药学学报  2016, Vol. 51 Issue (4): 529-535   PDF    
可激活的细胞穿透肽:一种应用于疾病诊断和治疗的极具潜力的可活化模式
杨少坤1, 闫逍1, 孙伟红1, 杜青1, 向柏1 , 曹德英1 , 齐宪荣2    
1. 河北医科大学药学院, 河北石家庄 050017;
2. 北京大学药学院, 北京 100191
摘要: 细胞穿透肽是一类由荷正电氨基酸构成的短肽,可介导分子或纳米载体跨细胞膜转运。然而,大多数已知的细胞穿透肽不具备细胞或组织特异性,能与几乎所有类型细胞亲合并被摄取,这一特点严重制约了该类短肽在靶向药物输送领域的应用。因此,学者们致力于将进入体循环的细胞穿透肽惰化,并在其到达肿瘤等病变区域后转变为活化态。Tsien课题组于2004年提出了可激活细胞穿透肽的概念,本文对10余年来这类传递系统的研究进展进行了概述。
关键词: 可激活的细胞穿透肽     肿瘤     传递系统    
Activatable cell-penetrating peptides: a potential activatable modality for diseases diagnosis and therapy
YANG Shao-kun1, YAN Xiao1, SUN Wei-hong1, DU Qing1, XIANG Bai1 , CAO De-ying1 , QI Xian-rong2    
1. School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China;
2. School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
Abstract: Cell-penetrating peptides are composed of positively-charged amino acids that can mediate molecules or nano-carriers across cell membranes. However, most of the known cell-penetrating peptides have no cell-or tissue-specificity, with affinity to almost all types of cells in internalization. The non-specificity of cell-penetrating peptides is a significant obstacle in the application to targeted delivery of imaging probes and therapeutic agents. Accordingly, many studies focused on selective switching of systemically-delivered inert cell-penetrating peptides into active forms in diseased tissues. Tsien groups introduced the concept of activatable cell-penetrating peptides in 2004. Subsequently, a growing number of similar delivery systems (molecular or nano-sized) have been documented, and the sensitive factors have included enzyme, lower pH, light and exogenous component. In this paper, we make an overview of the development of activatable delivery system in recent years.
Key words: activatable cell-penetrating peptide     tumor     delivery system    


可激活的细胞穿透肽 (activatable cell-penetrating peptides,ACPPs) 是一类新型的靶向递送载体,也被称为可激活的蛋白转导域 (activatable protein trans-duction domains,APTDs)[1]。该分子结构中一般包括3个功能区域: 聚阳离子细胞穿透活性域,即细胞穿透肽 (cell-penetrating peptides,CPPs); 可裂解的连接臂; 聚阴离子屏蔽域。其中聚阳离子部分与聚阴离子部分的静电作用,使得前者的细胞穿膜功能被暂时抑制,而两者之间的连接部分在蛋白酶等因素的作用下可发生断裂,这一特点赋予CPPs在特定环境或刺激下细胞膜透过性升高,降低其非特异性细胞摄取所引发的系统毒性。研究人员基于此原理设计并开发了一系列靶向输送系统,其中所依赖的裂解触发条件有肿瘤部位高表达的蛋白酶、较低pH等内部环境因素[1]以及光线、外源性物质等外部的物理化学刺激[2, 3]

1 酶敏感的ACPPs

在已报道的ACPPs中,敏感连接域以蛋白酶裂解底物肽居多,借助肿瘤微环境表达上调的蛋白酶的水解作用,促使CPPs和屏蔽肽分离,从而激活CPPs的细胞膜穿透功能[4]。针对肿瘤微环境高度表达的几种蛋白酶,学者们报道了相应的酶敏感ACPPs。

1.1 基质金属蛋白酶敏感的ACPPs

约10年前,Tsien课题组首次引入一种被称为ACPPs的新型靶 向传递系统[5]。在此系统中,ACPPs由3部分构成,在两条带相反电荷肽段的静电作用下,分子呈现发夹结构。其通过肿瘤区域高表达的基质金属蛋白酶 (matrix metalloproteinase,MMPs) 选择性定位输送到肿瘤细胞。为了进一步评价ACPPs对癌症类型的适用性,该小组在皮下纤维肉瘤、黑色素瘤以及宫颈、前列腺、结肠和乳腺癌等多种移植瘤模型基础上进 行了研究。结果显示,由L型氨基酸底物肽构成的ACPPs相对于阴性对照组 (D型) 表现出明显的分布选择性,在肿瘤部位的累积量提高2~6倍[6]。除改 善体内分布特性,ACPPs相比CPPs对正常细胞的毒性较低。小鼠静脉注射九聚精氨酸(nonaarginine,r9) CPPs后,r9 CPPs组的急性中毒剂量比相对应的ACPPs组低4倍[7]。此外,在Watkins等[8]报道中,将锝放射性核素共轭连接到CPPs结构的末端,以此评价基质金属蛋白酶MMP-14的裂解性能。放射性同位素标记的基质金属蛋白酶MMP-2/9可裂解结构成功地累积于肿瘤部位,与非激活对照组 (MMPs底物序列部分以乱序肽替代) 相比,可激活裂解结构在肿瘤区域富集累积量高达6倍[9]。为了提高ACPPs在肿瘤显影应用中的检测灵敏度,有课题组对分子结构进行了双重标记[10, 11],即在CPPs和聚阴离子屏蔽域各自连接了两种不同的荧光探针基团,利用裂解前后光信号的变化作为评价蛋白酶解活性的指标。ACPPs整体探针的摄取和非特异性亲合不影响定量过程,相比单波长强度的测定方法更简便。鉴于ACPPs结构的肿瘤靶向性特征,齐宪荣课题组首次进行了相关前体药物的研究[12],以PLGLAG为底物序列[13],制得一种共轭连接有阿霉素 (doxorubicin,DOX) 的ACPPs偶联物,ACPP-DOX。实验结果显示,阳性表达MMP-2/9的HT-1080细胞摄取的ACPP- DOX显著多于阴性细胞。ACPP-DOX可高效地抑制HT-1080细胞增殖,而ACPPs几乎无毒性。ACPP- DOX前体药物将在MMPs相关的肿瘤治疗系统领域发挥积极作用。针对基质金属蛋白酶MMP-2与整合素αvβ3受体的强亲合性特点,Tsien课题组将整合素结构域共价连接到ACPPs,构建双靶向系统[14]。生物分布实验结果显示,相比MMPs或整合素αvβ3单靶向体系,双靶向组肿瘤荧光强度是阴性对照组的10倍。共轭连接甲基澳瑞他汀E后,该双靶向系统显示出较理想的MDA-MB-231细胞移植瘤抑制效果,该给药组中1/4裸鼠肿瘤完全消失。

对于上述ACPPs传递系统,两个突出的问题是体循环给药后较高的背景 (尤其是在软骨和肾脏) 和肿瘤区域较低的显影强度[7, 8]。为此,国内外学者开展了多项ACPPs与纳米载体相结合的课题研究,涉及树枝状偶联大分子体系[15, 16]、量子点[17]、聚合物胶束[18, 19]、纳米脂质载体[20]和聚电解质复合物纳米粒[21, 22]等。通过输送显影分子、治疗剂 (抗肿瘤药物和基因) 等负载物,ACPPs修饰的纳米载体显示出较理想的肿瘤检测和肿瘤增长抑制能力。ACPPs和纳米载体的组合策略为肿瘤检测和干预开辟了一条崭新的途径。

除针对肿瘤病灶的相关研究外,ACPPs系统也被用于缺血心肌组织中MMPs的无创成像,旨在预测心肌梗死后的心脏功能。van Duijnhoven等[23]设计合成了一种MMPs可激活的ACPPs并对其进行双同位素标记,借助白蛋白亲合配体的修饰作用延长血液清除。基于瑞士小鼠心肌梗死模型的生物分布实验显示,梗死心肌部位分布的探针量显著高于远端心肌,这一保留行为的差异与明胶酶的表达水平高度相关。研究结果表明,这种ACPPs探针为心梗后心肌重塑过程中MMPs活性的评价提供了可能,在心血管系统MMPs活性的无创可视化和定量化方面具有广阔的应用前景。

1.2 其他

动脉粥样硬化疾病发展过程中,凝血酶已被视为一个重要的因素。Olson等[24]开发了一种新型的荧光标记ACPPs,其中包含来自蛋白酶激活受体-1的肽序列DPRSFL。研究显示,含该短肽序列的ACPPs可被纯化的凝血酶优先裂解,且裂解产物选择性累积于活体小鼠的动脉粥样硬化病变部位。该研究组[25]又设计了一种选择性更高的ACPPs (PPRSFL取代DPRSFL),以测量脑损伤后凝血酶的活性。大 鼠脑切片实验中被Cy5标识的大部分PPRSFL-ACPP (约80%) 与凝血酶共定位,进一步证实了凝血酶活性对体内PPRSFL-ACPP识别的必要性。上面提到 的两种ACPPs只含有一个荧光团 (Cy5),靶组织中未裂解的肽存在干扰。Tsien课题组[26]将荧光受体 (Cy7) 附着到多聚阴离子域得到一个新型参比ACPPs (RACPPs)。RACPPs聚阳离子域上的Cy5和受体荧光团Cy7之间存在高效的荧光共振能量转移 (fluorescence resonance energy transfer,FRET),经凝血酶裂解后产生多聚阴离子和多聚阳离子序列,导致FRET中断进而恢复Cy5荧光团且消除Cy7再 发射。体外加入纯化的凝血酶,Cy5/Cy7发射比率提高了34倍。将PPRSFL换为norleucine-TPRSFL,该课题组还设计合成了一种基于正亮氨酸TPRSFL的RACPPNleTPRSFL,可使凝血酶裂解加速约90倍。近期已有研究筛选出新的有潜力的凝血酶特异性底物,为RACPPs进一步的优化升级提供了更大的空间[27, 28]

相比正常前列腺组织,前列腺特异抗原 (prostate- specific antigen,PSA) 在前列腺癌组织中的表达显著提高[29]。基于这一特点,Goun等[30]设计构建了一种“可激活的”PTD (APTD),r8 (D-arginine octamer) PTD通过PSA酶解底物肽 (HSSKLQ) 连接到衰减域。对不同序列的测试结果显示,序列DGGDGGDGGD显示了最好的传递衰减效率。齐宪荣课题组[31]结合具有前列腺特异性膜抗原靶向作用的叶酸和PSA敏感的ACPPs,制备了一种双靶向修饰的前列腺肿瘤给药脂质体系统。相比单一修饰 (叶酸和ACPPs) 脂质体,负载小干扰RNA (siRNA) 的双修饰脂质体优势明显,实现更强的细胞摄取、更大程度的保罗样激酶1表达下调和显著增强的细胞凋亡等作用。

豆荚蛋白是一种高度保守的溶酶体/血管半胱氨酸蛋白酶,其表达水平在多种不同类型的实体瘤中显著上调,此变化与潜在的恶性肿瘤密切相关[32]。南开大学向荣课题组研究显示,将豆荚蛋白的底物丙氨酸-丙氨酸-天冬酰胺 (alanine-alanine-asparagines,AAN) 共价连接在转录活化因子 (trans-activating transcriptional activator,TAT) 的第4个赖氨酸上,可显著 ( > 70%) 降低该肽的细胞膜透过能力。基于此发现,该课题组将AAN偶联的TAT修饰于载DOX脂质体表面,设计了一种新型的脂质体载药系统 (AAN-TAT-Lipo-DOX)。利用豆荚蛋白表达刺激剂—碳酰氯及豆荚蛋白抑制剂的作用,证实活性豆荚蛋白可有效地催化TAT从AAN-TAT-脂质体载体表面释放并恢复TAT的穿膜能力。体内实验显示,AAN- TAT-Lipo-DOX相比DOX对照制剂组 (TAT和AAN分别修饰的载DOX脂质体 ) 具有更强的抗肿瘤作用,前者实验动物具备更长的平均存活时间。因此,这种递送平台为提高抗肿瘤药物的药效、降低毒副作用提供了新的解决途径[33]

2 pH敏感的ACPPs

为提高纳米载体对肿瘤微环境的响应性,Kang 等[34]引入了一种高度pH敏感的聚 (异丁烯酰基磺 胺二甲氧嗪) 二嵌段共聚物 [poly (methacyloyl sul­fadimethoxine),PSD],该共聚物在pH 7.4时带负电荷,低于pH 7.0 (肿瘤组织细胞外pH) 呈中性。利用PSD和TAT肽 ,该课题组研发了一种新型的靶向酸性实体瘤的给药系统[35]。这一智能胶束给药系统包含两个 部分: ① 载药聚合物胶束部分,含聚乙二醇 [poly (ethylene glycol),PEG] 构成的外壳、PEG远端偶联的TAT和由聚 (L-乳酸) 构成的含药疏水内核; ② TAT屏蔽部分,PSD-b-PEG。聚合物和TAT胶束混合后,PSD-b-PEG嵌段共聚物的负电荷可以屏蔽血液循环中荷正电的TAT肽,并在肿瘤胞外基质 (弱酸环境诱导PSD质子化) 中将其暴露出来。 结果显示,随着pH降低 (从pH 6.6降至pH 6.0),胶束与PSD-b-PEG迅速解离,随之TAT胶束转运进入MCF-7细胞。

上述系统中的聚合物缺乏生物可降解性,如果累积剂量达到临界点以上,可能会产生毒性。因此,Bae课题组构建了一个新型的pH敏感嵌段共聚物,聚 (L-半胱氨酸双酰胺-g-磺胺嘧啶) [poly(L-cystine bisamide-g-sulfadiazine)-b-PEG,PCBS-b-PEG][36]。此TAT肽屏蔽共聚物可以应用于相同的内部载药胶束。流式细胞术分析显示,去屏蔽胶束组细胞相比屏蔽胶束组呈现更高的荧光强度 (10倍)。此载药系统的屏蔽/未屏蔽摄取比率是前期报道结果[34]< /sup>的8倍,显著提高的响应性源于结构中磺胺类成分的变化,由磺胺二甲氧嗪 (pKa = 6.1) 改成磺胺嘧啶 (pKa = 6.4),同时也改变了pH敏感聚合物的分子质量。此外,将载药系统注射进入机体后,PCBS在循环过程中能够保持完整性,4 h后伴随着载体的外渗逐渐降解。

与赖氨酸 (pKa近似为7.4) 不同,组氨酸在pH 6.5质子化。因此,组氨酸组成的肽在pH低于6.5时带净正电荷,而在pH 7.4时呈近中性。组氨酸这一特性被利用于设计新型的pH依赖溶膜肽[37]。基于细胞穿透肽类似物TP10-5 (TK),Zhang等[38]研发了一种新的酸活化的CPPs (TH),其中所有的赖氨酸均由组氨酸替代。这种CPPs在肿瘤酸性环境下质子化并显正电性,通过静电吸引作用与细胞膜亲合,进而完成细胞内摄。细胞水平实验显示,TH在pH 6.0条件下存在剂量依赖的肿瘤细胞杀伤作用,但pH 7.4时则无细胞毒性。此外,TH-CPT (camptothecin,喜树碱) 偶联物表现出显著的pH依赖细胞毒性,而CPT组和TK-CPT组不同条件下 (pH 7.4和pH 6.0) 的抗增殖效果无显著差别。研究表明,基于组氨酸的系统具备更高的pH响应性。

3 光敏感的ACPPs

由于蛋白酶表达水平和瘤内pH的个体间差异[39],以上肿瘤微环境敏感ACPPs可能面临无法有效激活的问题。光等外部刺激无疑是一个理想的选择,这一因素不依赖肿瘤微环境的细胞外条件且存在时间和空间上的可控性[40]。Shamay等[41]通过光可裂解连接臂将CPPs赖氨酸残基与离子抑制基团偶联,以此屏蔽CPPs功能。ACPPs载体由该惰性结构和N-(2-羟丙基) 甲基丙烯酰胺 [N-(2-hydroxypropyl)methacrylamide,HPMA] 共聚物共价连接而得。研究显示,紫外光照射 (10 min) 后ACPPs细胞摄取显著增强,提示光敏感的连接臂有效裂解,保护基团得以释放。通过偶联促凋亡肽 (KLAKLAK)2进行了细胞毒性评价,未触发型处理的4种肿瘤细胞的生存率维持在90%~100%,而紫外光激活组的细胞生存率可降低至10%~20% 水平。另有研究[42]利用两个烷基链将TAT连接到PEG化脂质体的表面,其中一个烷基链通过UV可裂解的连接臂与肽相接,构建UV敏感的ACPPs修饰脂质体。在紫外光的辐射作用下烷基链解离,充分暴露的TAT肽介导脂质体完成细胞内化过程。流式细胞结果显示,辐射后ACPPs修饰组的细胞黏附提高10倍,已达到阳性对照组 (TAT修饰脂质体) 的水平。

紫外线触发因素的引入适用于不同类型肿瘤的干预,但是较短波长水平的辐射只能在组织内实现非常有限的穿透深度。相比之下,近红外线 (near-infrared,NIR) 具有更长的波长,在活组织中的深度可达到 近10 cm。梅兴国课题组[43]近期报道了一种CPPs和天冬酰胺-甘氨酸-精氨酸肽 (asparagine-glycine- arginine peptide,NGR) 配体双修饰的载siRNA脂质体,其中CPPs的赖氨酸侧链上偶联有双光子敏感的硝基苯衍生物 (PG),后者结构中的羧基可屏蔽CPPs的正电荷,进而抑制其非特异性细胞摄取。当该脂质体进入血液循环后,NGR位点与CD13受体的强亲合作用可促进载体主动靶向定位于肿瘤组织,随后肿瘤部位NIR的辐射作用使得PG解离,CPPs的细胞穿 透作用充分激活。研究结果显示,双修饰脂质体可实现更具特异性的肿瘤分布和更有效的肿瘤细胞摄取,证明了光敏CPPs和NGR双配体的协同作用。

4 外源性因子诱导的ACPPs

除了蛋白酶裂解功能和上面所述的其他作用,外源性因子的介入也可引起阴离子域与阳离子CPPs的解离。黄永焯等[44]开发了一种蛋白复合物,由两部分组成: 结合一分子肝素 (Hep) 的抗体靶向部分; 通过二硫键连接天冬酰胺酶 (asparaginase,ASNase) 和TAT肽的药物部分。这两部分通过荷负电肝素和荷正电TAT分子间静电作用而自发地结合,避免了体循环中载体与正常组织的亲合作用。到达靶部位后,外源性引入的硫酸鱼精蛋白可以更紧密地结合肝素,将TAT药物部分从Hep-抗体复合物中置换出来。 研究发现,TAT-ASNase共轭物不仅能够转运进入MOLT-4细胞产生毒性作用,该共轭物的细胞摄取还可以通过引入肝素和鱼精蛋白加以调控。此外,杨志民课题组[45]还发现这种复合系统能高效传递ASNase进入L5178Y白血病细胞。基于类似的激活和靶向传递策略,该课题组最近又分别报道了两种白树毒素 (gelonin,Gel) 给药系统: TAT-Gel/Hep[46]和TAT-Gel/ T84.66-Hep[47],后者中T84.66-Hep代表肝素和抗癌胚抗原的单克隆抗体偶联物。荷LS174T瘤裸鼠模型的体内评价结果显示,相比阴性对照组,瘤内连续注射TAT-Gel/Hep和鱼精蛋白的肿瘤抑制率 (67%) 明显高于TAT-Gel/Hep单独给药组 (12%)[46]; 配合静脉注射鱼精蛋白后,TAT-Gel/T84.66-Hep组 (静脉注射) 的抑制率由38% 提高至65%[47]。结果表明,通过肝素/鱼精蛋白调控、TAT介导的传递系统有望达到更理想的靶向干预效果。

上述给药系统总结于表 1中。

Table 1 Reported ACPPs systems. pHe: Extracellular pH of tumor cells; shVEGF: Anti-VEGF agent; VEGF: Vascular endothelial growth factor; Quenching agents: BHQ3 and QXL680; Fluorophores: Cy5.5,Alexa750 and Hilyte750; LMWP: Low molecular weight protamine; PSA: Prostate-specific antigen; AAN: Alanine-alanine-asparagines; The core sequence of TAT is GRKKRRQRRR; PSD: Poly(methacryloyl sulfadimethoxine); PEG: Poly (ethylene glycol); PCBS: Poly(L-cystine bisamide-g-sulfadiazine); H represents six histidines in the TH; TH: AGYLLGHINLHHLAHL(Aib)HHIL-NH2; Nvoc: 6-Nitroveratrylcarbonyl; (KLAKLAK)2: Proapoptotic drug peptide; NIR: Near-infrared; FITC: Fluorescein isothiocyanate; TRITC: Rhodamine B isothiocyanate; Atto655,Dylight 488 and Dylight 775-B4 refer to fluorescent dyes; The capital letters represent “L-amino acids”,lowercase letters “D-amino acids” among these three columns of sensitive connecting portion,cell penetrating activity sequence and masking sequence
5 结论与展望

从Tsien课题组首次提出ACPPs的概念至今已 有10余年,国内外学者报道了基于肿瘤微环境 (蛋白酶、胞外pH等) 敏感和刺激 (光、外源性物质等) 响应原理的多种ACPPs载体形式。尽管部分研究在体外 (细胞) 水平已经较好地调控CPPs的穿膜作用甚至在小动物模型上取得了较理想的效果,但相比临床的疾病诊治应用,还有很多研究工作需要开展和深入,如比较筛选不同类型的纳米体系,确保在不影响ACPPs功能前提下提高载体的靶向定位能力,为CPPs功能的激活创造条件。此外,机体个体间差异限制了肿瘤微环境敏感型ACPPs的应用,而刺激响应型ACPPs难以针对肿瘤转移灶展开有效杀伤,故

整合环境敏感或刺激响应化学键、靶向配体等多种靶向元素,设计构建合理的多功能载体,有望实现ACPPs更高选择性的体内转运和更理想的干预效果。

参考文献
[1] Zhang XK, Zhang X, Wang FS. Intracellular transduction and potential of TAT PTD and its analogs:from basic drug delivery mechanism to application[J]. Expert Opin Drug Deliv, 2012, 9:457-472.
[2] MacEwan SR, Chilkoti A. Harnessing the power of cellpenetrating peptides:activatable carriers for targeting systemic delivery of cancer therapeutics and imaging agents[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2013, 5:31-48.
[3] Zhang L, Wei G, Lu WY. Application of activatable cellpenetrating peptide in the field of tumor therapy[J]. Acta Pharm Sin (药学学报), 2014, 49:1639-1643.
[4] He F, Cao L, Zhang XJ, et al. The application of enzymesensitive activatable cell-penetrating peptides to targeted delivery system[J]. Acta Pharm Sin (药学学报), 2015, 50:141-147.
[5] Jiang T, Olson ES, Nguyen QT, et al. Tumor imaging by means of proteolytic activation of cell-penetrating peptides[J]. Proc Natl Acad Sci U S A, 2004, 101:17867-17872.
[6] Olson ES, Aguilera TA, Jiang T, et al. In vivo characterization of activatable cell-penetrating peptides for targeting protease activity in cancer[J]. Integr Biol, 2009, 1:382-393.
[7] Aguilera TA, Olson ES, Timmers MM, et al. Systemic in vivo distribution of activatable cell penetrating peptides is superior to that of cell penetrating peptides[J]. Integr Biol, 2009, 1:371-381.
[8] Watkins GA, Jones EF, Scott Shell M, et al. Development of an optimized activatable MMP-14 targeted SPECT imaging probe[J]. Bioorg Med Chem, 2009, 17:653-659.
[9] van Duijnhoven SMJ, Robillard MS, Nicolay K, et al. Tumor targeting of MMP-2/9 activatable cell-penetrating imaging probes is caused by tumor-independent activation[J]. J Nucl Med, 2011, 52:279-286.
[10] Levi J, Kothapalli SR, Ma TJ, et al. Design, synthesis, and imaging of an activatable photoacoustic probe[J]. J Am Chem Soc, 2010, 132:11264-11269.
[11] Savariar EN, Felsen CN, Nashi N, et al. Real-time in vivo molecular detection of primary tumors and metastases with ratiometric activatable cell-penetrating peptides[J]. Cancer Res, 2013, 73:855-864.
[12] Shi NQ, Gao W, Xiang B, et al. Enhancing cellular uptake of activatable cell-penetrating peptide-doxorubicin conjugate by enzymatic cleavage[J]. Int J Nanomed, 2012, 7:1613-1621.
[13] Wang PC, Qi XR. The design and enzymatic hydrolysis of activatable cell-penetrating peptide[J]. Acta Pharm Sin (药学学报), 2010, 45:1048-1051.
[14] Crisp JL, Savariar EN, Glasgow HL, et al. Dual targeting of integrin αvβ3 and matrix metalloproteinase-2 for optical imaging of tumors and chemotherapeutic delivery[J]. Mol Cancer Ther, 2014, 13:1514-1525.
[15] Olson ES, Jiang T, Aguilera TA, et al. Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases[J]. Proc Natl Acad Sci U S A, 2010, 107:4311-4316.
[16] Nguyen QT, Olson ES, Aguilera TA, et al. Surgery with molecular fluorescence imaging using activatable cellpenetrating peptides decreases residual cancer and improves survival[J]. Proc Natl Acad Sci U S A, 2010, 107:4317-4322.
[17] Zhang Y, So MK, Rao JH. Protease-modulated cellular uptake of quantum qots[J]. Nano Lett, 2006, 6:1988-1992.
[18] Xia HM, Gu GZ, Hu QY, et al. Activatable cell penetrating peptide-conjugated nanoparticles with enhanced permeability for site-specific targeting delivery of anticancer drug[J]. Bioconjug Chem, 2013, 24:419-430.
[19] Gao HL, Zhang S, Cao SJ, et al. Angiopep-2 and activatable cell-penetrating peptide dual-functionalized nano particles for systemic glioma-targeting delivery[J]. Mol Pharm, 2014, 11:2755-2763.
[20] Gao W, Xiang B, Meng TT, et al. Chemotherapeutic drug delivery to cancer cells using a combination of folate targeting and tumor microenvironment-sensitive polypeptides[J]. Biomaterials, 2013, 34:4137-4149.
[21] Huang SX, Shao K, Liu Y, et al. Tumor-targeting and microenvironment-responsive smart nanoparticles for combination therapy of antiangiogenesis and apoptosis[J]. ACS Nano, 2013, 7:2860-2871.
[22] Huang S, Shao K, Kuang YY, et al. Tumor targeting and microenvironment-responsive nanoparticles for gene delivery[J]. Biomaterials, 2013, 34:5294-5302.
[23] van Duijnhoven SMJ, Robillard MS, Hermann S, et al. Imaging of MMP activity in postischemic cardiac remodeling using radiolabeled MMP-2/9 activatable peptide probes[J]. Mol Pharm, 2014, 11:1415-1423.
[24] Olson ES, Whitney MA, Friedman B, et al. In vivo fluorescence imaging of atherosclerotic plaques with activatable cellpenetrating peptides targeting thrombin activity[J]. Integr Biol, 2012, 4:595-605.
[25] Chen B, Friedman B, Whitney MA, et al. Thrombin activity associated with neuronal damage during acute focal ischemia[J]. J Neurosci, 2012, 32:7622-7631.
[26] Whitney M, Savariar EN, Friedman B, et al. Ratiometric activatable cell-penetrating peptides provide rapid in vivo readout of thrombin activation[J]. Angew Chem Int Ed Engl, 2013, 52:325-330.
[27] Gallwitz M, Enoksson M, Thorpe M, et al. The extended cleavage specificity of human thrombin[J]. PLoS One, 2012, 7:e31756.
[28] van Berkel SS, van der Lee B, van Delft FL, et al. Fluorogenic peptide-based substrates for monitoring thrombin activity[J]. ChemMedChem, 2012, 7:606-617.
[29] Chang PV, Dube DH, Sletten EM, et al. A strategy for the selective imaging of glycans using caged metabolic precursors[J]. J Am Chem Soc, 2010, 132:9516-9518.
[30] Goun EA, Shinde R, Dehnert KW, et al. Intracellular cargo delivery by an octaarginine transporter adapted to target prostate cancer cells through cell surface protease activation[J]. Bioconjug Chem, 2006, 17:787-796.
[31] Xiang B, Dong DW, Shi NQ, et al. PSA-responsive and PSMAmediated multifunctional liposomes for targeted therapy of prostate cancer[J]. Biomaterials, 2013, 34:6976-6991.
[32] Li N, Liu Q, Su Q, et al. Effects of legumain as a potential prognostic factor on gastric cancers[J]. Med Oncol, 2013, 30:621.
[33] Liu Z, Xiong M, Gong JB, et al. Legumain proteaseactivated TAT-liposome cargo for targeting tumours and their microenvironment[J]. Nat Commun, 2014, 5:4280.
[34] Kang SI, Bae YH. pH-induced solubility transition of sulfonamide-based polymers[J]. J Control Release, 2002, 80:145-155.
[35] Sethuraman VA, Bae YH. TAT peptide-based micelle system for potential active targeting of anti-cancer agents to acidic solid tumors[J]. J Control Release, 2007, 118:216-224.
[36] Sethuraman VA, Lee MC, Bae YH. A biodegradable pHsensitive micelle system for targeting acidic solid tumors[J]. Pharm Res, 2008, 25:657-666.
[37] Makovitzki A, Fink A, Shai Y. Suppression of human solid tumor growth in mice by intratumor and systemic inoculation of histidine-rich and pH-dependent host defense-like lytic peptides[J]. Cancer Res, 2009, 69:3458-3463.
[38] Zhang W, Song JJ, Zhang BZ, et al. Design of acid-activated cell penetrating peptide for delivery of active molecules into cancer cells[J]. Bioconjug Chem, 2011, 22:1410-1415.
[39] Kratz F, Abu Ajaj K, Warnecke A. Anticancer carrier-linked prodrugs in clinical trials[J]. Expert Opin Investig Drugs, 2007, 16:1037-1058.
[40] Forman J, Dietrich M, Monroe WT. Photobiological and thermal effects of photoactivating UVA light doses on cell cultures[J]. Photochem Photobiol Sci, 2007, 6:649-658.
[41] Shamay Y, Adar L, Ashkenasy G, et al. Light induced drug delivery into cancer cells[J]. Biomaterials, 2011, 32:1377-1386.
[42] Hansen MB, van Gaal E, Minten I, et al. Constrained and UV-activatable cell-penetrating peptides for intracellular delivery of liposomes[J]. J Control Release, 2012, 164:87-94.
[43] Yang Y, Yang YF, Xie XY, et al. Dual-modified liposomes with a two-photon-sensitive cell penetrating peptide and NGR ligand for siRNA targeting delivery[J]. Biomaterials, 2015, 48:84-96.
[44] Huang YZ, Park YS, Wang J, et al. ATTEMPTS system:a macromolecular prodrug strategy for cancer drug delivery[J]. Curr Pharm Des, 2010, 16:2369-2376.
[45] Kwon YM, Li YT, Liang JF, et al. PTD-modified ATTEMPTS system for enhanced asparaginase therapy:a proof-of-concept investigation[J]. J Control Release, 2008, 130:252-258.
[46] Shin MC, Zhao JW, Zhang J, et al. Recombinant TAT-gelonin fusion toxin:synthesis and characterization of heparin/protamine-regulated cell transduction[J]. J Biomed Mater Res A, 2015, 103:409-419.
[47] Shin MC, Zhang J, Min KA, et al. PTD-modified ATTEMPTS for enhanced toxin-based cancer therapy:an in vivo proof-ofconcept study[J]. Pharm Res, 2015, 32:2690-2703.