药学学报  2016, Vol. 51 Issue (7): 1054-1059   PDF    
有机阴离子转运体研究的最新进展
冯源, 刘克辛     
大连医科大学药学院, 辽宁 大连 116044
摘要: 有机阴离子转运体(organic anion transporter, OAT)亚家族是溶质转运体22(solute carrier 22, SLC22)家族中的重要组成部分,在包括肝脏、肾脏、脑及胎盘等在内的多种组织脏器中表达。因其能够介导许多常见药物(抗生素、抗病毒药、利尿药和非甾体类抗炎药)、毒素以及营养物质在机体内的排泄而受到了广泛的关注。近年来,在Oat1和Oat3基因敲除鼠的代谢组学和微阵列数据以及系统生物学的研究表明,OAT通路在处理肠道微生物代谢和肾脏疾病状态下发挥着非常重要的作用。核受体和其他转录因子会与Ⅰ相和Ⅱ相药物代谢酶结合并调节特定OATs的表达。“远端遥感和信号通路假说”表明,OATs能在许多组织中表达并且转运多种信号分子。一些OATs对于特定的信号分子,如环核苷酸、尿酸和前列腺素等还具有高度的选择性,因此可以有效的介导多种器官、组织及细胞间的信息交流。OATs在正常情况及急慢性病理条件下,在内外源物的转运中起到重要作用。
关键词: 有机阴离子转运体     信号通路     远端遥感和信号通路假说    
Research advances in organic anion transporter
FENG Yuan, LIU Ke-xin     
College of Pharmacy, Dalian Medical University, Dalian 116044, China
Abstract: The organic anion transporter (OAT) subfamily is an important part of the SLC22(solute carrier 22) transporter family. OATs are expressed in many tissues, including liver, kidney, brain, placenta and so on. A great deal of attention has been paid to OAT because of its role in handling of common drugs (antibiotics, antivirals, diuretics, nonsteroidal anti-inflammatory drugs), toxins and nutrients. Data from recent metabolomics, microarray and system biology studies, phenotypes of Oat1 and Oat3 knockouts, indicate a central role of this pathway in the metabolism as well as putative uremic toxins of kidney disease. The expressions of certain OATs in conjunction with phase I and phase II drug metabolizing enzymes are regulated by nuclear receptors and other transcription factors. According to the "remote sensing and signaling hypothesis", some OATs have a strong relationship with certain particular signaling molecules. OATs may play a role in remote inter-organ communication via regulating levels of signaling molecules and key metabolites in tissues and body fluids. OATs play a significant role in the transportation of internal and external material under normal and pathological conditions.
Key words: organic anion transporter     signaling pathway     remote sensing and signaling hypothesis    
1 有机阴离子转运体简介

有机阴离子转运体 (organic anion transporter,OAT) 家族主要由包括OAT1、OAT2和OAT3等在内的超过10种跨膜转运蛋白构成。OAT、有机阳离子转运体 (organic cation transporters,OCTs) 和有机阳离子及肉毒碱转运体 (organic carnitine and zwitterions transporters,OCTNs) 同属于主要易化超家族 (major facilitator superfamily,MFS) 中的溶质转运体22 (solute carrier 22,SLC22) 亚家族[1]。OAT与SLC22家族成员在分子结构上具有很多共同特点。通过分子建模、基因学及其他相关分子生物学研究证明,OAT家族共由540~560个氨基酸构成的12个跨膜结构域组成[1, 2, 3]

OAT最先由其在肾脏物质转运过程中所扮演的角色受到人们关注。然而随着对OAT功能的研究不断深入,发现OAT几乎在人体内的所有上皮细胞屏障中表达,并在多种有机阴离子的跨上皮细胞屏障及人体液体隔室 (如血液-中枢神经系统转运,血液-尿液转运,小肠-血液转运) 转运过程中发挥重要作用。尽管OAT具有多种双向转运底物,但是大多数OAT家族转运蛋白被认为是摄取性转运体,能够促进有机阴离子向上皮细胞的转运过程[4]。典型的OAT例如OAT1属于次级主动转运蛋白,OAT能够介导离子交换及与另一物质的跨膜共转运[5, 6, 7]。因此,OAT也与Na+-K+-ATP酶,Na+-羧酸根共转运体并称为第3代转运系统。

2 OAT的发现

早在新型肾脏转运体(novel kidney transporter,NKT),即OAT1被成功克隆出来之前,OAT通路已经被作为肾脏生理病理研究的重要潜在通路。上世纪40年代,Smith等[8]发现马尿酸衍生物——对氨基马尿酸 (PAH) 是一种适用于鉴定肾小管排泄的指示分子。随后,PAH作为一种经典的有机阴离子底物,能够鉴定包括内源性代谢物、毒物、药物及其他肾脏有机阴离子转运通路底物[9]

有研究[10]表明,青霉素能够通过有机阴离子转运系统在肾脏快速排泄。青霉素的体内半衰期较短,为了降低青霉素的外排并增加其体内作用时间,临床上选择同时给予促尿酸排泄药物丙磺舒以达到竞争性抑制青霉素外排的目的[11]。同时,丙磺舒也能够有效抑制PAH的转运过程。因此丙磺舒成为有机阴离子转运系统的标准抑制剂[12]。随着经典指示分子PAH及特异性抑制剂丙磺舒的发现,经典的有机阴离子转运通路也逐步建立起来[13, 14]

另一方面,自从在肾近段小管细胞基底膜上发现Na+-K+-ATP酶以来,其与PAH转运机制研究也逐渐深入[15]。有研究[15]表明钠离子细胞内外的浓度梯度在PAH的跨膜转运过程中所发挥作用有限,因此钠离子浓度梯度与PAH的转运作用很可能为非直接关系。在该转运过程中,二元羧酸盐很可能是其中一种重要步骤。戊二酸是一种典型的二元羧酸盐。在钠离子存在的条件下,戊二酸能够大幅度促进PAH的摄取。

3 OAT研究最新进展 3.1 OAT转运功能研究

研究已表明,OAT转运系统在包括肾脏、肝脏、脑、眼和小肠在内的多种器官的众多小分子转运过程中均扮演重要角色,主要有内源性激素、营养物质及代谢产物的跨膜转运作用[16] (表 1)。对于药物而言,OAT能够介导丙磺舒敏感性PAH通路底物的跨膜转运,主要包括众多抗生素、非甾体抗炎药、利尿药及抗病毒药物[17, 18]。这些药物的共性为水溶性有机阴离子小分子并能够与白蛋白结合[19]。由于其与白蛋白结合的特性,该类药物能够避免肾小球的滤过并进入肾小管周边微血管。这些血管与肾小管细胞基底侧毗连,通过肾小管基底侧表达的OAT1及OAT3,这些药物能够被转运进入肾小管细胞。随后,通过包括多种ATP结合盒转运蛋白 (MRP2或MRP4) 及SLC转运体等顶端转运体的外排作用,药物被外排进入肾小管腔。该通路促进了有机阴离子小分子药物、毒物及内源性代谢产物从血液向肾小管腔转运。

Table 1 Substrates of organic anion transporter (OAT) isoforms

OAT介导的转运通路在很多毒性物质转运过程中同样发挥重要作用。药物及外源性物质在体内过量时会产生毒性作用并在生理条件下常常为带负电的阴离子,因此能够与OAT转运系统有效结合[20]。其他一些非阴离子毒性物质在体内可以与甘氨酸、葡糖苷酸或硫酸盐结合进而被OAT转运系统转运[20]。有研究[21, 22, 23]表明,这一转运通路同时承担众多药物及代谢产物的跨膜转运。因此,当OAT转运体被竞争抑制后,能够导致毒性物质在体内积累。同时由于毒性物质主要在上皮细胞转运,当抑制作用发生时,毒性物质在体内的蓄积常常能够导致上皮细胞损伤甚至死亡进而引起严重的毒性作用。

3.2 计算机辅助OAT结构研究

计算机辅助化学经过多年的发展已成为转运体结构和功能研究的重要手段,其研究方法主要有转运体蛋白结构模型研究方法及配体模型研究方法[24, 25]

尽管有关人类SLC22转运体家族的蛋白结构研究成果非常有限,转运体蛋白结构研究方法试图重构转运体本身的三维结构。为了解决该问题,目前主要采用与OAT1的同源转运体甘油-3-磷酸盐转运体的结构作为模板构建人体OAT1结构模型[26]。目前研究推断,OAT1的活性部位可能位于OAT1两个互成一定角度的跨膜半结构域的中心空腔中。该活性中心很有可能是底物与转运体发生相互作用的主要部位。计算机模拟结果表明,OAT1活性中心与外源性配体的结合很可能是通过OAT1两个跨膜结构域的胞内部分互相靠近,进而导致胞外部分分离,致使底物能够进入转运体中心部位[27]

配体模型研究主要通过鉴定转运体底物共同的化学结构,进而生成其药效团模型[24, 25]。目前该方法主要用于研究OAT1及OAT3药效团模型及其底物的筛选[25, 28]。对于OAT1的研究发现,OAT转运体能够结合阴离子和阳离子。为了进一步研究此现象,利用与OAT3有高亲和力的有机阳离子药物构建OAT3药效团模型[29]。该模型带正电并具有氢键受体及一个疏水内核并被用于筛选能够与OAT3产生亲和作用的阳离子化合物。

其他底物特性研究采用定量构效关系研究方法分析OAT1、OAT3及OAT6的底物特性。不同于把配体作为一个整体分析,定量构效关系研究着眼于逐个研究配体生化指标并探求分子、原子特性及底物亲和力之间关系。

3.3 OAT基因组分类研究

SLC家族是由一大类 的跨膜溶质转运蛋白构成。在基因组分类上,OAT家族从属于SLC亚家族[29, 30]。一个标准的OAT转运体常由550个左右的氨基酸构成并形成12段跨膜螺旋结构。

研究[30]表明,OAT1与OAT3的直系同源基因同样存在于多种脊椎动物中,并且各物种的OAT在序列上具有高度的同一性。在大鼠19号染色体上,包括Oat9/Slc22a27/AB056442Slc22a28/EG43674Slc22a29/ D630002G06Rik以及Slc22a30/C730048C13Rik在内的4种SLC22转运体中至少有81% 的重复序列[31]AB056442D630002G06Rik之间至少有95% 的基因序列相同,EG43674C730048C13Rik之间则有97% 的相同基因序列[31]。结果提示,OAT基因组很可能存在主动选择的过程,这种选择过程的内在驱动力研究具有十分重要的意义。

3.4 OAT家族表观遗传调控

表观遗传调控是一种动态的、具有潜在继承性的改变,能够在不影响DNA序列的基础上改变转录活性,也是目前针对外界因素及环境变化的主要调控机制[32]。它主要通过控制包括DNA及组蛋白的共价修饰、核染色体的折叠及microRNAs的表达进行调控。最新研究表明[33],表观遗传在OAT家族的功能调控中扮演重要的角色。例如,OAT3启动子序列的甲基化在HNF1对hOAT3的负调控过程中发挥重要作用[33]。同时,人与鼠的尿酸转运蛋白 (VRAT1) 在肾皮质的特异性表达也与其DNA的甲基化有着紧密的联系[34]。另一方面,组蛋白乙酰化对于其他SLC药物转运体的组织特异性表达也是一个重要的决定因素。最新研究[35]表明,SLC家族转运体表达的改变能够被临床药物 靶向表观遗传修饰。

3.5 OAT家族转录与转录后调节

转录因子在顺式调控元件与染色体修饰复合物结合过程中发挥重要作用。除了能够决定基因表达的过程,转录因子能够对多种细胞内外刺激产生应激性反应[36]。有研究[37]表明,Oat1Oat3 mRNA水平的变化能够对包括生长因子及多种激素在内的生理及病理刺激进行调控。赭曲霉毒素A及汞的配合物是OATs的底物,能够在mRNA及蛋白水平调节OAT1及OAT3的表达[38, 39]。另一方面,怀孕动物及新生动物在个体生长的关键时期似乎存在一个可以诱导的调节空间。

3.6 OAT家族远端遥感和信号通路假说

基因敲除小鼠及其他实验结果证明,内源性OATs底物包括很多限速代谢产物及信号分子[40]。该现象提示,OATs与其他药物转运体家族 (SLC及ABC转运体家族) 很可能形成一种远端调控系统用于代谢产物、营养物质及信号分子在多种组织和体液腔中的转运。该调控方式通过调控不同药物转运体的表达及激活、不同关键代谢产物 (尿酸和硫酸吲哚酚) 及信号分子 (环核苷酸和前列腺素) 进入组织及体液腔的转运。

2006~2007年第一次提出了远端遥感和信号通路控制假说。该假说主要源自两类线索: ① 很多SLC22的内源性底物同时也是重要的限速代谢物和信号分子; ② 最近报道的很多OAT亚型不仅仅表达于肾脏中,在其他组织脏器中也同样有表达。其中比较典型的有Oat6在嗅黏膜、OAT4在胎盘、Slc22A17在脉络丛中的表达。在生长发育过程中也会出现OAT家族蛋白的阶段性表达,例如在发育过程中的脑、神经外胚层中有Oat1及Oat3的表达,在主动脉弓中有Oat1的表达。

SLC及ABC药物转运体家族,尤其是SLC22转运家族,能在多种组织中表达并且能够转运多种信号分子,并且有效的介导多种器官、组织及细胞间的信息交流[41, 42, 43, 44, 45]。目前观察到,多种组织中的不同转运体能够被针对该组织或其他组织的损伤所调节[46, 47, 48]。尽管该作用机制仍不清楚,仍然有大量证据证明通过转录因子能够有效感知并对底物转运进行调节[49, 50]。其中作用尤其明显的是,OATs的很多特异性底物同样能够对非嗅觉性气味受体GPCRs化学感受性产生影响。同时还有其他多种生长因子及激素在多种水平参与其他组织器官调节的证据。

随着对远端遥感和信号通路假说的研究日趋深入,当生理状况紊乱或多种信号通路传导出现中断时,转运体之间的互相调控更加明显[51, 52]

4 结语

总之,多种数据表明,OAT及其他药物转运体需要从更系统的生理学角度而不是孤立的某些药物或毒物的特异性转运体来考察[28, 41, 52, 53, 54]。远端遥感和信号通路假说多年以来,从更为广阔的系统及生理角度更深入的阐述了OATs在正常情况以及急性或慢性病理条件下,在多种器官间相互作用中起到的重要作用。

参考文献
[1] Koepsell H. The SLC22 family with transporters of organic cations, anions and zwitterions[J]. Mol Aspects Med, 2013, 34:413-435.
[2] Eraly SA, Bush KT, Sampogna RV, et al. The molecular pharmacology of organic anion transporters:from DNA to FDA?[J]. Mol Pharmacol, 2004, 65:479-487.
[3] Wright SH, Dantzler WH. Molecular and cellular physiology of renal organic cation and anion transport[J]. Physiol Rev, 2004, 84:987-1049.
[4] Liu Q, Liu KX. Advances in the study of enzymes and transporters-mediated pharmacokinetic mechanism for herbdrug interaction[J]. Acta Pharm Sin (药学学报), 2015, 50:406-412.
[5] Pritchard JB. Coupled transport of p-aminohippurate by rat kidney basolateral membrane vesicles[J]. Am J Physiol, 1988, 255:F597-604.
[6] Shimada H, Moewes B, Burckhardt G. Indirect coupling to Na+ of p-aminohippuric acid uptake into rat renal basolateral membrane vesicles[J]. Am J Physiol, 1987, 253:F597-604.
[7] Lepist EI, Zhang X, Hao J, et al. Contribution of the organic anion transporter OAT2 to the renal active tubular secretion of creatinine and mechanism for serum creatinine elevations caused by cobicistat[J]. Kidney Int, 2014, 86:350-357.
[8] Smith HW, Finkelstein N, Aliminosa L, et al. The renal clearances of substituted hippuric acid derivatives and other aromatic acids in dog and man[J]. J Clin Invest, 1945, 24:388-404.
[9] Zhang J, Liu KX. Intestinal absorption and renal excretion mediated by transporters and the relationship with drug-drug interaction[J]. Acta Pharm Sin (药学学报), 2010, 45:1089-1094.
[10] Rammelkamp CH, Keefer CS. The absorption, excretion and toxicity of penicillin administered by intrathecal injection[J]. Am J Med Sci, 1943, 205:342-349.
[11] Burnell JM, Kirby WM. Effectiveness of a new compound, benemid, in elevating serum penicillin concentrations[J]. J Clin Invest, 1951, 30:697-700.
[12] Li D, Sheng L, Li Y. Methods for the study of drug transporters[J]. Acta Pharm Sin (药学学报), 2014, 49:963-970.
[13] Aronson PS. The renal proximal tubule:a model for diversity of anion exchangers and stilbene-sensitive anion transporters[J]. Annu Rev Physiol, 1989, 51:419-441.
[14] Dantzler WH, Wright SH. The molecular and cellular physiology of basolateral organic anion transport in mammalian renal tubules[J]. Biochim Biophys Acta, 2003, 1618:185-193.
[15] Silva P, Torretti J, Hayslett JP, et al. Relation between Na-K-ATPase activity and respiratory rate in the rat kidney[J]. Am J Physiol, 1976, 230:1432-1438.
[16] Vanwert AL, Gionfriddo MR, Sweet DH. Organic anion transporters:discovery, pharmacology, regulation and roles in pathophysiology[J]. Biopharm Drug Dispos, 2010, 31:1-71.
[17] Ahn SY, Bhatnagar V. Update on the molecular physiology of organic anion transporters[J]. Curr Opin Nephrol Hypertens, 2008, 17:499-505.
[18] Burckhardt G, Burckhardt BC. In vitro and in vivo evidence of the importance of organic anion transporters (OATs) in drug therapy[J]. Handb Exp Pharmacol, 2011, 201:29-104.
[19] Bow DA, Perry JL, Simon JD, et al. The impact of plasma protein binding on the renal transport of organic anions[J]. J Pharmacol Exp Ther, 2006, 316:349-355.
[20] Møller JV, Sheikh MI. Renal organic anion transport system:pharmacological, physiological, and biochemical aspects[J]. Pharmacol Rev, 1982, 34:315-358.
[21] Tran HX, Herrington JD. Effect of ceftriaxone and cefepime on high-dose methotrexate clearance[J]. J Oncol Pharm Pract, 2015, DOI:10.1177/1078155215608524.
[22] Schneider R, Meusel M, Betz B, et al. Oat1/3 restoration protects against renal damage after ischemic AKI[J]. Am J Physiol Renal Physiol, 2015, 308:198-208.
[23] Liu Q, Wang C, Meng Q, et al. MDR1 and OAT1/OAT3 mediate the drug-drug interaction between puerarin and methotrexate[J]. Pharm Res, 2014, 31:1120-1132.
[24] Sun YA, Eraly SA, Igor T, et al. Interaction of organic cations with organic anion transporters[J]. J Biol Chem, 2009, 284:31422-31430.
[25] Duan P, Li S, Ai N, et al. Potent inhibitors of human organic anion transporters 1 and 3 from clinical drug libraries:discovery and molecular characterization[J]. Mol Pharm, 2012, 9:3340-3346.
[26] D'Rozario RS, Sansom MS. Helix dynamics in a membrane transport protein:comparative simulations of the glycerol-3-phosphate transporter and its constituent helices[J]. Mol Membr Biol, 2008, 25:571-583.
[27] Tsigelny IF, Kovalskyy D, Kouznetsova VL, et al. Conformational changes of the multispecific transporter organic anion transporter 1(OAT1/SLC22A6) suggests a molecular mechanism for initial stages of drug and metabolite transport[J]. Cell Biochem Biophys, 2011, 61:251-259.
[28] Kaler G, Truong DM, Khandelwal A, et al. Structural variation governs substrate specificity for organic anion transporter (OAT) homologs[J]. J Biol Chem, 2007, 282:23841-23853.
[29] Lopez-Nieto CE, You G, Bush KT, et al. Molecular cloning and characterization of NKT, a gene product related to the organic cation transporter family that is almost exclusively expressed in the kidney[J]. J Biol Chem, 1997, 272:6471-6478.
[30] Eraly SA, Hamilton BA, Nigam SK. Organic anion and cation transporters occur in pairs of similar and similarly expressed genes[J]. Biochem Biophys Res Commun, 2003, 300:333-342.
[31] Wu W, Baker M, Eraly S, et al. Analysis of a large cluster of SLC22 transporter genes, including novel USTs, reveals species-specific amplification of subsets of family members[J]. Physiol Genomics, 2009, 38:116-124.
[32] Jaenisch R, Bird A. Epigenetic regulation of gene expression:how the genome integrates intrinsic and environmental signals[J]. Nat Genet, 2003, 33 Suppl:245-254.
[33] Kikuchi R, Kusuhara H, Hattori N, et al. Regulation of the expression of human organic anion transporter 3 by hepatocyte nuclear factor 1α/β and DNA methylation[J]. Mol Pharmacol, 2006, 70:887-896.
[34] Kikuchi R, Kusuhara H, Hattori N, et al. Regulation of tissue-specific expression of the human and mouse urate transporter 1 gene by hepatocyte nuclear factor 1 alpha/beta and DNA methylation[J]. Mol Pharmacol, 2007, 726:1619-1625.
[35] Bernstein BE, Ewan B, Ian D, et al. An integrated encyclopedia of DNA elements in the human genome[J]. Nature, 2012, 489:57-74.
[36] Giusto GD, Anzai N, Ruiz ML, et al. Expression and function of Oat1 and Oat3 in rat kidney exposed to mercuric chloride[J]. Arch Toxicol, 2009, 83:887-897.
[37] Zeng H, Bi HC, Huang M. A review on regulation of drug transporters during inflammation[J]. Acta Pharm Sin (药学学报), 2011, 46:773-779.
[38] Torres AM, Dnyanmote AV, Bush KT, et al. Deletion of multispecific organic anion transporter (Oat1/Slc22a6) protects from mercury-induced kidney injury[J]. J Biol Chem, 2011, 286:26391-26395.
[39] Zlender V1, Breljak D, Ljubojevi ć M, et al. Low doses of ochratoxin A upregulate the protein expression of organic anion transporters Oat1, Oat2, Oat3 and Oat5 in rat kidney cortex[J]. Toxicol Appl Pharmacol, 2009, 239:284-296.
[40] Ahn SY, Jamshidi N, Mo ML, et al. Linkage of organic anion transporter-1 to metabolic pathways through integrated "omics"-driven network and functional analysis[J]. J Biol Chem, 2011, 286:31522-31531.
[41] Ahn SY, Nigam SK. Toward a systems level understanding of organic anion and other multispecific drug transporters:a remote sensing and signaling hypothesis[J]. Mol Pharmacol, 2009, 76:481-490.
[42] Emami RA, Nies AT, Schaeffeler E, et al. Organic anion transporters and their implications in pharmacotherapy[J]. Pharmacol Rev, 2012, 64:421-449.
[43] Saito H. Pathophysiological regulation of renal SLC22A organic ion transporters in acute kidney injury:pharmacological and toxicological implications[J]. Pharmacol Ther, 2010, 125:79-91.
[44] Wu W, Dnyanmote AV, Nigam SK. Remote communication through solute carriers and ATP binding cassette drug transporter pathways:an update on the remote sensing and signaling hypothesis[J]. Mol Pharmacol, 2011, 79:795-805.
[45] Hatano R, Mukouchi H, Matsumoto Y, et al. Glucocorticoid mediates the transcription of OAT-PG, a kidney-specific prostaglandin transporter[J]. Pflugers Arch, 2014, 466:925-935.
[46] Brandoni A, Hazelhoff MH, Bulacio RP, et al. Expression and function of renal and hepatic organic anion transporters in extrahepatic cholestasis[J]. World J Gastroenterol, 2012, 44:6387-6397.
[47] Judith N, Nolin TD, Leblond FA, et al. Current understanding of drug disposition in kidney disease[J]. J Clin Pharmacol,2012, 52:10S-22S.
[48] Masayuki S, Hirotaka M, Seiko S, et al. A common variant of organic anion transporter 4(OAT4/SLC22A11) gene is associated with renal underexcretion type gout[J]. Drug Metab Pharmacokinet, 2014, 29:208-210.
[49] Eder K, Ringseis R. The role of peroxisome proliferatoractivated receptor alpha in transcriptional regulation of novel organic cation transporters[J]. Eur J Pharmacol, 2010, 628:1-5.
[50] Martovetsky G, Tee JB, Nigam SK. Hepatocyte nuclear factors 4a and 1a (Hnf4a and Hnf1a) regulate kidney developmental expression of drug-metabolizing enzymes and drug transporters[J]. Mol Pharmacol, 2013, 84:808-823.
[51] Uehara I, Kimura T, Tanigaki S, et al. Paracellular route is the major urate transport pathway across the blood-placental barrier[J]. Physiol Rep, 2014, DOI:10.14814/phy2.12013.
[52] Nigam SK, Bush KT, Martovetsky G, et al. The organic anion transporter (OAT) family:a systems biology perspective[J]. Physiol Rev, 2015, 95:83-123.
[53] Hu S, Pabla N, Janke LJ, et al. Abstract 5471:identification of OAT1/OAT3 as contributors to cisplatin nephrotoxicity[J]. Cancer Res, 2015, 75:5471.
[54] Preising C, Schneider R, Bucher M, et al. Regulation of expression of renal organic anion transporters OAT1 and OAT3 in a model of ischemia/reperfusion injury[J]. Cell Physiol Biochem, 2015, 37:1-13.