药学学报  2017, Vol. 52 Issue (5): 779-784   PDF    
牛蒡子中一个新木脂素类化合物
杨桠楠1, 黄小英1, 王尉2, 杜宁2, 张经华2, 冯子明1, 姜建双1, 张培成1     
1. 中国医学科学院、北京协和医学院药物研究所, 天然药物活性物质与功能国家重点实验室, 北京 100050;
2. 北京市理化分析测试中心, 北京100089
摘要: 本文对牛蒡子中的化学成分进行了研究。采用多种柱色谱方法并结合制备型HPLC的方法分离纯化牛蒡子中的化学成分,进一步利用IR、UV、CD、MS、HR-ESI-MS、1D和2DNMR等技术对分离得到的化合物进行结构分析和鉴定。从牛蒡子80%乙醇提取物中分离鉴定了10个化合物,分别为:(7R,8R)-4,7,9,9'-tetrahydroxy-3,3'-dimethoxy-8-4'-oxyneolign-7'-ene-9'-O-β-D-glucopyranoside(1)、(7R,8R)-4,7,9,9'-tetrahydroxy-3,3'-dimethoxy-8-O-4'-neolignan-9'-O-β-D-glucopyranoside(2)、(7R,8R)-4,7,9,9'-tertahydroxy-3,3'-dimethoxy-8-4'-oxyneolignan(3)、(7S,8R)-dihydrodehydrodiconiferylalcohol-4-O-β-D-glucopyranoside(4)、(7S,8R,7'R,8'R)-pinoresinol-4,4'-di-O-β-D-glucopyrano-side(5)、(8S,7'S,8'R)-4,4',9'-trihydroxy-3,3'-dimethoxy-7',9-epoxylignan-7-oxo-4'-O-β-D-glucopyranoside(6)、1-O-β-D-xylopyranosyl-(1→6)-O-β-D-glucopyranoside-2-methoxy-4-hydroxyphenol(7)、1-O-β-D-xylopyranosyl-(1→6)-O-β-D-glucopyranoside-3-methoxy-4-hydroxyphenol(8)、4-O-β-D-xylopyranosyl-(1→6)-O-β-D-glucopyranoside-4-hydroxy-3-methoxybenzylalcohol(9)和2-phenethylβ-primeveroside(10)。其中化合物1为一个新的8-O-4'型木脂素,化合物2~10均为首次从牛蒡子中分离得到。
关键词: 菊科     牛蒡子     化学成分     提取     分离     木脂素    
A new neolignan from the fruits of Arctium lappa L.
YANG Ya-nan1, HUANG Xiao-ying1, WANG Wei2, DU Ning2, ZHANG Jing-hua2, FENG Zi-ming1, JIANG Jian-shuang1, ZHANG Pei-cheng1     
1. State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China;
2. Beijing Centre for Physical and Chemical Analysis, Beijing 100089, China
Abstract: In our study of the chemical constituents of the dried mature fruits of Arctium lappa L., ten compounds were isolated by various chromatography methods and preparative HPLC. Their structures were elucidated as (7R, 8R)-4, 7, 9, 9'-tetrahydroxy-3, 3'-dimethoxy-8-4'-oxyneolign-7'-ene-9'-O-β-D-glucopyranoside (1), (7R, 8R)-4, 7, 9, 9'-tetrahydroxy-3, 3'-dimethoxy-8-O-4'-neolignan-9'-O-β-D-glucopyranoside (2), (7R, 8R)-4, 7, 9, 9'-tertahydroxy-3, 3'-dimethoxy-8-4'-oxyneolignan (3), (7S, 8R)-dihydrodehydrodiconiferylalcohol-4-O-β-D-glucopyranoside (4), (7S, 8R, 7'R, 8'R)-pinoresinol-4, 4'-di-O-β-D-glucopyranoside (5), (8S, 7'S, 8'R)-4, 4', 9'-trihydroxy-3, 3'-dimethoxy-7', 9-epoxylignan-7-oxo-4'-O-β-D-glucopyranoside (6), 2-methoxy-4-hydroxyphenol-1-O-β-D-xylopyranosyl-(1→6)-O-β-D-glucopyranoside (7), 3-methoxy-4-hydroxyphenol-1-O-β-D-xylopyranosyl-(1→6)-O-β-D-glucopyranoside (8), 4-hydroxy-3-methoxybenzylalcohol-4-O-β-D-xylopyranosyl-(1→6)-O-β-D-glucopyranoside (9) and 2-phenethyl β-primeveroside (10) by their spectroscopic data (IR, UV, CD, MS, HR-ESI-MS, and 1D and 2D NMR) and comparison to literature data. Compound 1 is a new 8-O-4'-neolignan. Compounds 2-10 were isolated from the dried mature fruits of Arctium lappa L. for the first time.
Key words: Asteraceae     Arctii Fructus     chemical constituent     extraction     isolation     lignan    

牛蒡子 (Arctii Fructus) 为菊科 (Asteraceae) 牛蒡属 (Arctium) 植物牛蒡Arctium lappa L.的干燥成熟果实, 我国有牛蒡属植物2种。牛蒡为两年生草本植物, 在全国大部分地区均有分布, 喜温暖湿润气候, 耐寒、耐热性较强, 多生于山坡、山谷、林缘、林中, 海拔750~3 500 m处。目前从牛蒡子中分离得到的化合物主要为木脂素类、脂肪酸以及其他类成分等[1-6]。现代研究表明, 牛蒡子中所含主要成分木脂素类化合物具有抗肿瘤、抗炎、抗病毒、改善肾脏代谢功能、降血糖等多种生理活性[7-11]

为了进一步揭示牛蒡子的药效物质基础, 本实验利用现代色谱分离技术及光谱鉴定技术, 依据牛蒡子的传统水煎剂用法重点对牛蒡子水溶性成分进行了研究, 共从牛蒡子中分离鉴定了10个化合物, 其中包括1个新的8-O-4'型木脂素和9个首次从牛蒡子中分离得到的单体化合物。这些化合物大多为糖苷类化合物, 包括5个木脂素的糖苷类化合物、3个酚苷类化合物以及1个苯乙醇苷类化合物 (图 1)。

Figure 1 Structures of compounds 1-10

化合物1, 白色无定形粉末, UV (MeOH) λmax (logε): 230 (3.99)、280 (3.68) nm; [α]D25-29.71 (c 0.1, MeOH-H2O, 1:1); CD (MeOH) λmaxε): 257 (-1.23)、302 (-0.57) nm; 高分辨质谱HR-ESI-MS m/z 561.192 1 [M+Na]+ (calcd. for C26H34O12Na, 561.194 8) 提示化合物1分子式为C26H34O12。IR显示该化合物结构中含有羟基 (3 384 cm–1) 和苯环 (1 602、1 511、1 453 cm–1)。

化合物11H NMR (500 MHz, DMSO-d6) 谱中 (表 1), 显示有6个芳香质子信号δH 7.05 (1H, brs, H-2)、6.67 (1H, d, J = 8.0 Hz, H-5)、6.75 (1H, d, J = 8.0 Hz, H-6)、6.96 (1H, brs, H-2')、6.96 (1H, d, J = 8.0 Hz, H-5') 和6.87 (1H, d, J = 8.0 Hz, H-6'), 表明有两个ABX自旋体系苯环存在。此外, 还观察到两个连氧次甲基质子信号δH 4.70 (1H, J = 4.0 Hz, H-7)、4.26 (1H, m, H-8);两个连氧亚甲基质子信号δH 3.56 (1H, J = 11.0 Hz, H-9)、3.22 (1H, overlap, H-9)、4.40 (1H, dd, J = 11.0, 5.5 Hz, H-9')、4.19 (1H, overlap, H-9'); 以及两个烯烃氢信号δH 6.54 (1H, d, J = 15.5 Hz, H-7')、6.23 (1H, dt, J = 15.5, 5.5, H-8'), 表明了一个丙三醇单元和一个烯丙醇单元的存在。同时还观察到两个甲氧基信号δH 3.71 (3H, s)、3.78 (3H, s), 以及一个β-葡萄糖端基质子信号δH 4.19 (1H, d, J = 7.5 Hz, H-1")。在13C NMR (表 1) 中共显示了26个碳信号, 除了2个甲氧基碳信号、6个葡萄糖碳信号外, 剩下的18个碳信号可归属为一个木脂素的碳骨架[1]

Table 1 1H NMR (500 MHz) and 13C NMR (125 MHz) data ofcompound 1 (in DMSO-d6, J in Hz)

化合物1的HMBC谱中 (图 2), H-7与C-1、C-2、C-6、C-8、C-9的相关, H-7'与C-1'、C-2'、C-6'、C-8'、C-9'的相关, 以及H-8与C-4'的相关充分说明了化合物1是一个8-O-4'型木脂素。葡萄糖端基质子H-1"与C-9'的相关表明葡萄糖连接在化合物1的9'位上, 甲氧基质子信号δH 3.71 (3H, s)、3.78 (3H, s) 分别与C-3、C-3'存在着远程相关点, 因此两个甲氧基分别位于化合物1的C-3、C-3'。

Figure 2 Key HMBC of compound 1

通过文献调研可知, 对于8-O-4'型木脂素苷类化合物, C-7和C-8的绝对构型可以利用在氘代氯仿中测定苷元H-7的偶合常数并结合CD图谱进行确定[12], 而葡萄糖的绝对构型则可以通过气相色谱进行确定[13]。因此, 采用纤维素酶对化合物1进行水解[13], 并分别获得苷元1a以及单体葡萄糖。苷元1a在氘代氯仿中H-7的偶合常数为7.5 Hz, 说明C-7和C-8的相对构型为苏式。结合化合物1在CD谱中257 nm处的负Cotton效应, 确定了该化合物绝对构型为7R, 8R。单体葡萄糖经三甲基硅烷基咪唑衍生化后进行气相色谱分析, 并与标准D-型葡萄糖对比确定化合物中葡萄糖单元为D[13]

综上所述, 化合物1的化学结构被确定为 (7R, 8R)-4, 7, 9, 9'-tetrahydroxy-3, 3'-dimethoxy-8-4'-oxyneolign-7'-ene-9'-O-β-D-glucopyranoside。

实验部分

JASCO P-2000旋光仪; Nicolet 5700傅里叶变换红外光谱仪; JASCO J-815圆二色谱仪; Bruker 500 MHz核磁共振仪; Agilent 6520 HPLC-Q-TOF质谱仪; Agilent 1200型高效液相色谱仪, 包括四元高压梯度泵、自动脱气机、二极管阵列检测器、自动进样器、柱温箱。Shimadzu制备型高效液相色谱仪。大孔树脂HP-20为日本三菱化学株式会社生产, 反向硅胶C-18为YMC公司生产, 凝胶Sephadex LH-20为GE公司生产。

牛蒡子于2011年11月采于黑龙江省五常镇, 经中国医学科学院药物研究所马林教授鉴定为牛蒡Arctium lappa L.的干燥成熟果实。标本 (ID-S-2434) 存放于中国医学科学院、北京协和医学院药物研究所植物标本室。

1 提取与分离

牛蒡子 (100 kg) 经80%乙醇回流提取 (3×2 h), 得浸膏 (约4.2 kg)。浸膏经水 (10 L) 分散后, 用乙酸乙酯萃取 (3×10 L)。所得水部位 (400 g) 进行HP-20大孔吸附树脂 (4.0 kg) 柱色谱, 用H2O (20 L)、15% EtOH (20 L)、30% EtOH (20 L)、50% EtOH (20 L)、95% EtOH (20 L) 梯度洗脱。

取15% EtOH洗脱部分 (40 g) 进行中压反相柱色谱, 用水-甲醇进行梯度洗脱 (0:100~100:0), 共得到17个部分 (Fr.1~Fr.17), 其中Fr.5再经Sephadex LH-20和制备型高效液色谱相分离得到化合物7 (18 mg)、8 (100 mg)、9 (27 mg)。

取30% EtOH洗脱部分 (86.4 g) 进行中压反相柱色谱, 用水-甲醇进行梯度洗脱 (0:100~100:0), 共得到13个部分 (Fr.1~Fr.13), 其中Fr.8再经Sephadex LH-20和制备型高效液相色谱分离得到化合物10 (23 mg); Fr.9再经Sephadex LH-20和制备型高效液相色谱分离得到化合物1 (16 mg)、2 (31 mg)、3 (14 mg)、5 (15 mg); Fr.10再经Sephadex LH-20和制备型高效液相色谱分离得到化合物4 (15 mg)、6 (19 mg)。

2 结构鉴定

化合物1 白色无定形粉末, UV (MeOH) λmax (logε): 230 (3.99)、280 (3.68) nm; [α]D25-29.71 (c 0.1, MeOH-H2O, 1:1); CD (MeOH) λmaxε): 257 (-1.23)、302 (-0.57) nm; 高分辨质谱HR-ESI-MS m/z 561.192 1 [M+Na]+ (calcd. for C26H34O12Na, 561.194 8) 提示化合物1分子式为C26H34O12。IR显示该化合物结构中含有羟基 (3 384 cm–1) 和苯环 (1 602、1 511、1 453 cm–1)。核磁数据见表 1

化合物2 白色无定形粉末。ESI-MS: m/z 541.2 [M+H]+, C26H36O121H NMR (500 MHz, DMSO-d6): δH 6.97 (1H, brs, H-2), 6.90 (1H, d, J = 8.5 Hz, H-5'), 6.81 (1H, brs, H-2'), 6.75 (1H, d, J = 8.5 Hz, H-6), 6.68 (1H, d, J = 8.5 Hz, H-5), 6.66 (1H, d, J = 8.5 Hz, H-6'), 4.70 (1H, brs, H-7), 4.16 (1H, dd, J = 9.5, 4.5 Hz, H-8), 4.10 (1H, d, J = 7.5 Hz, H-1"), 3.78 (1H, overlap, H-9'a), 3.74 (3H, s, 3-OCH3), 3.71 (3H, s, 3'-OCH3), 3.63 (1H, dd, J = 11.5, 5.5 Hz, H-6"a), 3.55 (1H, d, J = 11.0 Hz, H-9a), 3.43 (1H, m, H-6"b), 3.41 (1H, overlap, H-9'b), 3.21 (1H, m, H-9b), 3.10 (1H, m, H-5"), 3.04 (1H, m, H-4"), 3.01 (1H, m, H-3"), 2.93 (1H, m, H-2"), 2.56 (2H, t, J = 7.5 Hz, H-7'), 1.77(2H, m, H-8'); 13C NMR (125 MHz, DMSO-d6): δC 133.4 (C-1), 111.5 (C-2), 147.4 (C-3), 145.9 (C-4), 115.1 (C-5), 119.5 (C-6), 71.5 (C-7), 85.3 (C-8), 60.6 (C-9), 135.3 (C-1'), 113.4 (C-2'), 150.0 (C-3'), 146.8 (C-4'), 116.6 (C-5'), 120.7 (C-6'), 31.6 (C-7'), 31.7 (C-8'), 68.4 (C-9'), 103.4 (C-1"), 73.8 (C-2"), 77.1 (C-3"), 70.7 (C-4"), 76.0 (C-5"), 61.6 (C-6"), 56.1 (3-OCH3), 55.9 (3'-OCH3)。与文献[12]报道的化合物 (7R, 8R)-7, 9, 9'-trihydroxy-3, 3'-dimethoxy-8-O-4'-neolignan-9'-O-β-D-glucopyranoside的波谱数据基本一致, 故鉴定化合物2为 (7R, 8R)-7, 9, 9'-trihydroxy-3, 3'-dimethoxy-8-O-4'-neolignan-9'-O-β-D-glucopyranoside。

化合物3 白色无定形粉末。ESI-MS: m/z 379.1 [M+H]+, C20H26O71H NMR (500 MHz, DMSO-d6): δH 6.96 (1H, brs, H-2), 6.90 (1H, d, J = 8.0 Hz, H-5), 6.78 (1H, brs, H-2'), 6.75 (1H, d, J = 8.0 Hz, H-5'), 6.66 (1H, d, J = 8.0 Hz, H-6), 6.63 (1H, d, J = 8.0 Hz, H-6'), 4.70 (1H, brs, H-7), 4.15 (1H, dd, J = 9.5, 4.5 Hz, H-8), 3.74 (3H, s, 3-OCH3), 3.71 (3H, s, 3'-OCH3), 3.55 (1H, m, H-9a), 3.39 (2H, overlap, H-9'), 3.23 (1H, overlap, H-9b), 2.51 (2H, overlap, H-7'), 1.67(2H, m, H-8'); 13C NMR (125 MHz, DMSO-d6): δC 133.4 (C-1), 111.5 (C-2), 147.4 (C-3), 145.9 (C-4), 115.2 (C-5), 119.5 (C-6), 71.5 (C-7), 85.4 (C-8), 60.6 (C-9), 135.7 (C-1'), 113.3 (C-2'), 150.0 (C-3'), 146.8 (C-4'), 116.7 (C-5'), 120.6 (C-6'), 31.7 (C-7'), 34.9 (C-8'), 60.5 (C-9'), 56.1 (3-OCH3), 55.9 (3'-OCH3)。与文献[14]报道的化合物 (7R, 8R)-7, 9, 9'-trihydroxy-3, 3'-dimethoxy-8-O-4'-neolignan的波谱数据基本一致, 故鉴定化合物3为 (7R, 8R)-7, 9, 9'-trihydroxy-3, 3'-dimethoxy-8-O-4'-neolignan。

化合物4 白色无定形粉末。ESI-MS:m/z 523.2 [M+H]+, C26H34O111H NMR (500 MHz, DMSO-d6): δH 7.05 (1H, d, J = 8.5 Hz, H-5), 6.95 (1H, d, J = 2.0 Hz, H-2), 6.83 (1H, dd, J = 8.5, 2.0 Hz, H-6), 6.68 (2H, brs, H-2', H-6'), 4.96 (1H, d, J = 5.5 Hz, H-7), 4.87 (1H, d, J = 7.5 Hz, H-1"), 3.77 (3H, s, 3-OCH3), 3.74 (3H, s, 3'-OCH3), 3.69 (1H, overlap, H-6"a), 3.64 (1H, overlap, H-8), 3.59 (1H, overlap, H-9'a), 3.41 (3H, overlap, H-9'b, H-9), 3.41 (1H, m, H-6"b), 3.27 (2H, m, H-3", H-5"), 3.23 (1H, m, H-2"), 3.15 (1H, m, H-4"), 2.52 (1H, overlap, H-7'), 1.68 (1H, m, H-8'); 13C NMR (125 MHz, DMSO-d6): δC 136.0 (C-1), 110.9 (C-2), 146.6 (C-3), 146.0 (C-4), 115.8 (C-5), 118.3 (C-6), 87.0 (C-7), 54.0 (C-8), 63.6 (C-9), 135.6 (C-1'), 113.0 (C-2'), 143.8 (C-3'), 149.4 (C-4'), 129.3 (C-5'), 116.9 (C-6'), 32.0 (C-7'), 35.2 (C-8'), 60.7 (C-9'), 100.5 (C-1"), 73.7 (C-2"), 77.5 (C-3"), 70.1 (C-4"), 77.3 (C-5"), 61.1 (C-6"), 56.2 (3-OCH3), 56.2 (3'-OCH3)。与文献[15]报道的化合物 (7S, 8R)-dihydrodehydrodiconiferylalcohol-4-O-β-D-glucopyranoside的波谱数据基本一致, 故鉴定化合物4为 (7S, 8R)-dihydrodehydrodiconiferylalcohol-4-O-β-D-glucopyranoside。

化合物5 白色无定形粉末。ESI-MS: m/z 683.2 [M+H]+, C32H42O161H NMR (500 MHz, DMSO-d6): δH 7.04 (1H, d, J = 8.5 Hz, H-5), 7.03 (1H, d, J = 8.5 Hz, H-5'), 6.95 (2H, brs, H-2, H-2'), 6.83 (1H, d, J = 8.5 Hz, H-6), 6.82 (1H, d, J = 8.5 Hz, H-6'), 4.88 (1H, d, J = 7.5 Hz, H-1"), 4.86 (1H, d, J = 7.5 Hz, H-1"'), 4.79 (1H, d, J = 6.0 Hz, H-7), 4.37 (1H, d, J = 6.5 Hz, H-7'), 4.09 (1H, d, J = 9.0 Hz, H-9'a), 3.76 (6H, s, 3-OCH3, 3'-OCH3), 3.69 (2H, overlap, H-6"a, H-6"'a), 3.41 (5H, overlap, H-9, H-9'b, H-6"b, H-6"'b), 3.27 (4H, m, H-3", H-5", H-3"', H-5"'), 3.23 (2H, m, H-2", H-2"'), 3.15 (2H, m, H-4", H-4"'), 3.09 (1H, t, J = 3.5 Hz, H-8), 2.83 (1H, dd, J = 14.5, 6.0 Hz, H-8'); 13C NMR (125 MHz, DMSO-d6): δC 135.7 (C-1), 110.8 (C-2), 149.4 (C-3), 146.4 (C-4), 115.6 (C-5), 119.1 (C-6), 87.1 (C-7), 54.5 (C-8), 70.8 (C-9), 132.8 (C-1'), 110.5 (C-2'), 149.0 (C-3'), 145.9 (C-4'), 115.3 (C-5'), 118.1 (C-6'), 81.6 (C-7'), 49.7 (C-8'), 69.3 (C-9'), 100.6 (C-1"), 73.7 (C-2"), 77.5 (C-3"), 70.1 (C-4"), 77.3 (C-5"), 61.1 (C-6"), 100.6 (C-1"), 73.7 (C-2"), 77.5 (C-3"), 70.1 (C-4"), 77.3 (C-5"), 61.1 (C-6"), 56.1 (3-OCH3), 56.1 (3'-OCH3)。与文献[16]报道的化合物 (7S, 8R, 7'R, 8'R)-pinoresinol-4, 4'-di-O-β-D-glucopyrano side的波谱数据基本一致, 故鉴定化合物5为 (7S, 8R, 7'R, 8'R)-pinoresinol-4, 4'-di-O-β-D-glucopyranoside。

化合物6 白色无定形粉末。ESI-MS: m/z 537.1 [M+H]+, C26H32O121H NMR (500 MHz, DMSO-d6): δH 7.55 (1H, d, J = 8.0 Hz, H-6), 7.50 (1H, brs, H-2), 7.05 (1H, d, J = 8.0 Hz, H-6'), 6.98 (1H, brs, H-2'), 6.88 (1H, d, J = 8.0 Hz, H-5), 6.86 (1H, d, J = 8.0 Hz, H-5'), 4.88 (1H, d, J = 7.5 Hz, H-1"), 4.58 (1H, d, J = 8.0 Hz, H-7'), 4.12 (1H, overlap, H-8'), 4.11 (1H, overlap, H-9a), 3.99 (1H, m, H-9b), 3.82 (3H, s, 3-OCH3), 3.76 (3H, s, 3'-OCH3), 3.65 (1H, d, J = 11.5 Hz, H-6"a), 3.49 (2H, m, H-9'), 3.44 (1H, overlap, H-6"b), 3.25 (2H, m, H-3", H-5"), 3.23 (1H, m, H-2"), 3.15 (1H, m, H-4"), 2.54 (1H, m, H-8); 13C NMR (125 MHz, DMSO-d6): δC 128.5 (C-1), 112.1 (C-2), 148.1 (C-3), 152.5 (C-4), 123.8 (C-5), 119.2 (C-6), 197.9 (C-7), 53.6 (C-8), 70.6 (C-9), 136.0 (C-1'), 111.3 (C-2'), 146.4 (C-3'), 149.2 (C-4'), 115.5 (C-5'), 115.5 (C-6'), 83.2 (C-7'), 49.2 (C-8'), 60.3 (C-9'), 100.5 (C-1"), 73.7 (C-2"), 77.5 (C-3"), 70.2 (C-4"), 77.4 (C-5"), 61.1 (C-6"), 56.1 (3-OCH3), 56.1 (3'-OCH3)。与文献[17]报道的化合物 (8S, 7'S, 8'R)-4, 4', 9'-trihydroxy-3, 3'-dimethoxy-7', 9-epoxylignan-7-oxo-4'-O-β-D-glucopy ranoside的波谱数据基本一致, 故鉴定化合物6为 (8S, 7'S, 8'R)-4, 4', 9'-trihydroxy-3, 3'-dimethoxy-7', 9-epoxylignan-7-oxo-4'-O-β-D-glucopyranoside。

化合物7 白色无定形粉末。ESI-MS: m/z 435.1 [M+H]+, C18H26O121H NMR (500 MHz, DMSO-d6): δH 6.92 (1H, d, J = 8.5 Hz, H-6), 6.37 (1H, J = 2.0 Hz, H-3), 6.23 (1H, dd, J = 8.5, 2.0 Hz, H-5), 4.63 (1H, d, J = 7.5 Hz, H-1'), 4.15 (1H, d, J = 7.5 Hz, H-1"), 3.89 (1H, d, J = 11.5 Hz, H-6'a), 3.68 (3H, s, 2-OCH3), 3.65 (1H, dd, J = 11.5, 5.5 Hz, H-5"a), 3.55 (1H, dd, J = 11.5, 7.0 Hz, H-6'b), 3.39 (1H, overlap, H-5'), 3.25 (1H, m, H-4'), 3.20 (1H, m, H-3'), 3.13 (1H, m, H-2"), 3.12 (1H, m, H-4"), 3.06 (1H, t, J = 8.0 Hz, H-3"), 2.95 (1H, overlap, H-2'), 2.95 (1H, t, J = 11.5 Hz, H-5"b); 13C NMR (125 MHz, DMSO-d6): δC139.9 (C-1), 150.3 (C-2), 101.3 (C-3), 153.2 (C-4), 106.7 (C-5), 117.8 (C-6), 101.9 (C-1'), 73.8 (C-2'), 77.2 (C-3'), 70.2 (C-4'), 76.3 (C-5'), 68.8 (C-6'), 104.4 (C-1"), 73.9 (C-2"), 77.0 (C-3"), 70.1 (C-4"), 66.1 (C-5"), 56.0 (2-OCH3)。与文献[18]报道的化合物2-methoxy-4-hydroxyphenol-1-O-β-D-xylopy ranosyl-(1→6)-O-β-D-glucopyranoside的波谱数据基本一致, 故鉴定化合物7为2-methoxy-4-hydroxyphenol-1-O-β-D-xylopyranosyl-(1→6)-O-β-D-glucopyranoside。

化合物8 白色无定形粉末。ESI-MS: m/z 435.1 [M+H]+, C18H26O121H NMR (500 MHz, DMSO-d6): δH 6.64 (1H, d, J = 8.5 Hz, H-5), 6.61 (1H, d, J = 2.0 Hz, H-2), 6.48 (1H, dd, J = 8.5, 2.0 Hz, H-6), 4.63 (1H, d, J = 7.5 Hz, H-1'), 4.15 (1H, d, J = 7.5 Hz, H-1"), 3.89 (1H, d, J = 11.5 Hz, H-6'a), 3.72 (3H, s, 3-OCH3), 3.65 (1H, dd, J = 11.5, 5.5 Hz, H-5"a), 3.55 (1H, dd, J = 11.5, 7.0 Hz, H-6'b), 3.45 (1H, overlap, H-5'), 3.25 (1H, m, H-4'), 3.20 (1H, m, H-3'), 3.13 (1H, m, H-2"), 3.12 (1H, m, H-4"), 3.06 (1H, t, J = 8.0 Hz, H-3"), 2.96 (1H, t, J = 11.5 Hz, H-5"b), 2.95 (1H, overlap, H-2'); 13C NMR (125 MHz, DMSO-d6): δC 151.2 (C-1), 104.6 (C-2), 148.3 (C-3), 141.8 (C-4), 115.8 (C-5), 108.4 (C-6), 102.0 (C-1'), 73.7 (C-2'), 77.1 (C-3'), 70.3 (C-4'), 76.2 (C-5'), 69.1 (C-6'), 102.7 (C-1"), 73.9 (C-2"), 77.0 (C-3"), 70.1 (C-4"), 66.2 (C-5"), 56.0 (3-OCH3)。与文献[19]报道的化合物3-methoxy-4-hydroxyphenol-1-O-β-D-xylopy ranosyl-(1→6)-O-β-D-glucopyranoside的波谱数据基本一致, 故鉴定化合物8为3-methoxy-4-hydroxyphenol-1-O-β-D-xylopyranosyl-(1→6)-O-β-D-glucopyranoside。

化合物9 白色无定形粉末。ESI-MS: m/z 449.1 [M+H]+, C19H28O121H NMR (500 MHz, DMSO-d6): δH 7.08 (1H, d, J = 8.5 Hz, H-5), 6.94 (1H, d, J = 2.0 Hz, H-2), 6.81 (1H, dd, J = 8.5, 2.0 Hz, H-6), 4.84 (1H, d, J = 7.5 Hz, H-1'), 4.42 (2H, d, J = 5.5 Hz, H-7), 4.15 (1H, d, J = 7.5 Hz, H-1"), 3.97 (1H, d, J = 11.5 Hz, H-6'a), 3.72 (3H, s, 3-OCH3), 3.64 (1H, dd, J = 11.5, 5.5 Hz, H-5"a), 3.56 (1H, dd, J = 11.5, 7.0 Hz, H-6'b), 3.47 (1H, m, H-5'), 3.25 (1H, overlap, H-2'), 3.25 (1H, m, H-3'), 3.25 (1H, overlap, H-4"), 3.16 (1H, m, H-4'), 3.05 (1H, ddd, J = 13.5, 9.0, 5.0 Hz, H-3"), 2.94 (1H, m, H-2"), 2.89 (1H, t, J = 11.5 Hz, H-5"b); 13C NMR (125 MHz, DMSO-d6): δC 136.5 (C-1), 111.5 (C-2), 149.0 (C-3), 145.5 (C-4), 115.9 (C-5), 119.2 (C-6), 63.3 (C-7), 100.7 (C-1'), 73.7 (C-2'), 77.2 (C-3'), 70.0 (C-4'), 76.4 (C-5'), 68.6 (C-6'), 104.4 (C-1"), 73.9 (C-2"), 76.9 (C-3"), 70.0 (C-4"), 66.0 (C-5"), 56.0 (3-OCH3)。与文献[20]报道的化合物4-hydroxy-3-methoxybenzylalcohol-4-O-β-D-xylopyranosyl-(1→6)-O-β-D-glucopyranoside的波谱数据基本一致, 故鉴定化合物9为4-hydroxy-3-methoxybenzylalcohol-4-O-β-D-xylopyranosyl-(1→6)-O-β-D-glucopyranoside。

化合物10 白色无定形粉末。ESI-MS: m/z 417.1 [M+H]+, C19H28O101H NMR (500 MHz, DMSO-d6): δH 7.16~7.26 (5H, m, H-2~H-6), 4.19 (1H, d, J = 7.5 Hz, H-1'), 4.18 (1H, d, J = 7.5 Hz, H-1"), 3.92 (1H, d, J = 11.5 Hz, H-6'a), 3.67 (2H, overlap, H-8a, H-5"a), 3.53 (1H, dd, J = 11.5, 7.0 Hz, H-6'b), 3.27 (1H, overlap, H-8b), 3.13 (1H, m, H-4'), 3.13 (1H, overlap, H-5'), 3.10 (1H, m, H-3'), 3.08 (2H, m, H-2", H-4"), 3.01 (1H, t, J = 8.0 Hz, H-3"), 2.97 (1H, t, J = 11.5 Hz, H-5"b), 2.94 (1H, overlap, H-2'), 2.85 (2H, t, J = 7.5 Hz, H-7)。与文献[21]报道的化合物2-phenethyl β-primeveroside的波谱数据基本一致, 故鉴定化合物10为2-phenethyl β-primeveroside。

参考文献
[1] Yang YN, Huang XY, Feng ZM, et al. New butyrolactone type lignans from Arctii Fructus and their anti-inflammatory activities[J]. J Agric Food Chem, 2015, 63: 7958–7966. DOI:10.1021/acs.jafc.5b02838
[2] Yang YN, Huang XY, Feng ZM, et al. Hepatoprotective activity of twelve novel 7'-hydroxy ligninglucosides from Arctii Fructus[J]. J Agric Food Chem, 2014, 62: 9095–9102. DOI:10.1021/jf501859x
[3] Yang YN, Zhang F, Feng ZM, et al. Two new neolignanglu-cosides from Arctii Fructus[J]. J Asian Nat Prod Res, 2012, 14: 981–985. DOI:10.1080/10286020.2012.729050
[4] He J, Huang XY, Yang YN, et al. Two new compounds from the fruits of Arctium lappa[J]. J Asian Nat Prod Res, 2016, 18: 423–428. DOI:10.1080/10286020.2016.1145671
[5] Huang XY, Feng ZM, Yang YN, et al. Four new neolignan-glucosides from the fruits of Arctium lappa[J]. J Asian Nat Prod Res, 2015, 17: 504–511. DOI:10.1080/10286020.2015.1039525
[6] Liu JH, Cui QX, Cheng S. Studies on the physical-chemical properties and fatty acid composition of Lappa seed oil[J]. China Oils Fats (中国油脂), 2000, 25: 51–53.
[7] Hirose M, Yamaguchi T, Lin C, et al. Effects of arctiin on PhIP-induced mammary, colon and pancreatic carcinogenesis in female Sprague-Dawley rats and MelQx-induced hepatocar-cinogenesis in male F344 rats[J]. Cancer Lett, 2000, 155: 79–88. DOI:10.1016/S0304-3835(00)00411-0
[8] Awale S, Lu J, Kalauni SK, et al. Identification of arctigenin as an antitumor agent having the ability to eliminate the tolerance of cancer cells to nutrient starvation[J]. Cancer Res, 2006, 66: 175l–1757. DOI:10.1158/0008-5472.CAN-05-1130
[9] Chae SH, Kim PS, Cho JY, et al. Isolation and identification of inhibitory compounds on TNF-α production from Magnoliae fargesii[J]. Arch Pharm Res, 1998, 21: 67–69. DOI:10.1007/BF03216755
[10] Gao Y, Dong X, Kang YG, et al. Activity of in vitro anti-influenza virus of arctigenin[J]. Chin Tradit Herb Drugs (中草药), 2002, 33: 724–726.
[11] Xu Z, Wang X, Zhou M, et al. The antidiabetic activity of total lignan from Fructus Arctii against alloxan-induced diabetes in mice and rats[J]. Phytother Res, 2008, 22: 97–101. DOI:10.1002/(ISSN)1099-1573
[12] Gan ML, Zhang YL, Lin S, et al. Glycosides from the root of Iodes cirrhosa[J]. J Nat Prod, 2008, 71: 647–654. DOI:10.1021/np7007329
[13] Xu K, Jiang JS, Feng ZM, et al. Bioactive sesquiterpenoid and polyacetyleneglycosides from Atractylodes lancea[J]. J Nat Prod, 2016, 79: 1567–1575. DOI:10.1021/acs.jnatprod.6b00066
[14] Miyase T, Ueno A, Takizawa N, et al. Studies on the glycosides of Epimedium grandiflorum Morr R. var. thunbergianum (MIQ.) NAKAI. Ⅱ[J]. Chem Pharm Bull, 1987, 35: 3713–3719. DOI:10.1248/cpb.35.3713
[15] Jayaprakasha GK, Ohnishi-Kameyama M, Ono H, et al. Phenolic constituents in the fruits of Cinnamomum zeylanicum and their antioxidant activity[J]. J Agric Food Chem, 2006, 54: 1672–1679. DOI:10.1021/jf052736r
[16] Schumacher B, Scholle S, Hölzl J, et al. Lignans isolated from valerian: identification and characterization of a new olivil derivative with partial agonistic activity at A1 adenosine receptors[J]. J Nat Prod, 2002, 65: 1479–1485. DOI:10.1021/np010464q
[17] Chen JJ, Wei HB, Xu YZ, et al. Antioxidant lignans from the roots of Vladimiria muliensis[J]. Planta Med, 2013, 79: 1470–1473. DOI:10.1055/s-00000058
[18] Luecha P, Umehara K, Miyase T, et al. Antiestrogenic constituents of the Thai medicinal plants Capparis flavicans and Vitex glabrata[J]. J Nat Prod, 2009, 72: 1954–1959. DOI:10.1021/np9006298
[19] Kitajima J, Kamoshita A, Ishikawa T, et al. Glycosides of Atractylodes japonica[J]. Chem Pharm Bull, 2003, 51: 152–157. DOI:10.1248/cpb.51.152
[20] Disadee W, Mahidol C, Sahakitpichan P, et al. Unprecedented furan-2-carbonyl C-glycosides and phenolic diglycosides from Scleropyrum pentandrum[J]. Phytochemistry, 2012, 74: 115–122. DOI:10.1016/j.phytochem.2011.11.001
[21] Saimaru H, Orihara Y. Biosynthesis of acteoside in cultured cells of Olea europaea[J]. J Nat Med, 2010, 64: 139–145. DOI:10.1007/s11418-009-0383-z