药学学报  2016, Vol. 51 Issue (8): 1281-1284   PDF    
八角莲中一个新双黄酮
彭玲芳, 陆礼和, 杨立国, 陆雪萍, 崔涛, 朱兆云     
云南省药物研究所, 云南白药集团创新研发中心, 云南 昆明 650111
摘要: 本文对八角莲进行了化学成分研究。采用硅胶、反相硅胶RP-C18及凝胶LH-20柱色谱等方法分离八角莲中的化学成分,应用IR、MS、NMR、2D-NMR等方法进行结构分析。从八角莲95%乙醇提取物中分离鉴定了10个化合物:dysoverine D(1)、dysoverine F(2)、dysoverine A(3)、podoverine A(4)、α-足叶草脂素(5)、芦丁(6)、山柰酚-3-O-β-D-吡喃葡萄糖苷(7)、槲皮素-3-O-β-D-吡喃葡萄糖苷(8)、山柰酚(9)及槲皮素(10)。化合物2为新化合物,化合物13~6均为首次从该植物中分离得到。
关键词: 八角莲     化学成分     双黄酮     dysoverine F    
A new biflavone from Dysosma versipellis
PENG Ling-fang, LU Li-he, YANG Li-guo, LU Xue-ping, CUI Tao, ZHU Zhao-yun     
Yunnan Institute of Materia Medica, Innovation and R&D Center of Yunnan Bai Yao Group, Kunming 650111, China
Abstract: This study was conducted to investigate the chemical constituents in the root of Dysosma versipellis (Hance) M. Cheng. The constituents were isolated by silica gel, lichroprep RP-C18 and pharmadex LH-20 column chromatography and the IR, MS, NMR, 2D-NMR spectroscopic analysis were employed for the structural elucidation. Ten compounds were isolated from the 95% ethanol extract of Dysosma versipellis, their structures were elucidated as dysoverine D (1), dysoverine F (2), dysoverine A (3), podoverine A (4), α-peltatin (5), rutin (6), kaempferol-3-O-β-D-glucopyranoside (7), quercetin-3-O-β-D-glucopyranoside (8), kaempferol (9) and quercetin (10). Compound 2 is a new compound, and compounds 1 and 3-6 were isolated from this plant fo r the first time.
Key words: Dysosma versipellis     chemical constituent     biflavone     dysoverine F    

八角莲为小檗科植物八角莲 [Dysosma versipellis (Hance) M. Cheng] 的根茎,别名鬼臼,是我国传统的民间常用药之一,主产于云南、湖北、江西等地。具有清热解毒、祛痰散结的功效。临床用于治疗流行 性出血热、乙型脑炎、腮腺炎、痈肿疔疮、咽喉肿 痛、跌打损伤、风湿痹痛、毒蛇咬伤及抗癌等,特别用于食道癌、子宫癌。据报道[1, 2],八角莲含有多种具有药效的化学成分,包括鬼臼毒素类、黄酮类等。为了更好地开发利用这一药用资源,本课题组对八角莲根茎进行了更深入的化学成分研究,采用硅胶、反相硅胶RP-C18及凝胶LH-20柱色谱等方法,从八角莲根茎的95%乙醇提取物中分离鉴定了10个化合物: dysoverine D (1)、dysoverine F (2)、dysoverine A (3)、podoverine A (4)、α-足叶草脂素 (5)、芦丁 (6)、山柰酚-3-O-β-D-吡喃葡萄糖苷 (7)、槲皮素-3-O-β-D-吡喃葡萄糖苷 (8)、山柰酚 (9) 及槲皮素 (10)。化合物1~10的化学结构见图 1。其中化合物2为新化合物,化合物1、3~6均为首次从该植物中分离得到。

Figure 1 Structures of compounds 1-10

化合物 1 浅黄色无定形粉末 (MeOH),ESI-MS: m/z 669 [M+H]+。与文献[3]报道的化合物dysoverine D的波谱数据基本一致,故鉴定化合物1为dysoverine D。

化合物 2 浅黄色无定形粉末 (MeOH),[α]D25: +148.9 (c 0.12,MeOH)。HR-ESI-MS给出准分子离子峰为 m/z 685.144 6 [M+H]+,确定分子式为C36H28O14 (计算值为685.145 9)。UV (MeOH) λmax为259、302 nm。IR (KBr) 光谱显示羟基 (3 425 cm-1) 和共轭羰基 (1 642 cm-1) 的吸收峰信号。1H NMR (400 MHz,CD3OD) 谱显示有9个芳环上的质子信号δ7.22 (1H,d,J = 2.2 Hz,H-2''')、7.11 (1H,d,J = 8.4 Hz,H-6')、7.04 (1H,d,J = 8.4 Hz,H-6''')、6.95 (1H,d,J = 8.4 Hz,H-5')、6.69 (1H,d,J = 8.4 Hz,H-5''')、6.32 (1H,s,H-8)、6.23 (1H,s,H-6)、5.95 (1H,s,H-8'') 和5.93 (1H,s,H-6''),1个烯烃质子信号δ5.10 (1H,t,J = 6.8 Hz,H-8'),1个甲氧基单峰质子信号δ 3.66 (3H,s,3-OCH3),1个亚甲基氢信号δ 3.43 (2H,d,J = 6.8 Hz,H-7') 和2个甲基单峰质子信号1.53 (3H,s,10'-CH3)、1.34 (3H,s,11'- CH3)。在13C NMR (100 MHz,CD3OD) 中,共显示36个碳信号: 2个羰基碳信号 (δ 189.9,180.1)、30个不饱和碳信号、1个甲氧基碳信号 (δ 61.2) 和3个脂肪碳信号 (δ 26.8,25.8,17.9),推断化合物2可能为双黄酮类化合物[3, 4]。通过仔细对照,化合物2与化合物1的NMR数据非常相似,结合这两个化合物的分子量发现,它们的不同之处在于: 化合物2比化合物1多1个羟基。同时,化合物2的C-3'''化学位移明显向低场飘移,因此推断化合物2的羟基连接在C-3'''上。综合上述分析,化合物2的结构如图 1所示,其结构通过HMBC进一步得到证实 (图 2)。经Sciencefinder检索为新化合物,命名为dysoverine F。

Figure 2 Key HMBC of compound 2
实验部分

质谱用VG Auto Spec-3000型质谱仪测定; 1H NMR、13C NMR用DRX-400型核磁共振仪测定。烷基键合硅胶Rp-C18 (40~63 µm,Merck),葡聚糖凝胶LH-20 (Amersham Pharmacia Biotech),柱色谱硅胶 (60~100目,200~300目) 和薄层色谱硅胶板 (青岛海洋化工厂),显色剂用10% 硫酸乙醇溶液,其他试剂为分析纯。

八角莲 (D. versipellis) 根茎于2014年9月采于云南省文山州,经云南省药物研究所天然药物资源研究室戚育芳高级工程师鉴定为小檗科植物八角莲 [Dysosma versipellis (Hance) M. Cheng] 的根茎。其植物标本保存于本所天然药物资源研究室标本室。

1 提取与分离

取八角莲 [Dysosma versipellis (Hance) M. Cheng] 的根茎2.0 kg,粉碎后加95% 乙醇回流提取3次(2、1、1 h),滤过,合并滤液,减压浓缩至干,得干浸膏220 g。取干浸膏220 g,经硅胶柱色谱,石油醚-乙酸乙酯 (100∶0→0∶100) 梯度洗脱后分为8部分 (A~H)。D部分经Rp-C18柱甲醇-水 (30∶70→100∶0) 梯度洗脱得化合物3 (1 838 mg)、4 (80 mg); E部分经硅胶柱氯仿-甲醇(30∶1) 等度洗脱得化合物1 (1 120 mg); G部分经凝胶色谱柱LH-20以甲醇洗脱,再经Rp-C18柱水-甲醇(30∶70→100∶0) 梯度洗脱得化合物2 (120 mg)、5 (270 mg)、9 (1 250 mg)、10 (1 400 mg); H部分经凝胶色谱柱LH-20以甲醇洗脱,再经Rp-C18柱甲醇-水(30∶70→100∶0) 梯度洗脱得化合物6 (2 800 mg)、 7 (70 mg)、8 (85 mg)。

2 结构鉴定

化合物 1 浅黄色无定形粉末 (MeOH)。ESI-MS: m/z 669 [M+H]+,C36H28O131H NMR (400 MHz,CD3OD) δ: 7.54 (2H,d,J = 8.8 Hz,H-3''',5'''),7.12 (1H,d,J = 8.4 Hz,H-6'),6.95 (1H,d,J = 8.4 Hz,H-5'),6.73 (2H,d,J = 8.8 Hz,H-2''',6'''),6.30 (1H,s,H-8),6.22 (1H,s,H-6),5.97 (1H,d,J = 2.1 Hz,H-8''),5.94 (1H,d,J = 2.1 Hz,H-6''),5.09 (1H,t,J = 6.7 Hz,H-8'),3.65 (3H,s,3-OCH3),3.42 (2H,d,J = 6.6 Hz,H-7'),1.53 (3H,s,10'-CH3),1.32 (3H,s,11'-CCH3)。13C NMR数据见表 1。与文献[3]报道的化合物波谱数据基本一致,故鉴定为dysoverine D。

Table 1 13C NMR spectral data of 1-4 (100 MHz,CD3OD)

化合物 2 浅黄色无定形粉末 (MeOH)。HR- ESI-MS: m/z 685.144 6 [M+H]+ (Calcd. for 685.145 9),C36H28O14。UV (MeOH) λmax: 259、302 nm。IR (KBr) nmax: 3 425、1 642 cm-11H NMR (400 MHz,CD3OD) δ: 7.22 (1H,d,J = 2.2 Hz,H-2'''),7.11 (1H,d,J = 2.2 Hz,H-6'),7.04 (1H,d,J = 8.4 Hz,H-6'''),6.95 (1H,d,J = 8.4 Hz,H-5'),6.69 (1H,d,J = 8.4 Hz,H-5'''),6.32 (1H,s,H-8),6.23 (1H,s,H-6),5.95 (1H,s,H-8''),5.93 (1H,s,H-6''),5.10 (1H,t,J = 6.8 Hz,H-8'),3.66 (3H,s,3-OCH3),3.43 (2H,d,J = 6.8 Hz,H-7'),1.53 (3H,s,10'-CH3),1.34 (3H,s,11'-CH3)。13C NMR数据见表 1

化合物 3 浅黄色无定形粉末 (MeOH)。ESI-MS: m/z 705 [M+Na]+,C37H30O131H NMR (400 MHz,CD3OD) δ: 7.64 (2H,d,J = 8.4 Hz,H-2''',6'''),7.10 (1H,d,J = 8.4 Hz,H-6'),6.94 (1H,d,J = 8.4 Hz,H-5'),6.86 (2H,d,J = 8.4 Hz,H-3''',5'''),6.31 (1H,s,H-8),6.23 (1H,s,H-6),5.97 (1H,s,H-8''),5.95 (1H,s,H-6''),5.09 (1H,t,J = 6.7 Hz,H-8'),3.76 (3H,s,4'''-OCH3),3.65 (3H,s,3-OCH3),3.41 (2H,d,J = 7.2 Hz,H-7'),1.51 (3H,s,10'-CH3),1.32 (3H,s,11'-CH3)。13C NMR数据见表 1。与文献[3]报道的化合物dysoverine A的波谱数据基本一致,故鉴定化合物3为dysoverine A。

化合物 4 浅黄色无定形粉末 (MeOH)。ESI- MS: m/z 407 [M+Na]+,C21H20O71H NMR (400 MHz,CD3OD) δ: 6.81 (1H,d,J = 8.1 Hz,H-6'),6.74 (1H,d,J = 8.1 Hz,H-5'),6.27 (1H,s,H-8),6.20 (1H,s,H-6),5.06 (1H,t,J = 5.6 Hz,H-8'),3.56 (3H,s,3-OCH3),3.38(2H,d,J = 6.7 Hz,H-7'),1.48 (3H,s,10'-CH3),1.32 (3H,s,11'-CCH3)。13C NMR数据见表 1。与文 献[3, 5]报道的化合物podoverine A的波谱数据基本一致,故鉴定化合物4为podoverine A。

化合物 5 白色粉末 (MeOH)。ESI-MS: m/z 423 [M+Na]+,C21H20O81H NMR (400 MHz,CD3OD) δ: 6.33 (2H,s,H-2',6'),6.06 (1H,s,H-3),5.85 (2H,d,J = 4.3 Hz,-OCH2O-),4.41 (1H,d,J = 4.4 Hz,H-7'),4.38 (1H,m,H-9α),3.91 (1H,m,H-9β),3.68 (6H,s,3',5'-OCH3),3.20 (1H,m,H-7α),2.49~2.59 (2H,m,H-8,8'),2.37 (1H,m,H-7β)。13C NMR (100 MHz,CD3OD) δC: 178.1 (C-9'),148.6 (C-4),148.4 (C-3',5'),139.4 (C-5),135.3 (C-6),134.4 (C-4'),133.4 (C-1'),133.1 (C-2),120.4 (C-1),109.2 (C-2',6'),103.2 (C-3),102.3 (-OCH2O-),73.9 (C-9),56.8 (3'-OCH3),56.7 (5'-OCH3),48.3 (C-8'),44.9 (C-7'),33.8 (C-8),27.8 (C-7)。以上数据与文献[3, 6]报道一致,故鉴定化合物5为α-足叶草脂素。

化合物 6 浅黄色无定形粉末 (MeOH)。FAB- MS: m/z 609 [M-H]-,C27H30O161H NMR (400 MHz,DMSO-d6) δ: 12.33 (1H,s,5-OH),7.66 (1H,d,J = 2.1 Hz,H-2'),7.61 (1H,dd,J = 8.4,1.5 Hz,H-6'),6.88 (1H,d,J = 8.4 Hz,H-5'),6.87 (1H,s,H-8),6.38 (1H,s,H-6),5.15 (1H,d,J = 7.5 Hz,H-1''),4.53 (1H,s,H- 1''')。13C NMR (100 MHz,DMSO-d6) δ: 158.4 (C-2),135.5 (C-3),179.3 (C-4),162.8 (C-5),99.9 (C-6),165.8 (C-7),94.9 (C-8),159.2 (C-9),105.6 (C-10),123.1 (C-1'),116.1 (C-2'),145.8 (C-3'),149. 7 (C-4'),117.7 (C-5'),123.5 (C-6'),104.5 (C-1''),75.6 (C-2''),78.1 (C-3''),71.4 (C-4''),77.2 (C-5''),68.5 (C-6''),102.3 (C-1'''),72.0 (C-2'''),72.2 (C-3'''),73.9 (C-4'''),69.6 (C-5'''),18.0 (C-6''')。以上数据与文献[7]报道的芦丁数据基本一致,故鉴定化合物6为芦丁。

化合物 7 浅黄色无定形粉末 (MeOH)。FAB- MS: m/z 447 [M-H]-,C21H20O111H NMR (400 MHz,DMSO-d6) δ: 12.62 (1H,s,5-OH),8.03 (2H,d,J = 8.7 Hz,H-2',6'),6.89 (2H,d,J = 8.7 Hz,H-3',5'),6.43 (1H,d,J = 1.1 Hz,H-8),6.20 (1H,d,J = 1.1 Hz,H-6),5.46 (1H,d,J = 7.4 Hz,H-1'')。13C NMR (100 MHz,DMSO- d6) δ: 156.4 (C-2),133.2 (C-3),177.5 (C-4),161.2 (C-5),98.7 (C-6),164.2 (C-7),93.7 (C-8),160.0 (C-9),104.0 (C-10),120.9 (C-1'),130.9 (C-2'),115.1 (C-3'),156.3 (C-4'),115.1 (C-5'),130.9 (C-6'),100.9 (C-1''),74.2 (C-2''),77.5 (C-3''),69.9 (C-4''),76.4 (C-5''),60.9 (C-6'')。以上数据与文献[8]中山柰酚-3-O-β-D-吡喃葡萄糖苷的数据基本一致,故鉴定化合物7为山柰酚- 3-O-β-D-吡喃葡萄糖苷。

化合物 8 浅黄色无定形粉末 (MeOH)。FAB- MS: m/z 463 [M-H]-,C21H20O121H NMR (400 MHz,DMSO-d6) δ: 12.64 (1H,s,5-OH),7.56 (2H,m,H-2' and H-6'),6.83 (1H,d,J = 8.9 Hz,H-5'),6.40 (1H,s,H-8),6.19 (1H,s,H-6),5.46 (1H,J = 7.0 Hz,H-1'')。13C NMR (100 MHz,DMSO-d6) δ: 156.2 (C-2),133.3 (C-3),177.5 (C-4),161.2 (C-5),98.7 (C-6),164.2 (C-7),93.5 (C-8),156.3 (C-9),104.0 (C-10),121.6 (C-1'),115.2 (C-2'),144.8 (C-3'),148.5 (C-4'),116.2 (C-5'),121.2 (C-6'),100.9 (C-1''),74.1 (C-2''),77.6 (C-3''),69.9(C-4''),76.5 (C-5''),61.0 (C-6'')。以上数据与文献[9]报道的槲皮素-3-O-β-D-吡喃葡萄糖苷数据基本一致,故鉴定化合物8为槲皮素-3-O-β-D-吡喃葡萄糖苷。

化合物 9 浅黄色无定形粉末 (MeOH)。盐酸-镁粉反应阳性,提示该化合物为黄酮类化合物。经与山柰酚对照品进行TLC和HPLC对照,确定化合物9为山柰酚。

化合物 10 浅黄色无定形粉末 (MeOH)。ESI- MS: m/z 325 [M+Na]+,C15H10O71H NMR (400 MHz,CD3OD) δ: 7.72 (1H,d,J = 2.0 Hz,H-2'),7.61 (1H,dd,

J= 8.5,2.0 Hz,H-6'),6.87 (1H,d,J = 8.5 Hz,H-5'),6.37 (1H,d,J = 2.0 Hz,H-8),6.16 (1H,d,J = 2.0 Hz,H-6)。13C NMR (100 MHz,CD3OD) δ: 148.0 (s,C-2),137.2 (s,C-3),177.3 (s,C-4),162.5 (s,C-5),99.2 (d,C-6),165.6 (s,C-7),94.4 (d,C-8),158.2 (s,C-9),104.5 (s,C-10),121.6 (s,C-1'),116.0 (d,C-2'),146.2 (s,C-3'),148.8 (s,C-4'),116.2 (d,C-5'),116.3 (d,C-6')。以上波谱数据与文献[10]报道槲皮素一致,故化合物10确定为槲皮素。

参考文献
[1] Jiang F, Tian HY, Zhang JL, et al. Chemical constituents from Dysosma versipellis[J]. Chin Tradit Herb Drugs (中草药) , 2011, 42 :634–639.
[2] Gao XH, Liu MC, Jin LH, et al. Study on chemical constituents from rootstalk of Dysosma versipellis grown in Gui zhou[J]. Lishizhen Med Mater Med Res (时珍国医国药) , 2011, 22 :871–873.
[3] Duan RG, Li JW, Zou JH, et al. Lignans constituents from callus culture of Dysosma versipellis[J]. Chin Pharm J (中国药学杂志) , 2014, 49 :1306–1309.
[4] Venkat K, Lanfang HL, Paul WP. Flavonoid oxidation by the radical generator aibn:a unified mechanism for quercetin radical scavenging[J]. J Agric Food Chem , 2002, 50 :4357–4363. DOI:10.1021/jf020045e
[5] Arens H, Ulbrich B, Fischer H, et al. Novel antiinflammatory flavonoids from Podophyllum versipelle cell culture[J]. Planta Med , 1986 (6) :468–473.
[6] Jackson DE, Dewick PM. Aryltetralin lignans from Podophyllum hexandrum and Podophyllum peltatum[J]. Phytochemistry , 1984, 23 :1147–1152. DOI:10.1016/S0031-9422(00)82628-X
[7] Zeng P, Zhang Y, Pan C, et al. Phenolic constituents from Lysimachia patungensis[J]. Acta Pharm Sin (药学学报) , 2013, 48 :377–382.
[8] Yan MM, Xiao SJ, Chen F, et al. Chemical constituents of Hypericum ascyron L[J]. Nat Prod Res Dev (天然产物研究与开发) , 2014, 26 :1785–1788.
[9] Yin AW, Tian R, Li TF. Studies on chemical constituents of the stem of Cinamomum camphora[J]. Chin Pharm J (中国药学杂志) , 2014, 49 :1306–1309.
[10] Shen YX, Teng HL, Yang GZ, et al. A new chromone derivative from Berchemia lineate[J]. Acta Pharm Sin (药学学报) , 2010, 45 :1139–1143.