药学学报  2016, Vol. 51 Issue (7): 1039-1046   PDF    
三七总皂苷抗脑缺血再灌注损伤的药理研究进展
杨鹏飞1, 宋修云1, 陈乃宏1,2     
1. 中国医学科学院、北京协和医学院药物研究所 & 神经科学中心, 北京 100050;
2. 湖南中医药大学, 湖南 长沙 410208
摘要: 三七是五加科人参属植物三七[Panax notoginseng(Burk.)F.H.Chen]的干燥根及根茎,在传统中药中作为一种补益类药品而被广泛应用。三七的主要活性成分为包含人参皂苷Rg1、Rb1和三七皂苷R1等在内的三七总皂苷,其在血液系统、心血管系统和神经系统等多方面具有广泛药理活性。缺血性脑卒中是脑卒中最常见的形式,其病死率与致残率非常高,造成了严重的医疗、社会、经济问题。缺血再灌注损伤是缺血性脑卒中发病过程中最重要的环节,能量代谢异常、离子代谢紊乱、自由基损伤和炎症反应等均参与其中,具有复杂的发生机制。近年的研究表明,三七总皂苷具有显著缓解脑缺血再灌注损伤的作用,其治疗机制众说纷纭、尚不十分明确。因此,本文对三七及其主要活性成分皂苷类化合物的抗脑缺血再灌注损伤药理作用及分子机制进行综述,为进一步开发利用三七类药物并指导其临床提供理论支持。
关键词: 三七     三七总皂苷     缺血再灌注损伤     药理作用     分子机制    
Advances in pharmacological studies of Panax notoginseng saponins on brain ischemia-reperfusion injury
YANG Peng-fei1, SONG Xiu-yun1, CHEN Nai-hong1,2     
1. Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China;
2. Hunan University of Chinese Medicine, Changsha 410208, China
Abstract: Sanqi in Chinese herbal medicine is the root and rhizoma of Panax notoginseng (Burk.) F.H.Chen, which belongs to genus Panax in the Araliaceae family and is widely used as a tonic medicine in the traditional Chinese medicine. The main active constituents of sanqi are Panax notoginseng saponins, including ginsenoside Rg1, Rb1 and notoginsenoside R1. A wide variety of pharmaceutical applications of Panax notoginseng saponins have been reported in the regulation of blood circulation system, cardiovascular system and nervous system. Ischemic stroke, the most common form of stroke, leads to a high risk of morbidity and disability, which evolves serious medical, social and economic problems. Ischemia-reperfusion injury is the most important part in the progress of ischemic stroke. Abnormal energy metabolism, disturbance of the ion metabolism, free radical injury, inflammatory reactions all participate in the complex pathological mechanisms of ischemiareperfusion injury. Over the past few decades, substantial studies demonstrated that Panax notoginseng saponins possessed a significant protective effect on ischemia-reperfusion injury. However, little is known about the underlying mechanisms of the protective effects. In order to develop a new medicine from Panax notoginseng, we provide a review of the major literatures on the pharmaceutical actions and molecular mechanisms of Panax notoginseng and Panax notoginseng saponins in the protection of ischemia-reperfusion injury.
Key words: Panax notoginseng     Panax notoginseng saponin     ischemia-reperfusion injury     pharmacological action     molecular mechanism    

三七是五加科人参属植物三七 [Panax notogin­seng (Burk.) F.H.Chen] 的干燥根及根茎,主产于云 南及广西,其中云南文山所产三七习称“文三七”、“田七”,为著名道地药材。三七味甘、微苦、性温,本草纲目认为其具有“止血,散血,定痛”的功效。《中药大辞典》认为三七具有“生吃去瘀生新,消肿定痛; 熟服可补益健体”的功效。三七主治咯血、吐血、衄血、便血、崩漏、外伤出血、胸腹刺痛和跌仆肿痛,其主要成分包括皂苷、挥发油、三七素、黄酮、甾醇、聚炔醇、糖类、氨基酸、有机酸等[1]。其中包含人参皂苷(ginsenosides) Rg1、Rb1和三七皂苷(notoginsenosides) R1等在内的三七总皂苷为其主要药理活性成分[1, 2]。近年来的研究表示,三七在血液系统、心血管系统、神经系统和免疫系统等多方面具有药理活性,是我国传统药学的瑰宝,引起了国内和国外、尤其是东亚学者的高度重视。

缺血性脑卒中是临床常见病,具有高病死率和高致残率的特点。在世界范围内其发病率呈逐年增加的趋势,在发达国家已是主要的致死病因,严重影响了人类生命健康和生活质量。缺血再灌注损伤是缺 血性脑卒中发病过程中最重要的环节。因此,对于缺血再灌注损伤的预防和治疗是缺血性脑卒中治疗研究的重点。动物实验、离体细胞实验和临床数据均证实,三七总皂苷具有显著改善脑缺血再灌注损伤的作用 [3, 4, 5]。临床广泛应用的含有三七总皂苷类的药物主要有血塞通注射液、血栓通注射液、络泰粉针和正康脑明注射液等,这些药物在缺血性脑卒中疾病上显示出了一定的治疗效果,但目前其临床应用带有试探性质,相关报道大都是临床应用回顾性资料,研究注意点集中于实际疗效的观察方面,对发挥疗效的药物机制研究不够透彻。因此,本文对三七总皂苷发挥保护作用的药理机制进行阐述,以期进一步开发三七总皂苷类药物的潜在治疗价值并指导其临床应用。脑缺血再灌注损伤是一个极为复杂的病理过 程,随着缺血再灌注时间的延长,能量代谢异常、离子代谢紊乱、自由基损伤、炎症反应和细胞坏死与凋亡等依次参与其中,从而诱发血脑屏障损伤和脑水肿等病理症状,本文将从这些损伤过程出发,对三七总皂苷的药理作用进行详细地阐述。

1 缓解能量代谢障碍

大脑是人体内最耗能的器官,它仅占人体总重量的2%,但却消耗了人体20% 的氧气和25% 的能 量供应。脑缺血一旦发生,首先发生能量代谢障碍,脑缺血后脑组织的主要化学能量来源——高能磷酸化合物生产减少,造成脑组织缺乏能量供应,同时再灌注后产生的大量氧自由基可以破坏线粒体的呼吸功能,而使能量生成进一步发生障碍。三七总皂苷 可以明显缓解缺氧2 h鸡胚脑神经细胞的能量耗竭,促进再灌注期细胞内高能磷酸化合物的合成和恢复,改善能量负荷[6]。三七提取液或总皂苷可以显著增 加缺血再灌注小鼠脑组织中三磷酸腺苷 (adenosine triphosphate,ATP)、二磷酸腺苷 (adenosine diphos­phate,ADP) 和单磷酸腺苷 (adenosine monophos­phate,AMP) 的含量,显著提高小鼠脑组织中葡萄糖转运蛋白 (glucose transporter,GLUT)-3蛋白和mRNA的表达[7, 8],也可提高小鼠脑腺苷酸池 (total adenylate pool,TAN) 水平及能荷值 (energy charge,EC),增强ATP酶的活性[7]。通过能量供应能力的增强,三七皂苷可延长断头后小鼠的规律喘气时间,也从侧面反映其可发挥潜在的缓解脑缺血后能量代谢障碍这一保护作用[9]

2 平衡离子代谢紊乱

在脑缺血发生后,由于能量生成减少,而使脑组织中糖酵解增强,细胞发生酸中毒,促进Na+、Cl进入细胞,大量水摄入而诱发脑水肿; 同时细胞内Ca2+浓度升高,胞浆内及线粒体内Ca2+超载,继发性引起线粒体中呼吸链耦合出现紊乱,诱发自由基的产生,进一步加重细胞损伤[10]。早期研究发现,三七皂苷可以逆转局部脑缺血鼠鼩脑中Ca2+浓度的增加,提示三七皂苷可能具有钙拮抗剂的作用[11]。对大脑中动脉栓塞 (middle cerebral artery occlusion,MCAO) 法的大鼠缺血再灌注实验模型的研究也显示,模型组海马细胞内Ca2+浓度显著升高,三七总皂苷给药组可明显降低细胞内Ca2+浓度,效果和钙离子拮抗剂尼莫地平相当[12]。脑源性神经营养因子 (brain derived neurotrophic factor,BDNF) 对多种中枢神经系统疾病具有较为理想的治疗潜能,研究发现三七皂苷可以增加MCAO大鼠大脑皮质中的BDNF水平,继而阻止细胞外Ca2+ 的入胞和细胞内Ca2+ 的释放,从而减少Ca2+ 超载引起的神经系统细胞损伤 [13, 14, 15]。临床实践也证实,脑缺血患者给予三七总皂苷注射液治疗,可以明显提升疾病状态下降低的Na+-K+-ATP酶和Ca2+-Mg2+-ATP酶活性,通过改善离子代谢紊乱来减少脑缺血再灌注损伤的进一步发生[16, 17]

3 减少自由基生成或清除自由基

相对于身体的其他器官而言,大脑对氧化应激更为敏感,这与大脑耗氧量大、更易于产生活性氧 (reactive oxygen species,ROS) 和活性氮 (reactive nitrogen species,RNS) 有关,也和大脑内含有更多的可被迅速氧化的不饱和脂肪酸,而同时和其他器官相比其抗自由基系统又相对较弱有关[18]。活性自由基包括超氧阴离子 (O2−)、过氧化氢 (H2O2)、一氧化氮 (NO) 和羟自由基 (OH) 等,在缺血再灌注情况下,活性自由基生成增多,导致细胞内生物膜脂质、蛋白质、核酸损伤,也会引起线粒体损伤,使线粒体内细胞色素C (cytochrome-C,Cyt-C) 和凋亡诱导因子 (apoptosis inducing factor,AIF) 释放,引起细胞信号传导途径障碍,诱发下游的凋亡级联反应,导致神经细胞受损而最终死亡[19]。在这一过程中,活性氧对生物膜性物质造成损伤而导致丙二醛 (malonal­dehyde,MDA) 的增加是反映自由基损伤细胞严重程度的一个重要指标。多项研究表示,在缺血再灌注过程中,脑中MDA的含量显著升高,而三七的有效成分可以显著降低其含量 [20, 21, 22, 23],提示三七有效成分可能具有强抗氧化功效。这种抗氧化功效的原因可能 来自于两个方面: ① 减少自由基的生成: 在缺血再灌注发生的情况下,细胞内Ca2+浓度升高,催化激活黄嘌呤脱氢酶 (xanthine dehydrogenase,XD) 转化为黄嘌呤氧化酶 (xanthine oxidase,XO),而后者可以催化次黄嘌呤(hypoxanthine,Hyp) 转变为黄嘌呤 (xanthine,Xan) 和尿酸 (uric acid,UA),同时生成氧自由基[24]。在缺血再灌注45 min后,大鼠纹状体细胞外液Hyp和Xan的含量达到峰值,而缺血前30 min给予三七总皂苷可抑制纹状体细胞外液中的Hyp和Xan的升高,抑制自由基的产生[6]。三七总皂苷或三七提取液也可以减少诱导型NO合酶 (inducible nitric oxide synthase,iNOS) 的含量,从而抑制NO自由基的生成[4, 22]。此外,三七皂苷也可通过减少NADPH氧化酶 (NADPH oxidase,NOX) 和超氧化物酶来减少自由基的产生[3]。②增加对自由基的清除: 在生理条件下,活性自由基依然存在,但其浓度较低且维持在一个平衡状态,这种平衡状态是由酶 [超氧化物歧化酶 (superoxide dismutase,SOD)、谷胱甘肽过氧化物酶 (glutathione peroxidase,GSH-Px)、过氧化氢酶 (catalase,CAT)] 和非酶 [谷胱甘肽 (glutathione,GSH)、维生素C、维生素E] 反应系统共同调控的[25, 26],在缺血再灌注病理条件下,随着活性自由基生成的增加,超出了内源性清除系统可以承受的程度,生成的自由基不能被清除,并与蛋白质、脂质和DNA反应,最终导致细胞损伤[27]。三七总皂苷及其有效成分可能通过增加GSH-Px[3, 28]、SOD[2, 23]、CAT[28]的活性来清除已经产生的自由基。从上述研究结果看出,三七总皂苷通过减少自由基的生成和促进自由基的清除两个方面来发挥减少自由基含量、保护脑组织免于损伤的作用。

4 通过维持线粒体稳态发挥抗细胞凋亡作用

线粒体是脑神经元细胞中最重要的器官之一,在调节胞浆内Ca2+稳态,维持胞内pH值和通过三羧酸循环及电子传递链来生成ATP方面发挥了重要的作用。线粒体不仅是ROS产生的细胞器,也是ROS损伤的重要靶细胞器[29]。ROS及离子代谢紊乱可以导致线粒体内膜完整性受到破坏,也会导致线粒体膜电位 (mitochondrial membrane potential,Δψm) 去极化而下降,膜上的蛋白性孔道 (mitochondrial permeability transition pore,PTP) 开放,PTP不可逆 地过度开放可使线粒体内的Cyt-C释放到胞浆中,与凋亡蛋白酶激活因子 (apoptotic protease activating facter,Apaf)-1形成复合物,进而激活含半胱氨酸的天冬氨酸特异性蛋白水解酶 (cysteinyl aspartate specific proteinase,caspase)-9,caspase-9激活下游的效应蛋 白caspase-3。Caspase-3是凋亡级联反应中的关键蛋白酶,可分解细胞中的大部分功能蛋白质而诱导细胞凋亡[30, 31]。这种线粒体内Cyt-C释放进而使下游caspase-9蛋白活化而诱导凋亡发生的过程称为线粒体途径的凋亡,而经典的细胞凋亡信号通路还包括另一种形式,即死亡受体通路诱导的凋亡[32]。在死亡受体通路诱导的凋亡过程中,促凋亡配体例如FasL与膜表面的死亡受体相结合,并募集Fas相关死亡域蛋白 (Fas-associated with death domain protein,FADD) 形成死亡信号诱导复合物,该复合物诱导caspase-8前体剪切成为有活性的caspase-8,进一步活化下游的caspase-3,诱发细胞凋亡级联反应[33]。三七总皂苷可以明显减少缺血再灌注动物脑区TUNEL阳性细胞 的数量,证实了其具有抗凋亡和保护神经细胞的作用[34]。体外培养的细胞实验和在体缺血再灌注动物实验均显示,三七总皂苷给药能够逆转缺血再灌注损伤组神经细胞线粒体膜电位的显著降低并维持了线粒体的正常功能[12, 35],从而发挥保护神经细胞的作用。此外,由于三七总皂苷的给药明显减少缺血再灌注组动物脑区的Cyt-C、caspase-9和caspase-3的含量,但对损伤引起的caspase-8表达升高这一现象并无明显作用,提示三七总皂苷的抗凋亡作用主要是通过抑制线粒体凋亡通路来实现的 [3, 7, 34, 36, 37, 38, 39]

5 抗炎作用

炎症反应在缺血再灌注后继发的脑组织损伤中发挥了重要的作用。越来越多的证据证明炎症反应 参与到缺血再灌注损伤的各个阶段中,缺血一旦发生,ROS就可以促发补体、血小板和内皮细胞的活化,激活炎症转录因子,释放炎症信号,生成包括白介素 (interleukin,IL)-6、IL-1β和肿瘤坏死因子 (tumor necrosis factor,TNF)-α在内的炎症因子; 同时,由于ROS会导致神经细胞死亡,释放的核苷可以激活小胶质细胞和巨噬细胞上的嘌呤受体,从而引起炎症细胞的聚集和浸润,两方面同时作用导致炎症的发生,诱发血脑屏障的破坏和脑水肿等一系列继发性组织损伤[40, 41]。在此过程中,核转录因子-кB (nuclear factor-кB,NF-кB) 发挥了重要的作用[42]。NF-кB与核内靶部位结合后可以启动转录,调节细胞因子的表达和炎症反应的发生,同时炎症因子及黏附分子又可以诱导NF-кB进一步活化,加重炎症反应进程。研究显示,三七总皂苷可以显著降低缺血再灌注动物脑组织中TNF-α、IL-1β和IL-6的表达,也可降低IL-1β阳性细胞的数量。这可能是由于三七皂苷R1减少了кB抑制分子 (inhibitor-кB,I-кB) 的磷酸化与降解,阻碍了NF-кB向核内转录所致 [36, 43, 44, 45]。三七总皂苷不仅减少IL-1β的生成,还可以通过减少IL-1β的功能性受体IL-1RI的表达来进一步发挥其阻断IL-1β生理活性的作用。此外,三七总皂苷还可以通过减少细胞间黏附分子 (intercellular cell adhesion molecule,ICAM)-1 mRN A表达,抑制免疫球蛋白超家族黏附分子ICAM-1发挥其促进白细胞黏附和浸润的作用[36]。三七总皂苷也可通过减少环氧合酶 (cyclooxygenase,COX)-2的含量来抑制前列腺素 (prostaglandin,PG) E2的合成,最终发挥抑制小胶质细胞活化[4]和抗炎的作用。

6 血脑屏障保护作用

血脑屏障的破坏在脑缺血再灌注损伤中起了关键性作用。微血管是血脑屏障的重要构成部分,在缺血再灌注的情况下,由于炎症的发生,血管内皮细胞损伤或血管内皮细胞之间紧密连接的完整性受到损害,都会增加血脑屏障的通透性,从而导致脑水肿和出血[46]。基质金属蛋白酶 (matrix metalloproteinases,MMPs) 是一组含Zn2+的蛋白酶,在被分泌至细胞外间隙后,在中性条件下发挥生物活性,尤其是在有Ca2+参与时活性最大。在脑缺血发生时,MMPs可以降解细胞外基质、基底膜蛋白并破坏血脑屏障周围的紧密连接,而其中的MMP-9和MMP-2高表达于发生炎症的脑区,与脑缺血再灌注中血脑屏障的损伤有密切的关系[47]。研究显示三七皂苷可以显著下调缺血再灌注动物MMP-9 mRNA及蛋白的表达[48],也可增加组织基质金属蛋白酶抑制物 (tissue inhibitor of metalloproteinase,TIMP)-1表达[49],发挥减轻脑缺血区血脑屏障破坏程度的作用,从而显著减轻局部缺血动物脑水肿的症状[50, 51]。虽然在心肌梗死大鼠模型中发现三七总皂苷可以减少MMP-2的含量表达[52],但尚无在脑缺血再灌注动物模型中观察到类似结果的报道。

7 改善脑组织血流供应

在缺血再灌注时提高局部脑血流量有助于脑区功能的恢复。在动物实验中,通过对脑膜血管的活体观察,发现三七总皂苷可以通过扩张微血管口径、加快流速、增加局部血流量和改变血液流态等作用增加组织灌流[53]。同时三七总皂苷也可通过促进血管内皮细胞增殖及体内新生血管生成[38, 54],改善组织器官的血氧供应。在对高黏血症患者进行的研究中,发现三七总皂苷能抑制血小板聚集,降低血液黏稠度,改善血液的高凝状态,增加梗死区的血液供应[55]

8 其他脑保护作用

研究发现,三七总皂苷中的Rb1可上调谷氨酸转运体 (glutamate transporter,GLT)-1来减少兴奋性氨基酸造成的脑组织损伤[56],也可通过上调血管内皮细胞生长因子 (vascular endothelial growth factor,VEGF) 和神经生长因子 (nerve growth factor,NGF) 的表达[57]来达到保护神经细胞和恢复脑功能的作用。有研究证实,三七皂苷可以作为植物雌激素,通过雌激素受体依赖的活化Akt/Nrf2途径来保护神经细胞[3]。此外,三七总皂苷可以促进海马神经元干细胞在缺糖缺氧状态下的增殖和分化,这也对脑缺血损伤后的神经再生大有裨益[58]

以上研究结果均为三七总皂苷在脑缺血再灌注中的应用提供了理论依据。

目前,对缺血性脑卒中的临床治疗以溶栓为主,重组组织性纤溶酶原激活物(recombinant tissue plasminogen activator,rtPA) 仍是美国心脏协会/美 国卒中协会唯一推荐的具有确切疗效的临床治疗药物[59],但rtPA对患者的入选要求高、治疗窗窄、不良反应多,且具有严重的脑出血并发症[60]。因此,急需寻找不良反应小、治疗窗宽的药物。随着我国科学家屠呦呦通过在传统中草药中提取开发抗疟药青蒿素而喜获诺贝尔奖,中草药成为人们研发新药的焦点。本课题组长期致力于从传统中药中提取有效成分来开发治疗脑缺血再灌注损伤的新药,研究发现,传统补益类中草药三七不良反应小,其主要活性成分三七总皂苷对脑缺血再灌注的治疗效果来自于多环节或多靶点 (图 1),尤其在清除自由基和缓解炎症发生上具有良好效果,展现出了一定的脑缺血再灌注疾病治疗作用,具有良好的应用前景和价值,但其确切的临床适用范围和剂量疗程标准尚不明确,从而限制了该类药物在脑缺血再灌注疾病中的应用,这提示,需要根据其药理作用特点来进行更深入的临床药理学研究,为科学利用三七皂苷类药物治疗脑缺血再灌注疾病提供更为扎实的理论基础。

Figure 1 Pharmacological mechanisms of Panax notoginseng saponins on brain ischemia-reperfusion injury. Δψm: Mitochondrial membrane potential; NF-кB: Nuclear factor-кB; IL-1β: Interleukin-1β; IL-6: Interleukin-6; TNF-α: Tumor necrosis factor-α; PGE2: Prostaglandin E2
参考文献
[1] Li BQ, Chen J, Wu TX, et al. Fast determination of four active compounds in Sanqi Panax notoginseng injection samples by high-performance liquid chromatography with a chemometric method[J]. J Sep Sci, 2015, 38:1449-1457.
[2] Zeng XS, Zhou XS, Luo FC, et al. Comparative analysis of the neuroprotective effects of ginsenosides Rg1 and Rb1 extracted from Panax notoginseng against cerebral ischemia[J]. Can J Physiol Pharmacol, 2014, 92:102-108.
[3] Meng X, Wang M, Wang X, et al. Suppression of NADPH oxidase- and mitochondrion-derived superoxide by notoginsenoside R1 protects against cerebral ischemia-reperfusion injury through estrogen receptor-dependent activation of Akt/Nrf2 pathways[J]. Free Radic Res, 2014, 48:823-838.
[4] Son HY, Han HS, Jung HW, et al. Panax notoginseng attenuates the infarct volume in rat ischemic brain and the inflammatory response of microglia[J]. J Pharmacol Sci, 2009, 109:368-379.
[5] Chen X, Zhou M, Li Q, et al. Sanchi for acute ischaemic stroke[J]. Cochrane Database Syst Rev, 2008:CD006305.
[6] Jiang KY, Qian CN. Effects of Panax notoginseng saponins on hypoxic damage of chick embryo neurons and cerebral ischemia/reperfusion injury in rats[J]. Chin J Pharmacol Toxicol (中国药理学与毒理学杂志), 1995, 9:231-234.
[7] Huang XP, Tan H, Chen BY, et al. Combination of total Astragalus extract and total Panax notoginseng saponins strengthened the protective effects on brain damage through improving energy metabolism and inhibiting apoptosis after cerebral ischemia-reperfusion in mice[J]. Chin J Integr Med, 2015. DOI:10.1007/s11655-015-1965-0.
[8] Huang XP, Wang P, Qiu YY, et al. Effects of astragaloside IV with active components in Panax notoginseng on energy metabolism in brain tissues after cerebral ischemic-reperfusion in mice[J]. Chin Tradit Herb Drugs (中草药), 2014, 45:220-226.
[9] Feng YP, Sun YD, Chen BT, et al. Brain energy metabolism of cerebral ischemic mice and the effects of some drugs[J]. Acta Pharm Sin (药学学报), 1989, 24:89-94.
[10] Shenoda B. The role of Na+/Ca2+ exchanger subtypes in neuronal ischemic injury[J]. Transl Stroke Res, 2015, 6:181-190.
[11] Li LX, Wang ZC, Huang ZH, et al. Effects of Panax notoginseng saponins on acute cerebral ischemia[J]. Chin Pharmacol Bull (中国药理学通报), 1991, 7:56-59.
[12] Liu WH, Li H, Zhou XQ, et al. Effect of Panax notoginseng saponins on Ca2+ and mitochondrial transmembrane potential of hippocampus cells after cerebral ischemia-reperfusion in rats[J]. Chin Arch Tradit Chin (中华中医药学刊), 2009, 27:99-101.
[13] Wu LO, Zhan HQ, Yan JL, et al. Protection and mechanism of notoginsenoside-Rg1 on focal cerebral ischemia-reperfusion rats[J]. Chin Tradit Herb Drugs (中草药), 2006, 37:229-233.
[14] Zhang YQ, Mo GH, Chen M, et al. Effect of Panax notoginseng saponins on the expression of BDNF in rats with cerebral ischemia reperfusion[J]. Chin Tradit Pat Med (中成药), 2008, 30:958-961.
[15] Wang XL, Zhou YH, Zhai JY, et al. Influence of PTS on expressions of BDNF and TrkB in MCAO rats[J]. J Beijing Univ Tradit Chin Med (北京中医药大学学报), 2008, 31:102-105.
[16] Wang YH. Study on the pharmacological effects of total saponins of Panax notoginseng on cerebral ischemia[J]. Chin Fore Med Treat (中外医疗), 2011, 14:115-116.
[17] Liu H, Peng YY, Liang FY, et al. Protective effects of traditional Chinese medicine formula NaoShuanTong capsule on haemorheology and cerebral energy metabolism disorders in rats with blood stasis[J]. Biotechnol Biotechnol Equip, 2014, 28:140-146.
[18] Chong ZZ, Kang JQ, Maiese K. Essential cellular regulatory elements of oxidative stress in early and late phases of apoptosis in the central nervous system[J]. Antioxid Redox Signal, 2004, 6:277-287.
[19] Wu JS, Tsai HD, Cheung WM, et al. PPAR-γ ameliorates neuronal apoptosis and ischemic brain injury via suppressing NF-κB-driven p22phox transcription[J]. Mol Neurobiol, 2015. DOI:10.1007/s12035-015-9294-z.
[20] Long M, Wang Q, Yan YX, et al. The influence on the expression of MDA and GSH-XP of total saponins of Panax notoginseng on cerebral ischemia reperfusion injury in rats[J]. Prog Mod Biomed (现代生物医学进展), 2013, 13:2257-2260, 2272.
[21] Huang XP, Qiu YY, Wang B, et al. Effects of astragaloside IV combined with the active components of Panax notoginseng on oxidative stress injury and nuclear factor-erythroid 2-related factor 2/heme oxygenase-1 signaling pathway after cerebral ischemia-reperfusion in mice[J]. Pharmacogn Mag, 2014, 10:402-409.
[22] Tang YH, Huang XP, Tan H, et al. Effect of Panax notoginseng saponins on extracellular matrix damage and oxidative stress after cerebral ischemia-reperfusion in mice[J]. Chin Arch Tradit Chin (中华中医药学刊), 2010, 28:2327-2330.
[23] Zheng M, Qu L, Lou Y. Effects of icariin combined with Panax notoginseng saponins on ischemia reperfusion-induced cognitive impairments related with oxidative stress and CA1 of hippocampal neurons in rat[J]. Phytother Res, 2008, 22:597-604.
[24] Sermet A, Tasdemir N, Deniz B, et al. Time-dependent changes in superoxide dismutase, catalase, xanthine dehydrogenase and oxidase activities in focal cerebral ischaemia[J]. Cytobios, 2000, 102:157-172.
[25] Margaill I, Plotkine M, Lerouet D. Antioxidant strategies in the treatment of stroke[J]. Free Radic Biol Med, 2005, 39:429-443.
[26] Sugawara T, Chan PH. Reactive oxygen radicals and pathogenesis of neuronal death after cerebral ischemia[J]. Antioxid Redox Signal, 2003, 5:597-607.
[27] Yang W, Chen X, Pan J, et al. Malibatol A protects against brain injury through reversing mitochondrial dysfunction in experimental stroke[J]. Neurochem Int, 2015, 80:33-40.
[28] Du GY, Zhao Y, Cao CY, et al. Study of cerebral protective effects of Naosaitong in animals[J]. China J Chin Mater Med (中国中药杂志), 2003, 28:856-861.
[29] Faraci FM. Protecting against vascular disease in brain[J]. Am J Physiol Heart Circ Physiol, 2011, 300:H1566-H1582.
[30] Lamarche F, Carcenac C, Gonthier B, et al. Mitochondrial permeability transition pore inhibitors prevent ethanol-induced neuronal death in mice[J]. Chem Res Toxicol, 2013, 26:78-88.
[31] Franklin JL. Redox regulation of the intrinsic pathway in neuronal apoptosis[J]. Antioxid Redox Signal, 2011, 14:1437-1448.
[32] Munoz-Pinedo C. Signaling pathways that regulate life and cell death:evolution of apoptosis in the context of self-defense[J]. Adv Exp Med Biol, 2012, 738:124-143.
[33] Kantari C, Walczak H. Caspase-8 and bid:caught in the act between death receptors and mitochondria[J]. Biochim Biophys Acta, 2011, 181:558-563.
[34] Li H, Deng CQ, Chen BY, et al. Total saponins of Panax notoginseng modulate the expression of caspases and attenuate apoptosis in rats following focal cerebral ischemia-reperfusion[J]. J Ethnopharmacol, 2009, 121:412-418.
[35] Liu YJ. The Protective Effectss of Panax Notoginsenoside Saponins on Neuron Cell Induced by Ischemia-Reperfusion (三七总皂苷对缺血损伤神经细胞的保护作用研究)[D]. Jilin:Jilin University, 2013.
[36] Tang YH, Zhang SP, Liang Y, et al. Effects of Panax notoginseng saponins on mRNA expressions of interleukin-1β, its correlative factors and cysteinyl-aspartate specific protease after cerebral ischemia-reperfusion in rats[J]. J Chin Integr Med (中西医结合学报), 2007, 5:328-332.
[37] Tang YH, Huang XP, Tan H, et al. Effect of Panax notoginseng saponins on neuronal apoptosis and mitochondrial apoptosis pathway expression c-Jun N-terminal kinase after cerebral ischemia-reperfusion in mice[J]. Chin J Exp Tradit Med Form (中国实验方剂学杂志), 2010, 16:129-132, 136.
[38] Shi QH, Xiang J, Zhu XY, et al. Protective effects of Chinese herbal medcine Naoshuantong on neurovascular unit in rats with cerebral ischemia/reperfusion injury[J]. J Chin Integr Med (中西医结合学报), 2012, 10:1135-1139.
[39] Zhang J, Liu BM, Huang GJ. Effects of Naoshuantong injection on expressions of caspase-3 and CytC after focal cerebral ischemia reperfusion in rats[J]. West China J Pharm Sci (华西药学杂志), 2008, 23:661-663.
[40] Iadecola C, Anrather J. The immunology of stroke:from mechanisms to translation[J]. Nat Med, 2011, 17:796-808.
[41] Fluri F, Grünstein D, Cam E, et al. Fullerenols and glucosamine fullerenes reduce infarct volume and cerebral inflammation after ischemic stroke in normotensive and hypertensive rats[J]. Exp Neurol, 2015, 265:142-151.
[42] Sun BZ, Chen L, Wu Q, et al. Suppression of inflammatory response by flurbiprofen following focal cerebral ischemia involves the NF-κB signaling pathway[J]. Int J Clin Exp Med, 2014, 7:3087-3095.
[43] Huang XP, Lu JD, Ding H, et al. Effects of main active component combinations between Astragalus and Panax notoginseng on NF-κB signaling pathway and expressions of inflammatory factors after cerebral ischemia-reperfusion in mice[J]. Chin Pharmacol Bull (中国药理学通报), 2015, 31:141-146.
[44] Liu ZC, Zhou GE, Zhao KJ, et al. Protective effects of PTS on focal cerebral ischemia-reperfusion injury rats[J]. J Apoplexy Nerv Dis (中风与神经疾病杂志), 2007, 24:38-40.
[45] Shao W, Li K, Zhao YH, et al. The effect of Xueshuantong combined plasminogen activator treatment on serum high sensitivity C reactive protein and interleukin-6 expression of acute cerebral infarction patients[J]. Chin J Gerontol (中国老年学杂志), 2014, 34:1161-1162.
[46] Chen W, Guo Y, Yang W, et al. Protective effect of ginsenoside Rb1 on integrity of blood-brain barrier following cerebral ischemia[J]. Exp Brain Res, 2015, 233:2823-2831.
[47] Xiang J, Lan R, Tang YP, et al. Apocynum venetum leaf extract attenuates disruption of the blood-brain barrier and upregulation of matrix metalloproteinase-9/-2 in a rat model of cerebral ischemia-reperfusion injury[J]. Neurochem Res, 2012, 37:1820-1828.
[48] Wang WA, Zhou YW, Cheng J, et al. Effect of Panax notoginseng saponins on MMP-9 expression after focal cerebral ischemia-reperfusion[J]. J Shanghai Second Med Univ (上海第二医科大学学报), 2004, 24:731-733.
[49] Tang YH, Huang XP, Tan H, et al. Effect of Panax notoginseng saponins on MMP-9 and TIMP-1 after cerebral ischemia-reperfusion in mice[J]. J Hunan Univ Trandit Chin Med (湖南中医药大学学报), 2010, 30:29-32.
[50] Wang GF, Wang WA, Zhou YW, et al. Study on protective effect of Panax notoginseng saponins on brain ischemic reperfusion damage in rats[J]. Chin J Clin Rehabil (中国临床康复), 2002, 6:1268-1269.
[51] Li H, Zhang HM, Fang CS, et al. Protective effects of Luotai injection powder on cerebral ischemia[J]. Chin Tradit Pat Med (中成药), 2001, 23:428-430.
[52] Guo JW, Deng ZJ, Fu YH, et al. Effects of Panax notoginsenoside on TNF-α and MMP-2 expressions in rats with post-myocardial infarction ventricular remodeling and the mechanism[J]. J South Med Univ (南方医科大学学报), 2009, 29:2048-2050.
[53] Liu JH, Ji FY, Wang T, et al. The effects of notoginsenoside on blood-brain barrier and cerebral blood flow during reperfusion of cerebral ischemia in rats[J]. Hebei Med J (河北医药), 2002, 24:249-250.
[54] Yan QF, Tan PZ, Liu QT, et al. Influence of Panax notoginseng saponins on serum sICAM-1 in patients with acute cerebral infarction[J]. Chin J Pract Nerv Dis (中国实用神经疾病杂志), 2008, 11:56-57.
[55] Wang J, Xu J, Zhong JB, et al. Effect of Radix Notoginseng saponins on platelet activating molecule expression and aggregation in patients with blood hyperviscosity syndrome[J]. Chin J Integr Med (中国中西医结合杂志), 2004, 24:312-316.
[56] An D. A Study on the Influence of rCBF, GLT-1, VEGF, Nestin of Panax notoginseng Saponin Rb1 in Hippocampus Microenviroment Abnormality in Rats (三七皂苷Rb1对大鼠海马异常微环境rCBF、GLT-1、VEGF及Nestin的影响)[D]. Kunming:Kunming Medical University, 2014.
[57] Li H, Deng CQ, Xiong AJ, et al. Effect of Panax notoginseng saponins on expressions of NGF and bFGF after focal cerebral ischemia-reperfusion in rats[J]. Prog Mod Biomed (现代生物医学进展), 2008, 8:219-221.
[58] Si YC, Zhang JP, Xie CE, et al. Effects of Panax notoginseng saponins on proliferation and differentiation of rat hippocampal neural stem cells[J]. Am J Chin Med, 2011, 39:999-1013.
[59] Jauch EC, Saver JL, Adams HP Jr, et al. Guidelines for the early management of patients with acute ischemic stroke:a guideline for healthcare professionals from the American Heart Association/American Stroke Association[J]. Stroke, 2013, 44:870-947.
[60] Ernst R, Pancioli A, Tomsick T, et al. Combined intravenous and intra-arterial recombinant tissue plasminogen activator in acute ischemic stroke[J]. Stroke, 2000, 31:2552-2557.