溶液在上述色谱条件项下进行测定, 采用外标法分别计算各样品中cis-SG含量, 色谱图如图 1所示。

Figure 1 HPLC of radix Polygoni multiflori Preparata (RPMP). Ⅰ: Reference substance; Ⅱ: Sample without light treatment; Ⅲ: Sample with cis-SG content of 0.10% after light treatment; Ⅳ: Sample with cis-SG content of 0.35% after light treatment; Ⅴ: Sample with cis-SG content of 0.70% after light treatment; 1: cis-SG, 2: trans-SG. cis-SG: cis-2, 3, 5, 4'-Tetrahydroxystilbene-2-O-β-D-glucoside; trans-SG: trans-2, 3, 5, 4'-Tetrahydroxystilbene-2-O-β-D-glucoside

基于内毒素模型的特异质肝损伤评价

动物分组  将80只SD大鼠随机分成10组(n = 8):正常对照组(N)、LPS模型组(L)、制首乌未光照样品单独给药组(A)、制首乌光照后cis-SG含量0.10%样品单独给药组(B)、制首乌光照后cis-SG含量0.35%样品单独给药组(C)、制首乌光照后cis-SG含量0.70%样品单独给药组(D)、LPS联合制首乌未光照样品给药组(LA)、LPS联合制首乌光照后cis-SG含量0.10%样品给药组(LB)、LPS联合制首乌光照后cis-SG含量0.35%样品给药组(LC)、LPS联合制首乌光照后cis-SG含量0.70%样品给药组(LD)。制首乌给药剂量基于前期实验研究所得, 为7.56 g·kg-1[10]

给药与标本采集  将大鼠禁食不禁水12 h后, 称重, 按剂量给药。其中制首乌样品通过灌胃给予, 3 h后尾静脉注射LPS (2.8 mg·kg-1), LPS尾静脉注射7 h后, 腹腔注射戊巴比妥钠(50 mg·kg-1)麻醉大鼠, 下腔静脉取血, 并采集肝脏样品[3, 11]

检测方法  收集大鼠离体血液, 离心(3 000 r·min-1, 10 min)取血浆, 采用全自动生化分析仪检测ALT和AST水平, 采用ELISA法按试剂盒说明书检测IL-6、TNF-α和PPAR-γ含量; 采集大鼠肝组织, 用10%中性福尔马林固定, 常规病理切片, 采用HE染色法观察肝组织病理学变化, 免疫组化法测定大鼠肝脏中NF-κB p65表达, TUNEL法检测肝细胞的凋亡[以细胞核呈棕褐色染色为阳性标准, 细胞凋亡率% = (凋亡细胞数/细胞总数) ×100%]。

临床肝损伤患者余留药物和产地收集饮片含量分析  通过收集来源于不同产地(湖南、广东、湖北、四川和云南)的制首乌饮片和经解放军302医院确诊为制首乌所致肝损伤患者所服用余留的药物(饮片、药酒及药粉), 并测定cis-SG含量, 测定方法参考“样品中cis-SG含量测定”项。

统计学分析  采用SPSS 19.0软件进行统计分析, 实验数据以x± s表示, 计量资料采用单因素方差分析(ANOVA), 显著性概率水平P < 0.05。

结果 1 血浆ALT和AST测定结果比较

与对照组及模型组相比, 单独给药未光照组、单独给药光照后3个不同cis-SG含量组、单用LPS组、LPS联合未光照组及LPS联合光照后cis-SG含量为0.10%组对大鼠血浆AST和ALT活力均无显著性差异(P > 0.05), 而相同剂量光照后cis-SG含量为0.35%和0.70%样品联合LPS给药后, 大鼠血浆AST和ALT活力均显著升高(P < 0.05), 说明样品中cis-SG含量与何首乌肝损伤呈现一定的量-毒关系。结果见图 2

Figure 2 Influence of co-treatment with lipopolysaccharide (LPS) and RPMP with different cis-SG content on plasma ALT and AST activities. N: Normal control group; A: RPMP without light treatment group; B: 0.10% cis-SG in RPMP after light treatment group; C: 0.35% cis-SG in RPMP after light treatment group; D: 0.70% cis-SG in RPMP after light treatment group; L: LPS model group; LA: LPS+ RPMP without light treatment group; LB: LPS+0.10% cis-SG in RPMP after light treatment group; LC: LPS+0.35% cis-SG in RPMP after light treatment group; LD: LPS+0.70% cis-SG in RPMP after light treatment group. The saline-treated group served as a control group and the LPS-treated group served as a model group. n = 8, x± s. *P < 0.05, **P < 0.01, ***P < 0.001 vs control group; P < 0.05, ▲▲P < 0.01, ▲▲▲P < 0.001 vs model group
2 血浆IL-6、TNF-α和PPAR-γ含量变化

LPS会刺激单核/巨噬细胞分泌大量的致炎细胞因子, 与对照组相比, 模型组的TNF-α含量明显升高(P < 0.05), IL-6呈现升高的趋势; 与模型组TNF-α和IL-6含量相比, LPS联合光照后cis-SG含量为0.35%和0.70%样品显著升高(P < 0.05), 而相同剂量未光照样品和光照后cis-SG含量为0.10%样品联合LPS给药后无明显改变(P > 0.05)。与对照组PPAR-γ表达相比, 模型组明显下降(P < 0.05), 单独给药未光照组、单独给药光照后3个不同cis-SG含量组无显著性差异(P > 0.05);在LPS模型上, 未光照样品和光照后cis-SG含量为0.10%样品PPAR-γ表达无明显改变(P > 0.05), 而光照后cis-SG含量为0.35%和0.70%样品PPAR-γ表达显著降低(P < 0.05)。结果见图 3

Figure 3 Influence of co-treatment with LPS and RPMP with different cis-SG content on plasma IL-6, TNF-α and PPAR-γ activities. The saline-treated group served as a control group and the LPS-treated group served as a model group. n = 8, x± s. *P < 0.05, **P < 0.01 vs control group; P < 0.05 vs model group
3 肝脏组织病理学分析

与正常对照组相比, 单独给药未光照组和单独给药光照后3个不同cis-SG含量组无明显变化, 大鼠肝组织病理切片可见细胞排列整齐, 偶有炎细胞浸润; 模型组可见大鼠肝组织切片的汇管区炎症细胞增加, 但无明显病理学改变; 相同剂量未光照样品联合LPS给药和相同剂量光照后cis-SG含量为0.10%样品联合LPS给药, 可见汇管区炎症细胞增加, 但无明显病理学改变; 而相同剂量光照后cis-SG含量分别为0.35%和0.70%的样品联合LPS给药后, 可见中央静脉扩张、内膜脱落, 中央静脉周肝细胞出现肿胀、坏死现象, 汇管区被大量的炎细胞浸润。结果见图 4

Figure 4 Influence of co-treatment with LPS and RPMP with different cis-SG content on pathological morphology (HE staining 100×). The saline-treated group served as a control group and the LPS-treated group served as a model group
4 免疫组化测定大鼠肝脏中NF-κB p65表达

与对照组p65表达相比, 模型组明显升高(P < 0.05), LPS激活了NF-κB通路的活性; 与模型组相比, LPS联合光照后cis-SG含量为0.35%组和LPS联合光照后cis-SG含量为0.70%组, 累积光密度值(IOD)显著升高(P < 0.05);而LPS联合未光照组、LPS联合光照后cis-SG含量为0.10%组的IOD并没有明显改变(P > 0.05)。以细胞核内出现棕黄色颗粒为阳性标准, 根据IOD大小判断阳性表达量的高低。结果见图 5

Figure 5 Influence of co-treatment with LPS and RPMP with different cis-SG content on the expression of p65 (immunohistochemical staining 200×). The saline-treated group served as a control group and the LPS-treated group served as a model group. n = 8, x± s. *P < 0.05, **P < 0.01, ***P < 0.001 vs control group; P < 0.05, ▲▲P < 0.01 vs model group
5 肝脏组织细胞凋亡的TUNEL分析

与对照组及模型组相比, LPS联合光照后cis-SG含量为0.35%组和LPS联合光照后cis-SG含量为0.70%组, 肝细胞凋亡数和凋亡率显著升高(P < 0.05);而其他组的细胞凋亡率并没有明显改变(P > 0.05)。结果见图 6

Figure 6 Influence of co-treatment with LPS and RPMP with different cis-SG content on apoptosis of liver tissue (TUNEL staining 200×). The saline-treated group served as a control group and the LPS-treated group served as a model group. n = 8, x± s. ***P < 0.001 vs control group; P < 0.05, ▲▲P < 0.01 vs model group
6 临床肝损伤患者余留药物和产地收集饮片含量测定结果分析

图 7所示, 来源于不同产地(湖南、广东、湖北、四川和云南)收集的制首乌饮片中cis-SG含量普遍较低( < 0.10%), 而肝损伤患者服用的药物中cis-SG含量均明显偏高( > 0.40%), 说明制首乌中cis-SG含量的高低与其特异质肝损伤密切相关。

Figure 7 Content of cis-SG in RPMP pieces and medicine
讨论

何首乌造成肝损伤的风险因素是多方面的, 研究发现何首乌肝损伤的发生存在易感人群[12, 13]和易感物质[5, 6], 主要与机体的特异质状态及易感性密切相关。本课题组[14]在此基础上提出了何首乌“免疫应激三因致毒”假说, 当机体处于免疫异常活化时(易感人群), 何首乌的免疫促进成分(如trans-SG)可增强机体免疫, 使肝脏对何首乌中易感成分(如cis-SG)增敏, 从而诱发免疫应激性特异质肝损伤。因此, 通过筛查易感人群和控制易感物质的策略, 均可以有效降低何首乌特异质肝损伤发生的风险。

药物特异质肝损伤的评价模型是国内外研究的热点也是难点[15, 16]。完全在实验室模拟临床的特异质肝损伤尚有较大困难, 国内外已报道的模型大多是针对临床某一方面的模拟。本文采用的内毒素复制的免疫应激易感性模型, 是国际上已较广泛采用的成熟模型, 该模型的优势是评价时间较短、模型稳定及易于操作, 与临床免疫相关的特异质肝损伤的主要通路和机制较为相似[17]。该模型已经成功用于揭示了曲伐沙星(有特异质肝损伤)和左氧氟沙星(肝损伤不明显)[18]、雷尼替丁(有特异质肝损伤)和法莫替丁(肝损伤不明显)[19]等同类别药物在临床上肝损伤风险不同的现象。

本研究在内毒素复制的特异质肝损伤评价模型基础上, 针对何首乌中重要易感物质cis-SG, 探讨制首乌中cis-SG转化量与特异质肝损伤的相关性。结果表明, cis-SG转化量与制首乌的特异质肝损伤存在一定的量−毒关系, 特别是当cis-SG转化量低于0.10%时, 在内毒素易感模型上未见肝损伤现象(图 2); 作者在产地收集并控制光照的制首乌样品中cis-SG含量低于0.10%, 而临床肝损伤患者余留药物的cis-SG含量高于0.40% (图 7)。综合这些结果, 提示控制易感物质cis-SG的含量限度, 可作为降低何首乌肝损伤风险的重要手段; 为降低临床用药风险, 可考虑将cis-SG含量0.10%作为何首乌生产炮制过程的一个重要质控限度。诚然, 由于药物特异质肝损伤的多影响因素的特点, 何首乌特异质肝损伤的易感物质也可能还有其他易感成分。本课题组[20]前期研究发现, 铁离子介导的二苯乙烯苷聚合物, 可能也和何首乌肝损伤风险有关, 但该发现还需要后续的实验证实才能制定风险控制的限度。本文对cis-SG含量限度和肝损伤风险的研究结果, 为从质量角度控制何首乌肝损伤风险提供了参考依据。

此外, 较高转化量的cis-SG (0.35%和0.70%)与内毒素联用, 发现与炎症反应有关的PPAR-γ含量显著减少(P > 0.05); NF-κB p65表达量、炎症因子TNF-α和IL-6含量均显著增加(P < 0.05)。提示较高转化量的cis-SG可能协同LPS作用, 通过下调PPAR-γ表达, 激活NF-κB等信号通路活性, 诱导单核/巨噬细胞分泌TNF-α和IL-6等致炎细胞因子, 引起肝损伤。cis-SG具体激活或参与了哪个免疫因子或靶标的信号传导, 进而在免疫应激大鼠模型上导致肝损伤, 值得进一步研究。

参考文献
[1] China Pharmacopoeia Committee. Chinese Pharmacopoeia(中国药典)[M]. Beijing: China Medical Science Press, 2015: 175.
[2] Lei X, Chen J, Ren J, et al. Liver damage associated with Polygonum multiflorum Thunb.: a systematic review of case reports and case series[J]. Evid Based Complement Alternat Med, 2015, 2015: 459749.
[3] Li CY, Li YF, Tu C, et al. The idiosyncratic hepatotoxicity of Polygonum multiflorum based on endotoxin model[J]. Acta Pharm Sin(药学学报), 2015, 50: 28–33.
[4] Kong WJ, Wang JB, Zhang QC, et al. A novel "target constituent knock-out" strategy coupled with TLC, UPLC-ELSD and microcalorimetry for preliminary screening of antibacterial constituents in Calculus bovis[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2011, 879: 3565–3573. DOI:10.1016/j.jchromb.2011.09.045
[5] Meng YK, Li CY, Li RY, et al. Mechanism of Polygonum multiflorum induced liver injury: cis-stilbene glucoside induces immunological idiosyncratic hepatotoxicity by suppressing PPAR-γ in a lipopolysaccharide model[J]. Acta Pharmacol Sin, 2017. DOI:10.1038/aps.2017.32
[6] Li CY, Niu M, Bai ZF, et al. Screening for main components associated with the idiosyncratic hepatotoxicity of a tonic herb Polygonum multiflorum[J]. Front Med, 2017. DOI:10.1007/s11684-017-0508-9
[7] China Pharmacopoeia Committee. Chinese Pharmacopoeia(中国药典)[M]. Beijing: China Medical Science Press, 2010: 122.
[8] Beijing Food and Drug Administration. Beijing Standardized Processing of Chinese Herbal Pieces(北京市中药饮片炮制规范·上册)[M]. Beijing: Chemical Industry Press, 2008: 139.
[9] Lü Y, Wang JB, Ji Y, et al. Influence of extracting solvent on hepatocytes toxicity of Polygonum multiflorum[J]. Chin J Exp Tradit Med Form(中国实验方剂学杂志), 2013, 20: 268–272.
[10] Li XF, Li N, Tu C, et al. Comparison of crude and prepared Polygonum multiflorum-induced idiosyncratic hepatotoxicity based on lipopolysaccharide model[J]. Chin Tradit Herbal Drugs(中草药), 2015, 46: 1481–1486.
[11] Yee SB, Hanumegowda UM, Copple BL, et al. Endothelial cell injury and coagulation system activation during synergistic hepatotoxicity from monocrotaline and bacterial lipopolysaccharide coexposure[J]. Toxicol Sci, 2003, 74: 203–214. DOI:10.1093/toxsci/kfg106
[12] Zhu Y, Niu M, Chen J, et al. Comparison between Chinese herbal medicine and Western medicine-induced liver injury of 1985 patients[J]. J Gastroenterol Hepatol, 2016, 31: 1476. DOI:10.1111/jgh.2016.31.issue-8
[13] Zhu Y, Liu SH, Wang JB, et al. Clinical analysis of drug-induced liver injury caused by Polygonum multiflorum and its preparations[J]. Chin J Integr Tradit West Med(中国中西医结合杂志), 2015, 35: 1442–1447.
[14] Wang JB, Cui HR, Bai ZF, et al. Precision medicine-oriented safety assessment strategy for traditional Chinese medicines: disease-syndrome-based toxicology[J]. Acta Pharm Sin(药学学报), 2016, 51: 1681–1688.
[15] Krueger W, Boelsterli UA, Rasmussen TP. Stem cell strategies to evaluate idiosyncratic drug-induced liver injury[J]. J Clin Transl Hepatol, 2014, 2: 143–152.
[16] Wang Q, Mei H, Zhang YL, et al. The associations between idiosyncratic adverse drug reactions and HLA alleles and their underlying mechanism[J]. Acta Pharm Sin(药学学报), 2013, 48: 799–808.
[17] Roth RA, Ganey PE. Animal models of idiosyncratic drug-induced liver injury—current status[J]. Crit Rev Toxicol, 2011, 41: 723–739. DOI:10.3109/10408444.2011.575765
[18] Waring JF, Liguori MJ, Luyendyk JP, et al. Microarray analysis of lipopolysaccharide potentiation of trovafloxacin-induced liver injury in rats suggests a role for proinflammatory chemokines and neutrophils[J]. J Pharmacol Exp Ther, 2006, 316: 1080–1087.
[19] Luyendyk JP, Lehman-Mckeeman LD, Nelson DM, et al. Coagulation-dependent gene expression and liver injury in rats given lipopolysaccharide with ranitidine but not with famotidine[J]. J Pharmacol Exp Ther, 2006, 317: 635–643. DOI:10.1124/jpet.105.096305
[20] Li RF, Feng WW, Li XF, et al. Influence of metal ions on stability of 2, 3, 5, 4'-tetrahydroxy stilbene-2-O-β-D-glucoside contained in Polygoni Multiflori radix[J]. Acta Pharm Sin(药学学报), 2016, 51: 116–121.