药学学报  2016, Vol. 51 Issue (11): 1745-1750   PDF    
草莓番石榴叶中黄酮类成分研究
崔航青, 彭财英, 黄应正, 高映, 刘建群, 张锐, 舒积成     
江西中医药大学现代中药制剂教育部重点实验室, 江西 南昌 330004
摘要: 为了研究草莓番石榴叶(Psidum littorale)的化学成分,采用柱色谱技术分离纯化,通过波谱数据鉴定了16个黄酮类化合物,其中7个黄酮醇:山柰酚(1)、isorhamnetin(2)、myricetin-3,7,3'-trimethyl ether(3)、laricitrin(4)、槲皮素(5)、杨梅素(6)、quercein-3,4'-dimethyl ether(7);6个黄酮醇苷:番石榴苷(8)、金丝桃苷(9)、5,4'-二羟基-3,7,5'-甲氧基黄酮-3'-O-β-D-葡萄糖苷(10)、laricitrin-3-O-xyloside(11)、杨梅素-3-O-α-L-鼠李吡喃糖苷(12)、杨梅素-3-O-β-D-吡喃木糖苷(13);3个二氢黄酮:4'-甲氧基二氢槲皮素(14)、二氢芹菜素(15)、蛇葡萄素4'-O-β-D-吡喃葡萄糖苷(16)。化合物10为新化合物,化合物24、7、1016均为首次在此植物中分离得到,首次报道化合物11核磁共振碳氢谱数据。
关键词: 草莓番石榴     化学成分     黄酮    
Flavonoids from leaves of Psidum littorale
CUI Hang-qing, PENG Cai-ying, HUANG Ying-zheng, GAO Ying, LIU Jian-qun, ZHANG Rui, SHU Ji-cheng     
Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education of PRC, Jiangxi University of Traditional Chinese Medicines, Nanchang 330004, China
Abstract: We investigated the chemical constituents of the leaves of Psidum littorale, which include 16 flavonoids, including seven flavonols, six flavonoid glycosides and three flavonones. The compounds were isolated by silica gel column chromatography. Their structures were elucidated on the basis of spectral analysis and by comparison with published data. Seven flavonols were kaempferol (1), isorhamnetin (2), myricetin-3,7,3'-trimethyl ether (3), laricitrin (4), quercetin (5), myricetin (6) and quercein-3,4'-dimethyl ether (7), six flavonoid glycosides were guaijaverin (8), hyperoside (9), 5,4'-dyhydroxy-3,7,5'-methoxyflavone-3'-O-β-D-glucoside (10), laricitrin-3-O-xyloside (11), myricetin-3-O-α-L-rhamnopyranoside (12) and myricetin-3-O-β-D-xyloside (13). Three flavonones were 4'-O-methyldihydroquercetin (14), dihydroapigenin (15) and ampelopsin 4'-O-β-D-glucopyranoside (16). Compound 10 is a new chemical, compounds 2-4, 7, 10-16 were first isolated from this plant. 1H NMR and 13C NMR data of compound 11 were not reported in literature.
Key words: Psidum littorale     chemical constituent     flavonoids    

草莓番石榴 (Psidum littorale Raddi) 为桃金娘科 (Myrtaceae) 番石榴属 (Psidium) 植物,在广东、广西及福建均有种植[1]。因果肉多汁,味如草莓故得名草莓番石榴。草莓番石榴具有抗氧化、抗肿瘤、止泻等多种功效[2, 3],而有关草莓番石榴的化学成分研究较少,目前报道了少数几个黄酮类成分[3-5]。据此,作者对草莓番石榴植物进行了系统的化学成分研究。之前作者曾报道从草莓番石榴90%乙醇提取物中分离得到4个四甲基环己烯单萜类及3个木脂素类化合物[6],此次报道从其中分离到16个黄酮类化合物,包括1个新化合物,10个首次在此植物中分离得到的化合物,以及1个首次报道其核磁共振碳氢谱数据化合物。

化合物10 黄色粉末 (甲醇),[α]D25 -29.3 (c0.032,MeOH); HR-ESI-MS 给出准分子离子峰m/z: 521.130 1 [M-H]- (计算值521.129 5,C24H25O13); UV λmax (MeOH) nm (logε): 362 (4.2),254 (3.2); 1H NMR和13C NMR数据见表 1

UV具有黄酮类化合物特征性的带Ⅰ和带Ⅱ吸收 (带Ⅰ = 362 nm,带Ⅱ = 254 nm),提示化合物为黄酮类 (图 1)。HR-ESI-MS 给出准分子离子峰m/z: 521.130 1 [M-H]- (计算值521.129 5),提示分子式为C24H26O13,不饱和度为12。1H NMR (表 1) 显示,A环具有1对邻位偶合质子: δH 6.68 (1H,d,J = 2.3 Hz,H-8) 和6.28 (1H,d,J = 2.3 Hz,H-6); B环具有1对邻位偶合质子: δH 7.73 (1H,br s,H-2') 和7.56 (1H,br s,H-6'); 3个甲氧基信号: δH 3.82 (3H,s),3.88 (3H,s),3.91 (3H,s)。另外,结合HSQC谱分析,化合物具有葡萄糖结构单元: δH 4.85 (1H,d,J = 7.6 Hz,H-1'' ),3.42~3.54 (4H,m,H-2'',3'',4'',5''),3.95 (1H,dd,J = 2.0,12.0 Hz,H-6'' a),3.76 (1H,dd,J = 5.6,12.0 Hz,H-6'' b); δC 104.7 (C-1''),75.0 (C-2''),77.8 (C-3'' ),71.6 (C-4''),78.6 (C-5''),62.8 (C-6'')。综合上述分析,提示化合物10为含有二个羟基和三个甲氧基的黄酮苷。再根据碳谱的化学位移及糖端基质子偶合常数 (J = 7.6 Hz),提示所连接的糖单元为β-葡萄糖。化合物10经酸 水解,气相色谱检测,保留时间与β-D-葡萄糖对照 品结果一致,提示化合物所连接的糖为β-D-葡萄糖。HMBC谱中 (图 2),两个间位偶合的芳香质子7.73 (br s) 和7.56 (br s) 均与158.2 (C-2) 有远程偶合,提示上述两个质子为B环上H-2和H-6,进一步提示化合物B环具有C-3',C-4',C-5' 三取代特征; HMBC谱显示,糖端基质子4.85 (d,J = 7.6 Hz,H-1'') 与147.9 (C-3') 具有远程偶合,提示葡萄糖连接在C-3' 位,并且在ROESY谱中 (图 2),葡萄糖端基质子4.85 (d,J = 7.6 Hz,H-1'') 与7.73 (s,H-2') 相关,7.73 (s,H-2') 与3.82 (s,3-OCH3) 相关,进一步证实了上述结论。 3个甲氧基3.82 (3H,s)、3.88 (3H,s)、3.91 (3H,s) 分别与139.8 (C-3)、167.4 (C-7) 和150.5 (C-5') 有远程偶合,提示化合物分别在C-3、C-7和C-5' 有甲氧基取代。综上分析,化合物10的结构鉴定为5,4'-二羟基-3,7,5'-三甲氧基黄酮-3'-O-β-D-葡萄糖苷,经Scifinder检索,化合物10为新化合物。

Table 1 1H NMR (MeOH-d4,600 MHz) and 13C NMR (MeOH- d4,150 MHz) data of compound 10

Figure 1 Structure of compound 10

Figure 2 Key HMBC and ROESY of compound 10
实验部分

AB Sciex 5600质谱仪; Bruker AVANCE Ⅲ HD 600 MHz型核磁共振波谱仪 (瑞士布鲁克公司),TMS为内标; DMSO-d6、MeOH-d4为溶剂。Finnigan Trace DSQ气质联用色谱仪 (美国Thermo公司); Perkin Elmer 343型旋光测定仪 (美国Perkin Elmer公司); Aglient 1100制备液相 (美国安捷伦公司),YMC-Actus ODS-A C18 (250 mm × 10 mm,5 µm) 半制备柱 (日本YMC公司)。柱色谱硅胶 (200~300目),薄层色谱硅胶 (青岛海洋化工),凝胶Sephadex LH-20 (日本三菱株式会社),显色剂为5% 浓硫酸乙醇溶液。常规分析纯化学试剂购自国药集团化学试剂有限公司。

草莓番石榴叶于2014年7月中旬采自广西省柳州,由江西中医药大学付小梅副教授鉴定,标本 (No.201407001) 现存于江西中医药大学现代中药制剂教育部重点实验室。

1 提取与分离

自然干燥的草莓番石榴叶 (5.4 kg) 粉碎,经90%乙醇加热回流3次,每次1 h,提取液减压回收得浸膏1.2 kg,所得浸膏用适量水分散,然后依次用石油醚、乙酸乙酯萃取,剩余部分蒸干后,用甲醇溶解。回收溶剂得石油醚部分152.0 g、乙酸乙酯部分113.2 g、甲醇部分400.5 g。

取乙酸乙酯萃取部位 (150 g) 进行硅胶柱色谱分离,以二氯甲烷-甲醇 (100∶0,50∶1,25∶1,10∶1,5∶1,1∶1,0∶100) 梯度洗脱得到Fr.1~7。Fr.2 (20.7 g) 经硅胶柱色谱 (二氯甲烷-甲醇= 55∶1),得Fr.2-1~2-60。合并Fr.2-20~2-30,再经半制备柱色谱 (甲醇-水=55∶45,3 mL·min-1),得到化合物1 (7 mg,tR = 19.5 min)。合并Fr.2-36~2-40,再经半制备柱色谱 (甲醇-水 = 50∶50,3 mL·min-1),得到化合物14 (7 mg,tR = 17.6 min)、2 (8 mg,tR = 10.5 min)、3 (9 mg,tR = 13.8 min)。合并Fr.2-45~2-50,再经半制备柱色谱 (甲醇-水 = 40∶60,3 mL·min-1),得到化合物7 (8 mg,tR = 15.3 min)。Fr.4 (41.1 g) 经硅胶柱色谱 (二氯甲 烷-甲醇 = 20∶1),得Fr.4-1~4-190。合并Fr.4-12~4-15,再经Sephadex LH-20柱色谱 (CH2Cl2-MeOH = 1∶1),得到化合物15 (12 mg)。合并Fr.4-21~4-28,再经Sephadex LH-20柱色谱 (CH2Cl2-MeOH = 1∶1),得到化合物4 (12 mg)。合并Fr.4-36~4-42,再经Sephadex LH-20柱色谱 (CH2Cl2-MeOH = 1∶1),得到化合物5 (5 mg)、8 (10 mg)。合并Fr.4-49~4-56,再经Sephadex LH-20柱色谱 (CH2Cl2-MeOH = 1∶1),得到化合物6 (22 mg)、9 (9 mg)。合并Fr.4-101~4-121,再经Sephadex LH-20柱色谱 (CH2Cl2-MeOH = 1∶1),得到化合物10 (8 mg)。合并Fr.4-133~4-144,再经 半制备柱色谱 (甲醇-水 = 35∶65,3 mL·min-1),得到化合物11 (9 mg,tR = 11.7 min)。Fr.5 (19.8 g) 经MCI树脂 (GEL-CHP 20P,80 mm × 30 mm) 柱,用水- 甲醇 (100∶0,7∶3,4∶6,1∶9,0∶100) 梯度洗脱,得Fr.5-1~5-5。Fr.5-2再经Sephadex LH-20柱色谱 (CH2Cl2-MeOH = 1∶1),得到化合物12 (16 mg)。Fr.5-3再经Sephadex LH-20柱色谱 (MeOH),得Fr. 5-3-1~5-3-80,得到化合物13 (8 mg)。合并Fr.5-3- 63~5-3-75,再经半制备柱色谱 (甲醇-水 = 30∶70,3 mL·min-1),得到化合物16 (9 mg,tR = 12.3 min)。

2 结构鉴定

化合物1 黄色粉末 (甲醇),分子式C15H10O61H NMR (CD3OD,600 MHz) δH: 6.15 (1H,d,J = 2.0 Hz,H-6),6.36 (1H,d,J = 2.0 Hz,H-8),6.87 (2H,m,H-3',5'),8.05 (2H,m,H-2',6'); 13C NMR (CD3OD,150 MHz) δC: 146.9 (C-2),131.8 (C-3),175.9 (C-4),160.8 (C-5),98.2 (C-6),163.8 (C-7),93.4 (C-8),156.3 (C-9),102.6 (C-10),121.4 (C-1'),129.6 (C-2'),115.7 (C-3'),159.3 (C-4'),115.4 (C-5'),129.2 (C-6')。以上1H NMR、13C NMR数据与文献[7]一致,故鉴定化合物1为山柰酚。

化合物2 黄色粉末 (二氯甲烷-甲醇),分子式C16H12O71H NMR (DMSO-d6,600 MHz) δH: 3.84 (3H,s,3'-OCH3),6.19 (1H,d,J = 2.1 Hz,H-6),6.47 (1H,d,J = 2.1 Hz,H-8) ,6.94 (1H,d,J = 8.5 Hz,H-5'),7.68 (1H,dd,J = 8.4,2.1 Hz,H-6'),7.75 (1H,d,J = 2.1 Hz,H-2'); 13C NMR (DMSO-d6,150 MHz) δC: 146.6 (C-2),135.8 (C-3),175.9 (C-4),160.7 (C-5),98.2 (C-6),164.0 (C-7),93.6 (C-8),156.2 (C-9),103.0 (C-10),122.0 (C-1'),111.7 (C-2'),148.8 (C-3'),147.4 (C-4'),115.5 (C-5'),121.7 (C-6'),55.8 (3'-OCH3)。以上1H NMR、13C NMR数据与文献[8]一致,故鉴定化合物2为isorhamnetin。

化合物3 黄色粉末 (甲醇),分子式C18H16O81H NMR (CD3OD,600 MHz) δH: 3.82 (3H,s,H-3),3.89 (3H,s,H-3'),3.93 (3H,s,H-7),6.33 (1H,d,J = 2.2 Hz,H-6),6.60 (1H,d,J = 2.2 Hz,H-8),7.36 (2H,s,H-2',6'); 13C NMR (CD3OD,150 MHz) δC: 158.3 (C-2),140.1 (C-3),180.2 (C-4),162.9 (C-5),99.1 (C-6),167.5 (C-7),93.3 (C-8),158.4 (C-9),106.9 (C-10),121.8 (C-1'),105.4 (C-2'),149.6 (C-3'),139.3 (C-4'),146.8 (C-5'),111.1 (C-6'),56.6 (7-OCH3),56.9 (3'-OCH3),60.7 (3-OCH3)。以上1H NMR、13C NMR数据与文献[9]一致,故鉴定化合物3为myricetin-3,7,3'-trimethyl ether。

化合物4 黄色粉末 (甲醇),分子式C16H12O81H NMR (CD3OD,600 MHz) δH: 3.92 (3H,s,3'-OMe),6.18 (1H,d,J = 2.1 Hz,H-6),6.40 (1H,d,J = 2.1 Hz,H-8),7.43 (1H,d,J = 2.0 Hz,H-6'),7.47 (1H,d,J = 2.0 Hz,H-2'); 13C NMR (CD3OD,150 MHz) δC: 149.5 (C-2),138.0 (C-3),177.5 (C-4),104.6 (C-4a),162.7 (C-5),99.4 (C-6),165.9 (C-7),94.6 (C-8),158.4 (C-8a),123.2 (C-1'),105.1 (C-2'),147.9 (C-3'),1 37.6 (C-4'),146.6 (C-5'),110.3 (C-6'),56.9 (-OCH3)。以上1H NMR、13C NMR数据与文献[10]一致,故鉴定化合物4为 laricitrin。

化合物5 黄色粉末 (甲醇),分子式C15H10O71H NMR (CD3OD,600 MHz) δH: 6.17 (1H,d,J = 2.0 Hz,H-6),6.38 (1H,d,J = 2.0 Hz,H-8),6.88 (1H,d,J = 8.5 Hz,H-5'),7.63 (1H,dd,J = 8.5,2.1 Hz,H-6'),7.73 (1H,d,J = 2.1 Hz,H-2'); 13C NMR (CD3OD,150 MHz) δC: 148.7 ( C-2),137. 1 (C-3),177.2 (C-4),162.7 ( C-5),99.2 (C-6),165.6 (C-7),94.4 (C-8),158.2 ( C-9),104.8 (C-10),124.1 (C-1'),115.9 (C-2'),146.1 (C-3'),147.9 (C-4'),116.1 (C-5'),121.6 (C-6')。以上1H NMR、13C NMR数据与文献[11]一致,故鉴定化合物5为槲 皮素。

化合物6 黄色粉末 (甲醇),分子式C15H10O81H NMR (CD3OD,600 MHz) δH: 6.08 (1H,s,H-6),6.27 (1H,s,H-8),7.25 (2H,s,H-2',6')。13C NMR (CD3OD,150 MHz) δC: 148.1 (C-2),137.0 (C-3),177.3 (C-4),162.6 (C-5),99.4 (C-6),165.8 (C-7),94.5 (C-8),158.3 (C-9),104.6 (C-10),123.2 (C-1'),108.6 (C-2',6'),146.8 (C-3',5'),137.5(C-4')。以上1H NMR、13C NMR数据与文献[12]一致,故鉴定化合物6为杨梅素。

化合物7 黄色粉末 (甲醇),分子式C17H14O71H NMR (CD3OD,600 MHz) δH: 3.80 (3H,s,OCH3),3.92 (3H,s,OCH3),6.20 (1H,d,J = 2.1 Hz,H-8),6.41 (1H,d,J = 2.1 Hz,H-6),7.08 (1H,d,J = 9.0 Hz,H-5'),7.33 (2H,d,J = 2.1 Hz,H-2',6'); 13C NMR (CD3OD,150 MHz) δC: 56.3 (OCH3),60.5 (OCH3),158.0 (C-2),139.2 (C-3),105.9 (C-10),180.1 (C-4),163.2 (C-5),100.0 (C-6),166.4 (C-7),94.9 (C-8),158.6 (C-9),125.5 (C-1'),115.9 (C-2'),146.9 (C-3'),149.6 (C-4'),114.8 (C-5'),121.9 (C-6')。以上1H NMR、13C NMR数据与文献[13]一致,故鉴定化合物7为quercein-3,4'-dimethyl ether。

化合物8 黄色粉末 (甲醇),分子式C20H18O111H NMR (CD3OD,600 MHz) δH: 3.44 (1H,br d,J = 10.5 Hz,glc-H-5),3.64 (1H,br d,J = 8.0 Hz,glc-H-3),3.84~3.81 (2H,m,glc-H-4,6),3.89 (1H,m,glc-H-2),5.16 (1H,d,J = 6.5 Hz,glc-H-1),6.20 (1H,br s,H-6),6.39 (1H,br s,H-8),6.86 (1H,d,J = 8.4 Hz,H-5'),7.55 (1H,d,J = 8.4 Hz,H-6'),7.75 (1H,s,H-2')。13C NMR (CD3OD,150 MHz) δC: 159.1 (C-2),136.1 (C-3),179.9 (C-4),163.4 (C-5),100.3 (C-6),166.4 (C-7),95.0 (C-8),158.8 (C-9),104.8 (C-10),123.3 (C-1'),117.9 (C-2'),146.5 (C-3'),150.1 (C-4'),116.6 (C-5'),123.3 (C-6'),106.1 (glc-C-1),74.5 (glc-C-2),73.3 (glc-C-3),69.5 (glc-C-4),67.1 (glc-C-5)。以上1H NMR、13C NMR数据与文献[14]一致,故鉴定化合物8为番石榴苷。

化合物9 黄色粉末 (甲醇),分子式C21H20O121H NMR (CD3OD,600 MHz) δH: 3.45~3.82 (2H,m,glc-H-2~6),5.14 (1H,d,J = 7.6 Hz,glc-H-1),6.16 (1H,br s,H-6),6.32 (1H,br s,H-8),6.85 (1H,d,J = 8.2 Hz,H-5'),7.56 (1H,d,J = 8.2 Hz,H-6'),7.70 (1H,br s,H-2')。13C NMR (CD3OD,150 MHz) δC: 159.5 (C-2),136.1 (C-3),180.1 (C-4),163.5 (C-5),100.4 (C-6),166.5 (C-7),95.0 (C-8),1 58.9 (C-9),105.8 (C-10),123.5 (C-1'),118.3 (C-2'),146.3 (C-3'),150.3 (C-4'),116.6 (C-5'),123.5 (C-6'),106.0 (glc-C-1),73.5 (glc- C-2),75.6 (glc-C-3),70.5 (glc-C-4),77.5 (glc-C-5),62.3 (glc-C-6)。以上1H NMR、13C NMR数据与文献[15]一致,故鉴定化合物9为金丝桃苷。

化合物11 无定形粉末 (甲醇),分子式C21H20O121H NMR (CD3OD,600 MHz) δH: 3.13 (1H,m,H-5''b),3.42 (1H,d,J = 8.7 Hz,H-3''),3.49 (1H,m,H-4''),3.52 (1H,m,H-5''a),3.81 (1H,dd,J = 11.6,5.2 Hz,H-2''),3.91 (3H,s,OMe),5.24 (1H,d,J = 7.3 Hz,H-1''),6.20 (1H,d,J = 2.1 Hz,H-6),6.40 (1H,d,J = 2.1 Hz,H-8),7.24 (1H,d,J = 2.0 Hz,H-2'),7.52 (1H,d,J = 2.0Hz,H-6'); 13C NMR (CD3OD,15MHz) δC: 158.6 (C-2),135.6 (C-3),179.5 (C-4),163.2 (C-5),100.2 (C-6),166.5 (C-7),94.9 (C-8),158.6 (C-9),105.7 (C-10),122.0 (C-1'),111.1 (C-2'),146.5 (C-3'),139.0 (C-4'),149.1 (C-5'),106.9 (C-6'),104.7 (C-1''),75.6 (C-2''),77.7 (C-3''),71.2 (C-4''),67.4 (C-5''),57.0 (OMe)。未查阅到文献报道此化合物的1H NMR和13C NMR数据,根据HSQC及HMBC二维图谱对此化合物进行归属,鉴定化合物11为laricitrin-3-O-xyloside。

化合物12 黄色粉末 (甲醇),分子式C21H20O121H NMR (CD3OD,600 MHz) δH: 0.96 (3H,d,J = 6.2 Hz,H-6''),3.49~4.20 (4H,m,H-2'',3'',4'',5''),5.31 (1H,s,H-1''),6.18 (1H,d,J = 2.1 Hz,H-6),6.34 (1H,d,J = 2.1 Hz,H-8),6.94 (2H,s,H-2',6'); 13C NMR (CD3OD,150 MHz) δC: 159.5 (C-2),136.4 (C-3),179.7 (C-4),163.3 (C-5),99.9 (C-6),165.9 (C-7),94.8 (C-8),158.6 (C-9),106.0 (C-10),122.0 (C-1'),109.7 (C-2',6'),146.9 (C-3',5'),138.0 (C-4'),103.7 (C-1''),72.0 (C-2''),72.1 (C-3''),73.5 (C-4''),72.2 (C-5''),17.8 (C-6'')。以上 1H NMR、13C NMR数据与文献[16]一致,故鉴定化合物12为杨梅素-3-O-α-L-鼠李吡喃糖苷。

化合物13 黄色粉末 (二氯甲烷-甲醇),分子式C20H18O121H NMR (DMSO-d6,600 MHz) δH: 2.96~3.65 (5H,m,H-2'',H-3'',H-4'',H-5''),5.35 (1H,d,J = 7.4 Hz,H-1''),6.20 (1H,d,J = 2.1 Hz,H-6),6.37 (1H,d,J = 2.0 Hz,H-8),7.16 (2H,s,H-2' ,6'),8.94 (1H,s,4'-OH),9.23 (2H,s,3'-OH,5'-OH),10.87 (1H,s,7-OH),12.63 (1H,s,5-OH); 13C NMR (DMSO-d6,150 MHz) δC: 156.2 (C-2),133.2 (C-3),177.3 (C-4),161.2 (C-5),98.6 (C-6),164.1 (C-7),93.3 (C-8),156.3 (C-9),103.9 (C-10),119.8 (C-1'),108.4 (C-2',6'),145.5 (C-3',5'),136.8 (C-4'),101.8 (C-1''),76.1 (C-2''),73.4 (C-3''),69.3 (C-4''),66.1 (C-5'')。以上1H NMR、13C NMR数据与文献[17]一致,故鉴定化合物13为杨梅素-3-O-β-D-吡喃木糖苷。

化合物14 浅黄色固体 (甲醇),分子式C16H14O71H NMR (CD3OD,600 MHz) δH: 3.87 (3H,s,4'-OCH3),4.56 (1H,d,J = 11.6 Hz,H-3),4.97 (1H,d,J = 11.6 Hz,H-2),5.92 (1H,d,J = 2.0 Hz,H-8),6.82 (1H,d,J = 8.1 Hz,H-5'),6.96 (1H,dd,J = 8.1,2.0 Hz,H-6'),7.10 (1H,d,J = 2.0 Hz,H-2'); 13C NMR (CD3OD,150 MHz) δC: 85.4 (C-2),73.8 (C-3),198.5 (C-4),164.6 (C-5),168.2 (C-7),96.5 (C-8),165.4 (C-9),101.9 (C-10),112.6 (C-1'),122.3 (C-2'),148.5 (C-3'),149.1 (C-4'),116.1 (C-5'),130.0 (C-6'),56.6 (4'-OCH3)。以上1H NMR、13C NMR数据与文献[18]一致,故鉴定化合物14为4'-甲氧基二氢槲皮素。

化合物15 浅黄色粉末 (甲醇),分子式C15H12O51H NMR (CD3OD,600 MHz) δH: 3.11 (1H,d,J = 13.0 Hz,H-3),5.34 (1H,d,J = 13.0 Hz,H-2),5.89 (1H,s,H-8),6.81 (2H,d,J = 8.6 Hz,H-3',5'),7.31 (2H,d,J = 8.6 Hz,H-2',6'); 13C NMR (CD3OD,150 MHz) δC: 80.6 (C-2),44.2 (C-3),197.9 (C-4),165.6 (C-5),168.7 (C-7),165.0 (C-9),103.4 (C-10),131.3 (C-1'),129.2 (C-2',6'),116.5 (C-3',5'),159.2 (C-4')。以上1H NMR、13C NMR数据与文献[19]一致,故鉴定化合物15为二氢芹菜素。

化合物16 淡黄色粉末 (甲醇),分子式C21H22O131H NMR (CD3OD,600 MHz) δH: 4.43 (1H,d,J = 11.3 Hz,H-3),4.60 (1H,d,J = 7.8 Hz,H-1''),5.87 (1H,s,H-8),6.58 (2H,s,H-2',6'); 13C NMR (CD3OD,150 MHz) δC: 84.9 (C-2),73.8 (C-3),197.9 (C-4),165.4 (C-5),169.7 (C-7),96.7 (C-8),164.4 (C-9),101.7 (C-10),136.3 (C-1'),108.4 (C-2'),151.6 (C-3'),135.0 (C-4'),151.6 (C-5'),108.4 (C-6'),107.9 (C-1''),75.2 (C-2''),77.8 (C-3''),70.8 (C-4''),78.7 (C-5''),62.0 (C- 6''),以上1H NMR、13C NMR数据与文献[20]一致,故鉴定化合物16为蛇葡萄素4'-O-β-D-吡喃葡萄糖苷。

3 化合物10酸水解

参照文献[21],称取化合物10 2 mg,加入3 mol·L-1三氯乙酸5 mL,120 ℃加热2 h,蒸干,干燥过夜。依次加入20 μL (2S)-1-氨基-2-丙醇/甲醇 (1/8) 混合液,17 μL乙酸/甲醇 (1∶4) 及13 μL 3% 氰基硼氢化钠甲醇溶液。上述混合液放置65 ℃水浴加热2 h。冷却后缓慢加入3 mol·L-1三氟乙酸至pH为1,减压回收,残渣真空干燥过夜,再加入吡啶和乙酸酐各0.2 mL,置100 ℃水浴加热1 h。冷却后,加适量水,用三氯甲烷萃取,用0.5 mol·L-1 Na2CO3和水各洗滤3次。三氯甲烷层加入无水硫酸钠干燥后过滤,注入气质联用色谱仪。

参考文献
[1] Delectis florae republicae popularis sinicae agendae acade-miae sinicaen. Flora Republicae Popularis Sinicae (中国植物志)[M]. Beijing: Science Press, 1984 : 123 .
[2] Moon JY, Mosaddik A, Kim H, et al. The chloroform fraction of guava (Psidium cattleianum Sabine) leaf extract inhibits human gastric cancer cell proliferation via induction of apop-tosis[J]. Food Chem , 2011, 125 :369–375. DOI:10.1016/j.foodchem.2010.09.007
[3] Ho R, Violette A, Cressend D, et al. Antioxidant potential and radical-scavenging effects of flavonoids from the leaves of Psidium cattleianum grown in French Polynesia[J]. Nat Prod Res , 2012, 26 :274–277. DOI:10.1080/14786419.2011.585610
[4] Pino JA, Marbot R, Vázquez C. Characterization of volatiles in strawberry guava (Psidium cattleianum Sabine) fruit[J]. J Agric Food Chem , 2001, 49 :5883–5887. DOI:10.1021/jf010414r
[5] Dachriyanus D, Salni S, Sargent MV, et al. Rhodomyrtone, an antibiotic from Rhodomyrtus tomentosa[J]. Aust J Chem , 2002, 55 :229–232. DOI:10.1071/CH01194
[6] Peng CY, Liu JQ, Shu JC, et al. Study on megastigmane glycosides and lignan constituents from leaves of Psidium littorale[J]. J Chin Med Mater (中药材) , 2014, 37 :2201–2203.
[7] Qin LH, Guo XY, Fan M, et al. Anti-anoxic constituents from Mesona chinensis Benth[J]. J Shenyang Pharm Univ (沈阳药科大学学报) , 2006, 23 :633–636.
[8] Shi TX, Li YG. Isolation of flavonoids from the aerial parts of Polygala tenuifolia Willd. and their antioxidant activities[J]. J Chin Pharm Sci , 2013, 22 :36–39.
[9] de Carvalho Correia AC, Macêdo CL, de Souza Monteiro F, et al. Aerial parts of Solanum agrarium Sendtn. (Solanaceae) present the flavonoid myricetin 3,7,3' trimethyl ether and anti-spasmodic effect on guinea-pig ileum by blockade of voltage-gated calcium channels[J]. J Med Plants Res , 2013, 31 :2293–2299.
[10] Zhu CF, Liu HX, He L, et al. Chemical constituents from leaves of Rhodomyrtus tomentosa[J]. J Trop Subtrop Bot (热带亚热带植物学报) , 2015, 23 :103–108.
[11] Huang FJ, Song JX, Liu JJ, et al. Chemical constituents in Thunbergia from Africa[J]. China J Chin Mater Med (中国中药杂志) , 2013, 38 :1183–1187.
[12] Zhou XL, Qin CH, Mei Y, et al. Chemical constituents from leaves of Rhododendron anthopogon D. Don[J]. Chin Tradit Herb Drugs (中草药) , 2010, 41 :206–208.
[13] Kwon YS, Kim MC. Antioxidant constituents from the stem of Sorghum bicolor[J]. Arch Pharm Res , 2003, 26 :535–539. DOI:10.1007/BF02976877
[14] Hidetoshi A, Gen-ichi D. Isolation of antimicrobial com-pounds from guava (Psidium guajauv L.) and their structural elucida-tion[J]. Biosci Biotechnol Biochem , 2002, 66 :1727–1730. DOI:10.1271/bbb.66.1727
[15] Yang CX, Jia ZJ. Flavonoids from Heteropappus semiprost Griers[J]. Nat Prod Res Dev, (天然产物研究与开发) , 2007, 19 :430–432.
[16] Li YL, Li KM, Su MX, et al. Studies on antiviral constitu-ents in stems and leaves of Pithecellibium clypearia[J]. China J Chin Mater Med (中国中药杂志) , 2006, 31 :397–400.
[17] Sun CL, Tang XL, Zhou JF, et al. Chemical components of flavonoids from leaves of Zelkova serrata[J]. Chin Pharm J (中国药学杂志) , 2015, 50 :1803–1805.
[18] Zhang N, Wei XY, Lin LD. Chemical constituents from the leaves of Siraitia grosvenorii (Swingle) C. Jeffrey[J]. J Trop Subtrop Bot (热带亚热带植物学报) , 2014, 22 :96–100.
[19] Bai LM, Gao HY, Ma YK, et al. Study on chemical constituents from Gnaphalium affine and their anti-oxidative activities[J]. Chin Tradit Herb Drugs (中草药) , 2016, 47 :549–553.
[20] Gao Y, Yuan JZ, Wang YX, et al. Isolation and identifica-tion of flavonoids from pine needle of Pinus koraiensis Sieb. et Zucc[J]. J Shenyang Pharm Univ (沈阳药科大学学报) , 2010, 27 :539–543.
[21] Xin W, Chou G, Wang Z. Triterpenoids and saponins from the leaves of Uncaria hirsute[J]. Helv Chem Acta , 2009, 92 :638–644. DOI:10.1002/hlca.v92:4