药学学报  2017, Vol. 52 Issue (6): 897-903   PDF    
SGLT2选择性抑制剂筛选及药效评价方法建立
张晓琳, 王亚男, 叶菲     
中国医学科学院、北京协和医学院药物研究所, 新药作用机制研究与药效评价北京市重点实验室, 天然药物活性物质与功能国家重点实验室, 北京 100050
摘要: 本研究的目的是建立SGLT2选择性抑制剂筛选及药效学评价体系。分别将人全长SGLT2和SGLT1 cDNA连接至pMSCVpuro载体并转染HEK293细胞,嘌呤霉素筛选单克隆细胞,RT-PCR、Western blot或细胞免疫荧光染色检测目的基因、蛋白在细胞中的表达。采用荧光标记的1-脱氧葡萄糖(1-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-1-deoxy-D-glucose,1-NBDG)作为底物进行葡萄糖转运实验,检测模型细胞的Na+依赖的葡萄糖摄取功能,并对阳性药达格列净、根皮苷选择性进行评价。最后,进行整体药效评价,观察达格列净对正常小鼠及四氧嘧啶诱导的T1DM小鼠血糖的影响。结果显示pMSCVpuro-SGLT1转染组细胞SGLT1基因及蛋白水平均显著升高,pMSCVpuro-SGLT2转染组SGLT2蛋白高表达于细胞膜及细胞质,说明SGLT1/SGLT2稳定过表达细胞构建成功。葡萄糖转运实验结果显示,与pMSCVpuro-null转染组相比,pMSCVpuro-SGLT1、pMSCVpuro-SGLT2转染组细胞Na+依赖性1-NBDG摄取明显增高。达格列净具有良好的选择性,对SGLT1的半数抑制浓度(IC50,6.20×10-7 mol·L-1)远高于对SGLT2抑制的IC50值(2.24×10-10 mol·L-1),优于非选择性抑制剂根皮苷。达格列净单次给药即可改善正常小鼠葡萄糖耐量。对T1DM小鼠,达格列净从给药后1 h血糖水平即显著降低,能够剂量依赖地降低0~24 h血糖-时间曲线下面积。连续给药20天,能够较平稳地降低小鼠餐后血糖。本研究建立了较完善的SGLT2选择性抑制剂的体外筛选方法和整体药效学评价方法。该方法具有无同位素污染,高转运效率、良好稳定性等优点,将为新的SGLT2高选择性抑制剂研发提供良好的技术平台。
关键词: Na+依赖性葡萄糖摄取     钠-葡萄糖协同转运蛋白2     钠-葡萄糖协同转运蛋白1     荧光标记1-脱氧葡萄糖     抑制剂筛选    
Development of a method to study the activity and selectivity of SGLT2 inhibitors
ZHANG Xiao-lin, WANG Ya-nan, YE Fei     
Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
Abstract: The purpose of this study was to develop a screening method to determine the activity and selectivity of SGLT2 inhibitor. Human SGLT1/SGLT2 cDNA was inserted into the pMSCVpuro mammalian expression vector and the plasmid was transfected into HEK293 cells. Stably transfected clones were selected in puromycin containing medium. To evaluate the expression of human SGLT1 and SGLT2 in stable transfected cells, RT-PCR, Western blot and immunofluorescence analysis were performed. 1-[N-(7-Nitrobenz-2-oxa-1, 3-diazol-4-yl)amino]-1-deoxy-D-glucose (1-NBDG) was used as a substrate in the uptake assay to evaluate the Na+ dependent glucose transport activities of SGLT1/2. The inhibitory activity and selectivity of dapagliflozin/phloridzin were also determined, respectively. The hypoglycemic efficacy of dapagliflozin was evaluated in mice with normal blood glucose and mice with alloxan-induced T1DM. The result showed that SGLT1 was overexpressed in pMSCVpuro-SGLT1 transfected HEK293 cells. SGLT2 protein was overexpressed in pMSCVpuro-SGLT2 transfected HEK293 cells and located in both cytoplasm and membrane. The Na+ dependent 1-NBDG uptake was significantly increased in pMSCVpuro-SGLT1/SGLT2 transfected cells compared to that in pMSCVpuro-null transfected cells. The selectivity of dapagliflozin, whose half maximal inhibitory concentration (IC50) for SGLT2 (2.24×10-10 mol·L-1) was far lower than that for SGLT1 (6.20×10-7 mol·L-1), was better than that of phloridzin. The oral glucose tolerance was elevated after a single dose of dapagliflozin in normal mice. In T1DM mice, compared with model group, no-fasting glucose level was decreased at 1 h after administration and maintained at a lower level for 24 h in a dose-dependent manner. A 20-day administration with dapagliflozin dose-dependently improved the hyperglycemia status. Taken together, a system to evaluate the activity and selectivity of SGLT2 inhibitors was established using 1-NBDG in vitro and the hypoglycemic efficacy in vivo in this study. The advantages of this system include non-radioactivity, high efficiency, and good stability which may provide a technique platform for development of novel SGLT2 inhibitors.
Key words: Na+ dependent glucose uptake     sodium-glucose cotransporter 2     sodium-glucose cotransporter 1     1-[N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl)amino]-1-deoxy-D-glucose     inhibitor screening    

糖尿病(diabetes mellitus)是以慢性高糖血症为特征、由于胰岛β细胞分泌胰岛素绝对或相对不足而产生的代谢性疾病。2011年全世界约3.66亿糖尿病患者, 预计到2030年将达到5.52亿[1]; 我国成年人患病率为9.7%, 糖尿病前期的患病率更高达15.5%[2]。其中, 90%以上患者为2型糖尿病。血糖控制是治疗2型糖尿病、延缓并发症进程的关键。长期慢性高血糖导致并发症发生, 引起大、小血管及周围神经病变, 造成心、脑、肾和眼等器官的损伤[3]。然而, 仍约有一半糖尿病患者的血糖未达到理想水平。开发新型的降糖药物一直是抗糖尿病药物研发的热点。

近年来钠-葡萄糖协同转运蛋白2 (sodium-glucose cotransporter 2, SGLT2) 被认为是降糖药物开发的热门靶点之一, 其SGLT2抑制剂(SGLT2 inhibitor, SGLT2i)通过减少肾脏对葡萄糖的重吸收, 促进尿糖排出从而降低血糖。与其他糖尿病治疗药物相比, SGLT2i独特的非胰岛素依赖的作用方式使其不受患者β细胞功能以及胰岛素敏感性的影响。同时, SGLT2i还具有减轻体重, 降低内脏脂肪量, 降低血压和降低血尿酸等优势[4-6]。值得注意的是, 对于SGLT2i上市后研究发现糖尿病患者服用该类药物后心血管系统获益[7, 8]。2017年美国糖尿病学会诊疗指南里明确提出, 对于血糖控制不佳且患有动脉粥样硬化心血管疾病的患者推荐使用SGLT2i。

选择性对SGLT2i研发是一个重要问题。肾脏每天滤过约180 g葡萄糖, 大部分被SGLTs重吸收[9]。其中, SGLT2是一种低亲和力、高容量的转运体, 主要分布于肾脏近曲小管S1、S2段, 负责大于90%的肾脏葡萄糖重新收[10, 11], 其余由钠-葡萄糖协同转运蛋白1 (sodium-glucose cotransporter 1, SGLT1) 完成。SGLT1是一种高亲和力、低转运能力的转运体, 在肾脏分布于近曲小管较远的S3段。此外, SGLT1分布于小肠刷状缘, 对葡萄糖的吸收具有重要作用, 抑制该转运体会发生严重腹泻等胃肠道不良反应[5, 11]。因此, 需要开发对SGLT2抑制活性较高, 而对SGLT1抑制活性较低的选择性抑制剂。根皮苷(phloridzin)是SGLT1和SGLT2的双重抑制剂, 其选择性差和口服吸收差不能被药用[12]。目前国际上已上市的依帕列净(empagliflozin)是选择性最好的SGLT2i ( > 2 500:1), 其次是达格列净(dapagliflozin, > 1 200:1) 和卡格列净(canagliflozin, > 250:1)[13]

目前SGLT2i研发通常采用同位素标记的葡萄糖类似物作为底物, 其试剂成本高, 易污染环境; 荧光标记的2-脱氧葡萄糖(2-[N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl)amino]-2-deoxy-D-glucose, 2-NBDG)转运效率较低, 且不稳定。本研究的目的是建立SGLT2的选择性抑制剂筛选方法。在本实验室前期工作的基础上[14], 构建了人SGLT1、SGLT2稳定过表达细胞系, 采用荧光标记1-脱氧葡萄糖(1-NBDG)作为示踪剂对其功能进行检测。同时, 在整体水平建立SGLT2抑制剂药效学评价方法。

材料与方法

药品与试剂  1-NBDG由药明康德新药开发有限公司合成(ET4099-7-P1);根皮苷(phloridzin dihydrate, P3449)、氯化胆碱(choline chloride)购于Sigma公司; 达格列净由芷威(上海)化学科技有限公司(APIchem)合成。其他化学试剂购自国药集团化学试剂北京有限公司。

真核表达载体  pMSCVpuro (Clontech公司), TransT1感受态细胞(Transgen Biotech公司)核酸内切酶EcoRⅠ/XhoⅠ、T4 DNA连接酶(Fermentas公司); 琼脂糖(Sigma公司), DNA Marker (Transgen Biotech公司); 质粒提取试剂盒、DNA转染试剂(Qiagen公司); BCA蛋白检测试剂盒(Thermo公司)。Cocktail蛋白酶抑制剂(Roche公司); anti-SGLT1 (Abcam公司)、anti-SGLT2、anti-GAPDH (Santa Cruz公司); HRP/FITC标记的二抗(中杉金桥公司); 化学发光检测试剂(Tanon公司)。其他试剂为进口或国产分析纯试剂。

仪器  荧光酶标仪(Enspire), 激光共聚焦扫描显微镜(Bio-Rad Radiance 2100 CLSM), 凝胶成像分析系统(Tanon-4100), CO2培养箱(Sanyo MCO-15AC)。

细胞培养  HEK293 (人胚胎肾上皮细胞)购于中国医学科学院基础医学研究所细胞资源中心; 高糖DMEM、低糖DMEM培养基、胎牛血清(FBS)均购自GIBCO公司。细胞培养于高糖DMEM培养液中(含10%胎牛血清、50 u·mL-1青霉素及50 μg·mL-1链霉素), 培养条件为37 ℃、5% CO2、湿度95%。

SGLT1/SGLT2稳定过表达细胞构建  用于过表达的逆转录病毒载体为pMSCVpuro。设计引物通过PCR钓取人全长SGLT1 cDNA (Forward: CCGC TCGAGGCCACCATGGACAGTAGCACCTGGAGC; Reverse: CCGGAATTCTCAGGCAAAATATGCATG GCAAAAG)。人全长SGLT2 cDNA (NCBI Reference Seqμence: NM_003041.3) 由Invitrogen (上海)公司合成。将目的基因连接至pMSCVpuro载体并转化至感受态细胞TransT1。进行EcoRⅠ、XhoⅠ双酶切鉴定, 并测序验证重组克隆中基因序列。进行稳定过表达SGLT1/SGLT2的HEK293细胞株的筛选:将测序正确的质粒转染HEK293细胞, 嘌呤霉素筛选阳性克隆细胞株, 挑选单克隆扩增培养后, 检测目的蛋白SGLT1/SGLT2的表达。

免疫印迹检测  提取细胞总蛋白。用BCA法测定样品蛋白的浓度。制备10%凝胶, 上样量为10 μg, 电泳(80~120 V, 60~90 min), 转膜(320 mA, 60 min)。2% BSA中室温封闭1 h, 加入一抗SGLT1 (1:1 000)、SGLT2 (1:1 000)、GAPDH (1:2 000), 4 ℃孵育过夜, TBST洗膜后加入二抗(1:5 000), 室温封闭2 h, 显影液孵育, 凝胶成像分析系统进行显影。

免疫荧光染色  细胞爬片后, 4 ℃ PBS冲洗2遍, 用4 ℃、2%多聚甲醛固定30 min, 加入PBS冲洗2次。加入甲醇置于-20 ℃脱水15 min, 4 ℃ PBS中复水。用封闭液(2% FBS)进行非特异性位点封闭1 h后, 加入含有一抗(anti-SGLT2 antibody, 1:50) 的封闭液, 4 ℃孵育1 h, PBS冲洗3次。加入含有二抗(FITC-anti-goat antibody, 1:200) 的封闭液, 4 ℃孵育1 h, PBS冲洗3次。10 μg·mL-1碘化吡啶对细胞核进行染色15 min, PBS冲洗3次。封片液(甘油:PBS = 1:9) 封片后, 激光共聚焦扫描显微镜进行观察。

Na+依赖性葡萄糖转运实验  24孔板用多聚赖氨酸预涂, 干燥备用。细胞铺板, 90%融合后, 低糖无血清DMEM培养基处理2 h, Na+-free/Na+ buffer洗一遍, 加入含有1-NBDG (100 μmol·L-1)的摄取液进行葡萄糖摄取。其中, Na+依赖性摄取缓冲液(Na+ buffer)含120 mmol·L-1 NaCl, 4.7 mmol·L-1 KCl, 1.2 mmol·L-1 MgCl2, 2.2 mmol·L-1 CaCl2, 10 mmol·L-1 Hepes, pH 7.4。非特异性摄取缓冲液(Na+-free buffer)含140 mmol·L-1氯化胆碱, 4.7 mmol·L-1 KCl, 1.2 mmol·L-1 MgCl2, 2.2 mmol·L-1 CaCl2, 10 mmol·L-1 Hepes, pH 7.4。37 ℃摄取4 h; 加入预冷的终止液(含有0.5 mmol·L-1根皮苷的摄取缓冲液); 荧光显微镜下观察细胞内荧光强度。0.1 mol·L-1 NaOH裂解细胞, 转移至96孔透明底黑板中, 采用荧光酶标仪检测细胞内1-NBDG的含量(Ex/Em: 485/535 nm)。BCA法测裂解液蛋白浓度, 结果表示为荧光强度/蛋白含量。

动物实验  雄性ICR小鼠(22~24 g)购自北京维通利华实验动物技术有限公司。动物合格证号: SCXK (京) 2012-0001。

正常小鼠实验  将动物随机分为3组, 每组8只:正常血糖组(NG)、dapagliflozin低剂量组(0.25 mg·kg-1)、和高剂量组(4 mg·kg-1)。动物禁食后给药, 进行口服葡萄糖耐量实验(oral glucose tolerance test, OGTT)。取0 min点血作为初始血糖, 灌胃给予2 g·kg-1葡萄糖, 分别监测30、60和120 min时动物血糖的变化, 并计算血糖-时间曲线下面积。

高糖小鼠实验  尾静脉注射四氧嘧啶(69 mg·kg-1); 选择72 h后血糖 > 180 mg·dL-1小鼠作为1型糖尿病(T1DM)模型动物。将模型动物按血糖水平随机分为5组, 每组9只:模型组(HG)、二甲双胍组(200 mg·kg-1)、和dapagliflozin低剂量组(0.25 mg·kg-1)、中剂量组(1 mg·kg-1)、高剂量组(4 mg·kg-1)。单次给药实验, 于灌胃后监测0~24 h血糖变化。多次给药实验, 每天于17:00灌胃给药前监测血糖。

统计学分析  实验数据以x±s表示, 多组间比较采用one-way ANOVA (Prism 5.0), 两组间比较采用Student’s t-test。P < 0.05被认为存在统计学差异。

结果 1 SGLT1稳定过表达细胞构建

分别采用RT-PCR、Western blot对稳定过表达HEK293细胞中SGLT1表达进行检测, 结果如图 1所示, 与pMSCVpuro-null转染组相比, pMSCVpuro-SGLT1转染组SGLT1基因及蛋白水平均显著升高, 说明SGLT1稳定过表达HEK293细胞构建成功。

Figure 1 Expression of sodium-glucose cotransporter 1 (SGLT1) in stably transfected HEK293 cells. A: RT-PCR analysis of HEK293 cells stably transfected with pMSCVpuro-SGLT1; B: Western blot analysis for human SGLT1. Band represents ~70 kDa
2 SGLT2稳定过表达细胞构建

双酶切鉴定结果如图 2A所示, 第一泳道为pMSCVpuro空载体; 第二泳道质粒的电泳迁移率明显低于pMSCVpuro空载体, 说明其分子质量大于空载体; 第三泳道为pMSCVpuro空载体经Xho I和EcoR I双酶切; 第四泳道为载体经Xho I和EcoR I双酶切后, 在2 000 bp出现明显的条带, 说明目的基因SGLT2已经插入载体。

Figure 2 Expression of sodium-glucose cotransporter 2 (SGLT2) in stably transfected HEK293 cells. A: SGLT2 expression plasmid digested by restriction enzyme EcoRⅠ and XhoⅠ, and frag ments produced in 0.8% agarose gel electrophoresis. Lane 1: pMSCVpuro; Lane 2: pMSCVpuro-SGLT2; Lane 3: pMSCVpuro digested by EcoRⅠ and XhoⅠ; Lane 4: pMSCVpuro-SGLT2 digested by EcoRⅠ and XhoⅠ. M: DNA marker. B: Western blotting analysis for human SGLT2 in the HEK293 cells stable transfected with pMSCVpuro-SGLT2 compared to pMSCVpuro-null transfected cells. Band represents ~70 kDa. C: Immuno fluorescence staining of HEK293 cells stably transfected with pMSCVpuro-null (upper panels) and pMSCVpuro-SGLT2 (lower panels) using SGLT2 antibody. Cells were grown on poly-L-lysine-coated coverslips for 24 h followed by fixation and im munocytochemistry analysis using CLSM. Green: FITC-tagged hSGLT2; Red: PI counterstain of the nucleus. Magnification, 1 000×

Western blot检测稳转HEK293细胞中SGLT2蛋白表达情况。与pMSCVpuro-null转染组相比, pMSCVpuro-SGLT2转染组SGLT2蛋白高表达(图 2B); 细胞免疫荧光染色结果显示SGLT2蛋白表达于细胞膜及细胞质(图 2C), 说明SGLT2稳定过表达HEK293细胞构建成功。

3 Na+依赖性葡萄糖转运实验

荧光显微镜下观察HEK293细胞对葡萄糖的摄取。如图 3A所示, 与pMSCVpuro-null转染组相比, pMSCVpuro-SGLT1、pMSCVpuro-SGLT2转染组细胞Na+依赖性1-NBDG摄取明显增高。

Figure 3 Sodium-dependent glucose uptake via SGLT1/SGLT2. A: Fluorescence images of 1-[N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl)amino]-1-deoxy-D-glucose (1-NBDG) uptake in HEK293 cells (exposure time: 5 s, objective lens: 10×). Na+ dependent 1-NBDG uptake was significantly enhanced in pMSCVpuro-SGLT1/2 transfected cells. B: Results of transport studies. SGLT transport was assessed by 1-NBDG. n = 3, x±s. ###P < 0.001 vs Na+-free group in pMSCVpuro-SGLT1 transfected cells; ***P < 0.001 vs Na+-free group in pMSCVpuro-SGLT2 transfected cells

采用荧光酶标仪检测细胞裂解液的荧光强度, 如图 3B所示, SGLT1过表达细胞Na+依赖性1-NBDG摄取显著升高, 为非特异性摄取的6.1倍; SGLT2过表达细胞Na+依赖性摄取为非特异性摄取的23.1倍; pMSCVpuro-null转染组Na+依赖性摄取与非特异性摄取相比未有变化。

4 选择性实验

阳性药达格列净对SGLT1的半数抑制浓度(IC50)为6.20×10-7 mol·L-1, 远高于对SGLT2的IC50 (2.24×10-10 mol·L-1) (图 4A, B), 说明其对SGLT2的选择性较好。根皮苷对SGLT1和SGLT2抑制的IC50浓度相近, 分别为9.24×10-8和1.76×10-8 mol·L-1 (图 4C, D), 说明其对SGLT2的选择性较差。

Figure 4 Selectivity of dapagliflozin (dapa) and phloridzin. A, B: Na+-dependent 1-NBDG uptake was measured in HEK293 cells stably expressing SGLT1 and SGLT2 in presence of various concentrations of dapa. C, D: Na+-dependent 1-NBDG uptake was measured in HEK293 cells stably expressing SGLT1 and SGLT2 in presence of various concentrations of phloridzin. n = 3, x±s
5 整体药效学实验

一次口服给予达格列净能够使正常血糖小鼠(NG) OGTT实验中血糖上升幅度降低(图 5A), 其中, 高剂量组(4 mg·kg-1)能够显著降低其AUC值(图 5B)。对于T1DM小鼠(HG), 达格列净低、中、高剂量组从口服给药后1 h血糖水平即显著降低, 药效维持24 h (图 5C); 能够剂量依赖地降低0~24 h的AUC (图 5D)。每天给药连续20天, 与HG组相比, 达格列净低、中、高剂量组给药24 h后血糖水平均明显降低, 药效优于二甲双胍(图 5E)。

Figure 5 Hypoglycemic effects of dapa in mice. A, B: Hypoglycemic effects of dapa in mice with normal glucose levels (NG). Animals were treated with dapa at 2 dosages (0.25, 4 mg·kg-1 for low (L), high (H) dose groups) and then oral glucose tolerance test (OGTT) was performed. A: Changes of blood glucose after the glucose loading; B: Area under the curve in OGTT. C-E: Hypoglycemic effects of dapa in T1DM mice (HG). Animals were daily treated with dapa at 3 dosages (0.25, 1, 4 mg·kg-1 for low (L), middle (M), high (H) dose group) or metformin (Met, 200 mg·kg-1). C: Changes of blood glucose 0-48 h after a single administration; D: Area under the curve for 0-24 h after a single administration; E: Changes of blood glucose during a 20-day administration study. n = 8-9, x±s. ###P < 0.001 vs NG; **P < 0.01, ***P < 0.001 vs HG
讨论

选择性是评价SGLT2i类药物疗效及安全性的重要标准。SGLT2主要表达于肾脏, 而SGLT1除了肾脏, 还表达于肠、心脏、肝和肺中, 对小肠中葡萄糖和半乳糖的重吸收具有重要作用[15]。抑制SGLT1可导致腹泻和严重脱水, 即“葡萄糖-半乳糖吸收不良”[16], 而对其他组织SGLT1的长期抑制风险尚未得到确切的评估。因此, 抑制剂对SGLT2的选择性超过SGLT1显得尤为重要。达格列净是于2012年和2014年分别在欧洲和美国获批, 用于治疗2型糖尿病的SGLT2选择性抑制剂[17]。本研究建立了SGLT2i选择性评价方法, 分别将人SGLT1、SGLT2稳定过表达于HEK293细胞中(图 1, 2), 稳转细胞具有良好的葡萄糖转运功能, 其Na+依赖的葡萄糖摄取远高于非特异性摄取(图 3)。应用该方法进行选择性评价, 发现达格列净对SGLT1抑制的IC50远高于SGLT2 (SGLT1i:SGLT2i > 1:2 500) (图 4A, B), 优于选择性较差的根皮苷(图 4C, D), 与文献报道一致[13]

目前, 国内外常采用14C或者3H标记的葡萄糖类似物进行葡萄糖转运实验[13, 18, 19]。本方法采用荧光标记避免了环境污染等问题, 优于同位素标记的SGLT2筛选方法。构建的稳转细胞系所表达的转运体具有较高的葡萄糖转运活性, 测得达格列净对SGLT1/SGLT2的IC50 (6.2×10-7 mol·L-1/2×10-10 mol·L-1)均低于文献[13]中以[14C]-AMG为底物测得的IC50 (1.4×10-6 mol·L-1/1.2×10-9 mol·L-1); 测得根皮苷对SGLT1/SGLT2的IC50分别为9.24×10-8 mol·L-1/1.76×10-8 mol·L-1, 低于文献[20]中测得的5.5×10-5 mol·L-1/ 4.0×10-5mol·L-1。鉴于1-NBDG比2-NBDG具有更加稳定的化学性质, 不易被细胞代谢[21], 作为荧光示踪剂1-NBDG优于2-NBDG。与以往采用2-NBDG的方法[14, 22]相比, 本方法采用1-NBDG进行葡萄糖摄取的转运效率更高。最后, 本方法采用了HEK293 (人胚胎肾细胞)构建的稳定转染细胞模型更加接近SGLT2的生理状态。

此外, 本研究建立了整体水平的SGLTi药效评价方法。对阳性药达格列净进行降糖作用评价, 发现其在正常小鼠中能够改善口服葡萄糖耐量; 在高糖小鼠中, 给药后1 h即可降低餐后血糖, 与文献报道一致[23]; 动态监测血糖变化, 发现降糖作用持续24 h。在20天的给药过程中, 该药能够平稳降糖, 其效果优于二甲双胍(图 5)。

本研究构建了SGLT1/SGLT2稳定过表达细胞模型, 采用新的、较稳定的荧光脱氧葡萄糖1-NBDG作为示踪剂, 建立完善的SGLT2选择性抑制剂的体外筛选方法, 具有无同位素污染、高灵敏度、高选择性和良好稳定性等特点; 并在整体水平完善了SGLT2i药效学评价方法。该技术体系将为新的SGLT2高选择性抑制剂研发奠定实验基础。

参考文献
[1] Whiting DR, Guariguata L, Weil C, et al. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030[J]. Diabetes Res Clin Pract, 2011, 94: 311–321. DOI:10.1016/j.diabres.2011.10.029
[2] Yang WY, Lu JM, Weng JP, et al. Prevalence of diabetes among men and women in China[J]. N Engl J Med, 2010, 362: 1090–1101. DOI:10.1056/NEJMoa0908292
[3] Aronson D. Hyperglycemia and the pathobiology of diabetic complications[J]. Adv Cardiol, 2008, 45: 1–16. DOI:10.1159/000115118
[4] Jabbour SA. SGLT2 inhibitors to control glycemia in type 2 diabetes mellitus: a new approach to an old problem[J]. Postgrad Med, 2014, 126: 111–117.
[5] Dardi I, Kouvatsos T, Jabbour SA. SGLT2 inhibitors[J]. Biochem Pharmacol, 2016, 101: 27–39. DOI:10.1016/j.bcp.2015.09.005
[6] Kashiwagi A, Maegawa H. Metabolic and hemodynamic effects of sodium-dependent glucose co-transporter 2 inhibitors on cardio-renal protection in the treatment of patients with type 2 diabetes mellitus[J]. J Diabetes Investig, 2017. DOI:10.1111/jdi.12644
[7] Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes[J]. N Engl J Med, 2015, 373: 2117–2128. DOI:10.1056/NEJMoa1504720
[8] Zaccardi F, Webb DR, Htike ZZ, et al. Efficacy and safety of sodium-glucose co-transporter-2 inhibitors in type 2 diabetes mellitus: systematic review and network meta-analysis[J]. Diabetes Obes Metab, 2016, 18: 783–794. DOI:10.1111/dom.2016.18.issue-8
[9] Gerich JE. Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutic implications[J]. Diabet Med, 2010, 27: 136–142. DOI:10.1111/dme.2010.27.issue-2
[10] Jabbour SA, Goldstein BJ. Sodium glucose co-transporter 2 inhibitors: blocking renal tubular reabsorption of glucose to improve glycaemic control in patients with diabetes[J]. Int J Clin Pract, 2008, 62: 1279–1284. DOI:10.1111/j.1742-1241.2008.01829.x
[11] Neumiller JJ, White JR Jr, Campbell RK. Sodium-glucose co-transport inhibitors: progress and therapeutic potential in type 2 diabetes mellitus[J]. Drugs, 2010, 70: 377–385. DOI:10.2165/11318680-000000000-00000
[12] Toggenburger G, Kessler M, Semenza G. Phlorizin as a probe of the small-intestinal Na+, D-glucose cotransporter. A model[J]. Biochim Biophys Acta, 1982, 688: 557–571. DOI:10.1016/0005-2736(82)90367-4
[13] Grempler R, Thomas L, Eckhardt M, et al. Empagliflozin, a novel selective sodium glucose cotransporter-2 (SGLT-2) inhibitor: characterisation and comparison with other SGLT-2 inhibitors[J]. Diabetes Obes Metab, 2012, 14: 83–90. DOI:10.1111/dom.2012.14.issue-1
[14] Zhang XL, Yang XM, Li J, et al. A new fluorescence method for determination of sodium-glucose cotransporter 2 activity[J]. J Peking Univ (Health Sci) (北京大学学报医学版), 2012, 44: 725–731.
[15] Wright EM, Hirayama BA, Loo DF. Active sugar transport in health and disease[J]. J Intern Med, 2007, 261: 32–43. DOI:10.1111/jim.2007.261.issue-1
[16] Turk E, Zabel B, Mundlos S, et al. Glucose/galactose malabsorption caused by a defect in the Na+/glucose cotrans porter[J]. Nature, 1991, 350: 354–356. DOI:10.1038/350354a0
[17] Vivian EM. Dapagliflozin: a new sodium-glucose cotrans porter 2 inhibitor for treatment of type 2 diabetes[J]. Am J Health Syst Pharm, 2015, 72: 361–372. DOI:10.2146/ajhp140168
[18] Dienel GA, Cruz NF, Sokoloff L, et al. Determination of glucose utilization rates in cultured astrocytes and neurons with [14C] deoxyglucose: progress, pitfalls, and discovery of intracellular glucose compartmentation[J]. Neurochem Res, 2017, 42: 50–63. DOI:10.1007/s11064-015-1650-x
[19] Jiang Z, Yu B, Li Y, et al. Effect of three statins on glucose uptake of cardiomyocytes and its mechanism[J]. Med Sci Monit, 2016, 22: 2825–2830. DOI:10.12659/MSM.897047
[20] Castaneda F, Kinne RK. A 96-well automated method to study inhibitors of human sodium-dependent D-glucose trans port[J]. Mol Cell Biochem, 2005, 280: 91–98. DOI:10.1007/s11010-005-8235-y
[21] Yamada K, Saito M, Matsuoka H, et al. A real-time method of imaging glucose uptake in single, living mammalian cells[J]. Nat Protoc, 2007, 2: 753–762. DOI:10.1038/nprot.2007.76
[22] Kanwal A, Singh SP, Grover P, et al. Development of a cell-based nonradioactive glucose uptake assay system for SGLT1 and SGLT2[J]. Anal Biochem, 2012, 429: 70–75. DOI:10.1016/j.ab.2012.07.003
[23] Meng W, Ellsworth BA, Nirschl AA, et al. Discovery of dapagliflozin: a potent, selective renal sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes[J]. J Med Chem, 2008, 51: 1145–1149. DOI:10.1021/jm701272q