药学学报  2016, Vol. 51 Issue (3): 411-419   PDF    
甘青大戟中的萜类化学成分
陶耀武2, 田冶1, 许文东1, 郭庆兰1, 石建功1     
1. 中国医学科学院、北京协和医学院药物研究所, 天然药物活性物质与功能国家重点实验室, 北京 100050;
2. 甘肃省金昌市药品检验检测中心, 甘肃金昌 737100
摘要: 通过正相硅胶、大孔吸附树脂、MCI树脂、Sephadex LH-20、制备薄层色谱和反相HPLC等多种色谱分离方法相结合,从甘青大戟乙醇提取物中分离得到16个萜类化合物;借助波谱学分析方法鉴定它们的结构分别为:黑麦草内酯肉豆蔻酸酯(1)、24-甲烯基甘遂烷-8-烯-3β,11α二醇-7-酮(2)、黑麦草内酯(3)、3β-hydroxy-5α,6α-epoxy-7-megastigmene-9-one (4)、续随子醇A (5)、续随子醇D (6)、latilagascene F (7)、泽漆内酯A (8)、泽漆内酯B (9)、3-O-乙酰基泽漆内酯B (10)、泽漆内酯D (11)、泽漆内酯E (12)、(+)-11-乙酰氧基阿替烷-16-烯-3,14-二酮(13)、高根二醇(14)、熊果醇(15)和白桦脂醇(16)。以上化合物均为首次从甘青大戟中分离得到,其中12为新化合物。
关键词: 大戟属     甘青大戟根     萜类     黑麦草内酯肉豆蔻酸酯     24-甲烯基甘遂烷-8-烯-3β,11α-二醇-7-酮    
Terpenoids from Euphorbia micractina
TAO Yao-wu2, TIAN Ye1, XU Wen-dong1, GUO Qing-lan1, SHI Jian-gong1     
1. Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China;
2. The Drug Inspection Test Center in Jinchang City of Gansu Province, Jinchang 737100, China
Abstract: From an ethanol extract of Euphorbia micractina roots, sixteen terpenoids were isolated by a combination of various chromatographic techniques, including column chromatography over macroporous resin, silica gel, and Sephadex LH-20 and reversed-phase HPLC. Their structures were elucidated by spectroscopic data analysis as loliolide myristate (1), 24-methylenetirucall-8-en-3β,11α-diol-7-one (2), loliolide (3), 3β-hydroxy-5α,6α-epoxy-7-megastigmen-9-one (4), jolkinol A (5), jolkinol D (6), latilagascene F (7), helioscopinolide A (8), helioscopinolide B (9), 3-O-acetylhelioscopinolide B (10), helioscopinolide D (11), helioscopinolide E (12), (+)-11-acetoxyatis-16-en-3,14-dione (13), erythrodiol (14), uvaol (15) and betulin (16). All of the compounds were obtained from this plant for the first time, in which 1 and 2 are new compounds.
Key words: Euphorbia     root of Euphorbia micractina     terpenoid     loliolide myristate     24-methylenetirucall-8-en-3β,11α-diol-7-one    

甘青大戟 (Euphorbia micractina Boiss) 为大戟科 (Euphorbiaceae) 大戟属 (Euphorbia)植物, 主要分布于山西、陕西、甘肃、青海、新疆和西藏等地, 生于海拔1 500~2 700 m的山坡、草甸、林缘及砂砾地区, 民间用于除疣[1]。化学成分及其药理活性研究显示, 大戟属植物中含有多样性结构的三萜和二萜类成分, 其中一些二萜类成分不但具有显著的抗菌、抗炎、抗病毒、抗结核、抗肿瘤以及逆转多药耐药等多种药理作用, 同时表现出对皮肤、口腔及胃肠道黏膜的强烈刺激性和致炎、辅助致癌等毒副作用[2]。从该属植物E. peplus中发现的巨大戟醇甲基丁烯酸酯 (ingenolmebutate) 于2012年获美国FDA批准用于治疗日光性角化病[3]。为了从传统和民间药用植物中获得结构多样的化合物, 通过多种药理模型评价寻找新型先导化合物, 同时为阐述中草药的“多成分、多活性、多用途”等特点累积基础, 作者课题组近年来开展了中草药成分及其活性的多样性研究[4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], 并在早期研究[17]的基础上, 进行了甘青大戟化学成分及其药理活性的较系统研究。已从甘青大戟根的乙醇提取物中分离得到了包括降碳倍半萜、二萜、三萜、甾体、香豆素、黄酮和简单酚酸等类型的85个结构多样的化合物。前文已报道了包括多种骨架类型的9个三萜类[18]和31个二萜类新化合物及其抗病毒等药理活性[19, 20, 21, 22], 本文继续报道从中首次得到的16个萜类成分的分离、结构鉴定和活性筛选结果, 包括3个降碳倍半萜、9个二萜和4个三萜, 其中2个是新化合物 (1和2) (图 1)。

Figure 1 Structuresof compounds 1 and 2

化合物1 白色无定形固体; 易溶于丙酮、氯仿和甲醇, 难溶于水; [α]D20 +27.5 (c 0.11, MeOH); UV (MeOH) λmax(log ε) 212 (2.99) nm; CD (MeOH) 217 (Δε -8.14) nm; IR νmax 3 107,2 915, 2 850,1 748, 1 733,1 627, 1 473,1 457, 1 414,1 377, 1 257,1 229, 1 181,1 152,956, 941, 886, 782, 718, 678 cm-1; ESI-MS m/z 407 [M+H]+, 429 [M+Na]+, 835 [2M+Na]+; HR-ESI- MS m/z 429.299 2 [M+Na]+ (calcd. for C25H42O4Na,429.297 5); 1H NMR(acetone-d6, 500 MHz) δ 5.80 (1H, s, H-3), 2.05 (1H, dt, J =14.0, 2.5 Hz, H-5a), 1.71 (1H, dd, J = 14.0, 4.0 Hz, H-5b), 5.29 (1H, m, H-6), 2.48 (1H, dt, J = 14.0, 2.5 Hz, H-7a), 1.90 (1H, dd, J = 14.0, 4.0 Hz, H-7b), 1.34 (3H, s, H3-8), 1.46 (3H, s, H3-9),1.73 (3H, s, H3-10), 2.42 (2H, t, J = 7.5 Hz, H2-2'), 1.68 (2H, q, J = 7.5 Hz, H2-3'), 1.30~1.42 (20H, m, H2-4'~H2-13'), 0.90 (3H, t, J = 7.0 Hz, H3-14'); 13C NMR (acetone-d6, 125 MHz) δ171.2 (C-2), 114.0 (C-3), 181.8 (C-3a), 36.3 (C-4), 44.6 (C-5), 69.2 (C-6), 43.5 (C-7), 30.7 (C-8), 26.4 (C-9), 27.1 (C-10), 86.1 (C-7a), 172.7 (C-1'), 35.0 (C-2'), 25.5 (C-3'), 29.3~30.4 (C-4'~C-11'), 23.3 (C-12'), 32.6 (C-13'), 14.3 (C-14')。

化合物1的以上NMR数据与同时分离得到的已知化合物3 (黑麦草内酯, loliolide[23, 24]) 的数据十分相似, 主要区别是化合物1的NMR谱显示有一组可归属于一个长链脂肪酰基的特征共振信号; 同时, 化合物1的H-6和C-6分别被去屏蔽ΔδH +1.01和ΔδC +2.4, 而其C-5和C-7分别被屏蔽ΔδC -3.3和-2.9。这些差别显示化合物1是黑麦草内酯C-6上的羟基被长链脂肪酸酯化的产物。结合HR-ESI-MS显示化合物1的分子式C25H42O4, 确定长链脂肪酸为含有14个碳的肉豆蔻酸。因此, 推定化合物1是黑麦草内酯的肉豆蔻酸酯, 并得到2D NMR (图 2) 和NOE差谱实验数据分析的进一步证实。特别是在NOE差谱中, 照射H3-10时, H-7a和H3-9有明显增益, 表明这些质子在空间上相互接近, 位于环系的同侧, 且CH3-9和CH3-10处于六元环的准a-键。另外, 照射H-6时, H-5a、H-5b、H-7a和H-7b均有增益, 其中H-5b和H-7b增益更加显著, 结合它们的偶合常数, 表明H-6处于六元环的准e-键(图 3)。化合物1和同时分离得到的黑麦草内酯CD谱中的Cotton效应[25]相似,表明它们具有相同的绝对构型。因此, 化合物1的结构确定为黑麦草内酯肉豆蔻酸酯 (loliolide myristate)。

Figure 2 Main 1H-1H COSY (thick lines) and HMBC correlations (dashed arrows,from 1H to 13C) of compounds 1 and 2

Figure 3 NOE enhancements (dashed arrows) observed in the NOE difference spectra of compounds 1 and 2

化合物2 白色无定形固体; 易溶于丙酮、氯仿和甲醇, 难溶于水; TLC在UV 254 nm检测有暗斑; [α]D20 +6.7 (c 0.17, MeOH); UV (MeOH) λmax(log ε) 251 (2.58) nm; CD (MeOH)214 (De +6.53), 251 (De -9.31), 335 (De +1.83) nm; IR νmax 3 471, 3 086,2 961, 2 873,1 709, 1 660,1 591, 1 457,1 376, 1 331,1 273, 1 190,1 025, 981, 885 cm-1; EI-MS 70 eV m/z (%) 470 (80) [M]+∙, 452 (43) [M-H2O]+∙,434 (36) [M-2H2O]+∙, 316 (48), 260 (64), 242 (37) 121(57), 69 (83), 55 (100); HR-EI-MS m/z470.3740 [M]+∙ (calcd. for C31H50O3, 470.3760); 1H NMR (DMSO-d6, 500 MHz) δ1.92 (1H, m, H-1a), 1.73 (1H, m, H-1b), 1.51 (2H, m, H2-2), 3.08 (1H, dt, J = 10.0, 5.0 Hz, H-3), 4.45 (1H, d, J = 5.0 Hz,OH-3), 1.60 (1H, dd, J = 14.5, 3.0 Hz, H-5), 2.50 (1H, dd, J =14.5, 13.0 Hz, 13H-6a), 2.20 (1H, dd, J = 13.0, 3.0 Hz, H-6b), 4.34 (1H, dt, J = 9.0, 5.5 Hz, H-11), 4.83 (1H, d, J = 6.5 Hz,OH-11), 2.27 (1H, dd, J = 13.5, 9.0 Hz, H-12a), 1.74 (1H, dd, J = 13.5, 5.5 Hz, H-12b), 1.83 (1H, m, H-15a), 1.51 (1H, m, H-15b), 1.89 (1H, m, H-16a), 1.20 (1H, m, H-16b), 1.50 (1H, m, H-17), 0.57 (3H, s, H3-18), 1.11 (3H, s, H3-19), 1.31 (1H, m, H-20), 0.89 (3H, d, J = 6.5 Hz, H3-21),1.52 (1H, m, H-22a), 1.11 (1H, m, H-22b), 2.07 (1H, m, H-23a), 1.89 (1H, m, H-23b), 2.19 (1H, m, H-25), 0.98 (3H, d, J = 6.5 Hz, H3-26), 0.97 (3H, d, J = 6.5 Hz, H3-27), 0.87 (3H, s, H3-28),0.75 (3H, s, H3-29), 1.04 (3H, s, H3-30), 4.69 (br s, H-31a), 4.73 (br s, H-31b); 13C NMR (DMSO-d6, 125 MHz) δ33.8 (C-1), 27.4 (C-2), 76.2 (C-3), 38.8 (C-4), 50.3 (C-5), 36.8 (C-6), 199.8(C-7), 139.8 (C-8), 161.8 (C-9), 40.0 (C-10), 63.3 (C-11), 44.7 (C-12), 47.2(C-13), 47.6 (C-14), 32.8 (C-15), 27.7 (C-16), 49.6 (C-17), 16.8 (C-18), 19.5(C-19), 35.8 (C-20), 18.5 (C-21), 34.4 (C-22), 30.8 (C-23), 155.9 (C-24), 33.2(C-25), 21.7 (C-26), 21.9 (C-27), 27.6 (C-28), 15.6 (C-29), 24.8 (C-30), 106.6(C-31)。

化合物2的HR-EI-MS数据提示其分子式为C31H50O3,不饱和度为7。根据化合物2的DEPT谱和碳共振信号的化学位移, 以及1H NMR谱中特征甲基氢信号的裂分情况, 推断其结构中存在5个与季碳连接的甲基、3个与次甲基联接的甲基、8个sp3杂化的亚甲基、1个sp2杂化的亚甲基、6个次甲基 (2个连氧碳)、5个sp3杂化的季碳、3个sp2杂化的烯碳和1个酮羰基。综合这些信息, 推断该化合物为1个比较特殊的含有31个碳原子的高四环三萜二羟基二烯酮, 且存在1个环外或末端双键, 并借助2D NMR实验和图谱综合解析对其结构进行了确定。

通过1H-1HCOSY和HSQC图谱解析, 对化合 物2的NMR谱中氢及其直接相连的碳信号进行了准确归属。在化合物2的1H-1H COSY谱中, 根据H2-1/ H2-2/H-3/OH-3、H2-6/H-5、H2-12/H-11/OH-11、H-20/H3-21、H2-15/H2-16/H-17/H-20/H2-22/H2-23和H3-26/H-25/H3-27的交叉峰信号, 确定了该化合物结构中氢之间存在邻位偶合关系的结构片段 (图 2)。化合 物2的HMBC谱给出甲基氢与碳的远程强相关信号, 即H3-28和H3-29同时与C-3、C-4和C-5相关,H3-19与C-1、C-5、C-9和C-10相关,H3-18与C-12、C-13、C-14和C-17相关,H3-30与C-8、C-13、C-14和C-15相关,以及H3-21与C-17、C-20和C-22相关。根据这些HMBC远程相关信号及其氢和碳的化学位移, 推断化合物2具有甘遂烷-3,11-二羟基-8-烯-7-酮的四环部分, 以及位于C-17上的CH-20~CH2-23结构单元 (图 2)。另外, 根据H2-31与C-23、C-24和C-25,以及H3-26和H3-27同时与C-24和C-25的HMBC相关信号及其氢和碳的化学位移, 推定该化合物中侧链亚甲基CH2-23和异丙基单元的次甲基CH-25同时与末端烯键的C-24连接。因此, 确定化合物2的平面结构为24-甲烯基甘遂烷-3,11-二羟基-8-烯-7-酮。

在化合物2的NOE差谱中, 照射H-3引起H-5和H3-28明显增益, 说明C-3位羟基在甘遂烷三萜母环上处于e-键β取向。该推断也得到1H NMR谱中H-3与H2-2的偶合常数 (J = 10.0和5.0 Hz) 显示H-3处于a-键α取向的支持。另外, 照射H-11引起H3-19增益,照射H3-19使H3-29和H3-30增益,照射H3-30致H-17和H3-19增益,表明这些质子趋向于环平面的同一侧。照射H3-18引起H-20和H3-21增益,照射H3-21致H-12a增益,进一步表明化合物2拥有甘遂烷型三萜母核的相对构型[18]。在化合物2的CD谱中, 335 nm处n→π*跃迁的正Cotton效应和251 nm处ππ*跃迁的负Cotton效应是结构中共轭环己烯酮发色团的典型Cotton效应, 且与从该植物中分离得到的甘遂烷-8-烯-7-酮衍生物的Cotton效应吻合, 应用共轭环己烯酮的八区律规则, 证明该化合物拥有与甘遂烷三萜母核完全相同的绝对构型[18]。因此, 化合物2的结构确定为24-甲烯基甘遂烷-8-烯-3β,11α-二醇-7-酮(24-methylenetirucall-8-en-3β,11α-diol-7-one)。

实验部分

PerkinElmer 343型旋光测定仪 (美国PerkinElmer公司),Nicolet impact 5700型傅立叶变换红外光谱仪 (美国Thermo Electron Corporation公司),Mrcury- 400、Inova-500和SYS-600核磁共振仪 (美国Varian公司, 除特别说明外以溶剂峰信号为参照), Micromass Autospec-UltimaETOF型质谱仪 (英国Micromass公司) 和Q-TrapLC-MS/MS (Turbo Ionspray source) 型质谱仪 (美国Agilent Technologies, Ltd.公司)。闪式快速分离系统 (Sq 16x, combi Flash, Rp C18,40~60 μm, Micron Silicag Gel, 美国Isco公司)。AgilentHP 1100高效液相色谱仪 (惠普公司)。凝胶Sephadex LH-20 (瑞典Amersham Pharmacia公司), 柱色谱硅胶 (200~300目)及薄层色谱用硅胶GF254 (青岛海洋化工厂)。所有试剂若无特别说明均购自北京化工厂, 级别为分析纯或色谱纯。

甘青大戟 (Euphorbia micractina Boiss) 根于2002年采自甘肃省漳县。由中国医学科学院药物研究所马林副研究员鉴定为大戟科大戟属的甘青大戟, 标本现存于中国医学科学院药物研究所植物标本室, 标本号为No. 02086。

1 提取与分离

干燥甘青大戟根 (11.2 kg), 粉碎后用95% 乙醇加热回流提取3次后过滤, 提取液减压回收溶剂得到1.092 kg暗褐色浸膏。浸膏分散于1.5 L水中, 用乙酸乙酯萃取 (1 L × 4), 有机相合并减压回收溶剂后得乙酸乙酯萃取部分 (324 g)。乙酸乙酯部分进行硅胶柱色谱分离, 用石油醚-丙酮 (100:0~0:100)梯度洗脱, 经薄层色谱检测, 合并组成相似的洗脱液, 回收溶剂得到20个部分 (A1~A20)。A6部分 (6.3 g) 经反相组合闪式色谱 (EtOH-H2O梯度洗脱, 0~95%)分离, 得到A6-1~A6-9; 其中,A6-7 (254 mg) 经Sephadex LH-20柱色谱 (石油醚-氯仿-甲醇, 5:5:1洗脱)和反相HPLC半制备色谱 (MeOH-H2O, 90:10) 分离纯化, 得到化合物1 (6.8 mg)。A9部分(6.4 g) 经硅胶柱色谱 (石油醚-丙酮梯度洗脱, 0~100%) 分离得到A9-1~A9-10; A9-5 (1.8 g) 经反相组合闪式色谱 (EtOH-H2O梯度洗脱, 0~95%)分离得到A9-5-1~A9-5-9。A9-5-3(112 mg) 经Sephadex LH-20柱色谱 (石油醚-氯仿-甲醇, 5:5:1洗脱)和反相HPLC半制备色谱 (MeOH-H2O, 90:10) 分离纯化, 得到化合物14 (15.0 mg)和15 (20.0 mg)。A9-5-4(83 mg) 经Sephadex LH-20柱色谱 (石油醚-氯仿-甲醇, 5:5:1洗脱)和反相HPLC半制备色 谱(MeOH-H2O, 80:20) 分离纯化, 得到化合物10(1.0 mg) 和13(1.5 mg)。A10部分 (3.9 g) 经硅胶柱色谱 (石油醚-丙酮梯度洗脱, 0~100%) 分离得到A10-1~A10-9; A10-4 (2.0 g) 经反相组合闪式色谱(EtOH-H2O梯度洗脱, 0~95%) 分离得到A10-4-1~A10-4-4。A10-4-2 (0.8 g) 经SephadexLH-20柱色 谱(石油醚-氯仿-甲醇, 5:5:1洗脱)分离得到A10-4-2-1~A10-4-2-7; 其中, A10-4-2-3经反相HPLC半制备色谱 (MeOH-H2O, 90:10) 分离纯化, 得到化合物6 (1.9 mg) 和16 (20.5mg)。A11部分 (10.1 g) 经硅胶柱色谱 (石油醚-丙酮梯度洗脱, 0~100%) 分离得到A11-1~A11-12; A11-5 (2.9 g) 经反相组合闪式色谱 (EtOH-H2O梯度洗脱, 0~95%)分离得到A11-5-1~A11-5-9。 A11-5-5 (1.1 g) 经Sephadex LH-20柱色谱 (石油醚-氯仿-甲醇, 5:5:1洗脱)分离得到A11-5-5-1~A11-5-5-9; 其中, A11-5-5-4经反相HPLC半制备色谱 (MeOH-H2O, 90:10) 分离纯化, 得到化合物5 (3.2 mg)、7 (202 mg) 和12 (52.2 mg)。A12部分 (3.7 g) 经硅胶柱色谱分离, 石油醚-丙酮 (10:1~1:1)梯度洗脱, 得到A12-1-A12-6; 其中, A12-4 (0.6 g) 经反相组合闪式色谱 (EtOH-H2O梯度洗脱, 0~95%) 分离得到A12-4-1~A12-4-6。A12-4-4 (132 mg) 经制备薄层色谱 (石油醚-乙酸乙酯, 3:1) 和反相HPLC半制备色谱 (MeOH-H2O, 75:25) 依次分离纯化, 得到化合物9(50.0 mg)。A13部分 (5.5 g) 经硅胶柱色谱分离, 石油醚-丙酮 (10:1~1:1)梯度洗脱, 得到A13-1~A13-8; 其中,A13-5 (1.2 g) 经反相组合闪式色谱 (EtOH-H2O梯度洗脱, 0~95%)分离得到A13-5-1~A13-5-8。A13-5-3 (230 mg) 经制备薄层色谱 (石油醚-乙酸乙酯, 3:1) 和反相HPLC半制备色谱 (MeOH-H2O, 75:25) 依次分离纯化, 得到化合物3 (12.5 mg) 和8 (12.5 mg)。A14 (部分 (10.5 g) 经硅胶柱色谱 (石油醚-丙酮梯度洗脱, 8:1~1:2)分离得到A14-1~A14-8; 其中, A14-5 (1.1 g) 经反相组合闪式色谱 (EtOH-H2O梯度洗脱, 0~95%)分离得到A14-5-1~A14-5-5。A14-5-2经SephadexLH-20柱色谱 (氯仿-甲醇1:1或纯甲醇洗脱)、制备薄层色谱 (石油醚-丙酮2:1)和反相HPLC半制备色谱 (MeOH-H2O 80:20) 反复纯化, 得到化合物2 (8.0mg)、4(5.2 mg) 和11(1.8 mg)。

2 结构鉴定

化合物3    白色无定形固体; [α]D20 -75.1 (c 0.15, MeOH); UV (MeOH) λmax (logε)214 (2.94) nm; CD (MeOH) 221 (Δε-7.46) nm; ESI-MS m/z 196[M+H]+, 219 [M+Na]+1H NMR (acetone-d6, 500 MHz) δ5.67 (1H, s, H-3), 1.98 (1H, dt, J = 14.0, 2.5 Hz, H2-5a), 1.53 (1H, dd, J = 14.0, 3.5 Hz,H-5b), 4.28 (1H, dd, J = 6.5, 3.0 Hz, H-6), 4.14(1H, s, OH-3), 2.38 (1H, dt, J = 14.0, 2.5 Hz, H2-7a), 1.70 (1H, dd, J = 14.0, 4.0 Hz,H-7b), 1.25 (3H, s, H3-8), 1.46 (3H, s, H3-9), 1.73 (3H,s, H3-10); 13C NMR (acetone-d6, 125 MHz) δ 171.6 (C-2), 113.2 (C-3), 183.4 (C-3a), 36.6 (C-4), 47.9 (C-5), 66.8 (C-6), 46.4 (C-7), 87.1 (C-7a), 31.0 (C-8), 26.8 (C-9), 27.5 (C-10)。以上数据与文献[23, 24]报道黑麦草内酯 (loliolide) 的数据一致。

化合物4    无色胶状物; ESI-MS m/z 225 [M+H]+; 1H NMR(500 MHz, acetone-d6) δ 1.54 (1H, brd, J = 11.5 Hz, H-2a), 1.25 (1H, t, J = 11.5 Hz, H-2b), 3.75 (1H, m, H-3), 3.56 (1H, d, J = 4.0 Hz, OH-3), 2.26 (1H, brdd, J = 14.0, 4.5 Hz, H-4a), 1.65 (1H, dd, J = 14.0, 8.5 Hz, H-4b), 7.12 (1H, d, J = 16.0 Hz, H-7), 6.12 (1H,

d, J = 16.0 Hz, H-8), 2.24 (3H, s, H-10), 0.92 (3H,s, H3-11), 1.18 (3H, s, H3-12), 1.14 (3H, s, H3-13);13C NMR (125 MHz, acetone-d6) δ35.6 (C-1), 47.6 (C-2), 63.5 (C-3), 41.5 (C-4), 67.8 (C-5), 70.0 (C-6), 143.8 (C-7), 133.6 (C-8), 197.3(C-9), 27.4 (C-10), 25.3 (C-11),29.5 (C-12), 20.1 (C-13)。以上NMR数据与文献[24]报道3β-hydroxy-5α,6α-epoxy-7-megastigmene-9-one的数据一致。

化合物5    白色无定形固体; [α]D20 -88.4 (c 0.19, MeOH); ESI-MS m/z481 [M+H]+; 1H NMR(acetone- d6, 500 MHz) δ 3.37(1H, dd, J = 13.0, 7.5 Hz, H-1a), 1.71 (1H, t, J = 13.0 Hz, H-1b), 2.05 (1H, m, H-2), 4.01 (1H, m, H-3), 3.87 (1H, d, J = 5.5 Hz, OH-3), 1.58 (1H, dd, J = 9.5, 4.0 Hz, H-4),3.63 (1H, d, J = 9.5 Hz, H-5), 2.00 (1H, m, H-7a), 1.84 (1H, dd, J = 11.0, 7.5 Hz, H-7b), 1.71 (1H, m, H-8a), 1.50 (1H, m, H-8b), 1.29 (1H, m, H-9), 1.58 (1H, dd, J = 11.0, 7.5 Hz, H-11), 7.20 (1H, d, J = 11.0 Hz, H-12), 1.05 (3H, d, J = 6.5 Hz, H3-16),1.24 (3H, s, H3-17), 1.12 (3H, s, H3-18), 0.88 (3H, s, H3-19),4.40 (1H, dd, J = 12.0, 6.5 Hz, H-20a), 4.23 (1H, dd, J = 12.0, 6.5 Hz, H-20b), 6.70 (1H, d, J = 16.0 Hz, H-8'), 7.70 (1H, d, J =16.0 Hz, H-7'), 7.68 (2H, m, H-2',6'), 7.43 (3H, m, H-3', 4', 5'); 13C NMR (acetone-d6, 125 MHz) δ45.3 (C-1), 39.6 (C-2), 78.4 (C-3), 53.0 (C-4), 58.6 (C-5), 63.4 (C-6), 39.6(C-7), 23.9 (C-8), 35.3 (C-9), 27.6 (C-10), 30.5 (C-11), 148.3 (C-12), 138.2(C-13), 195.4 (C-14), 92.6 (C-15), 13.7 (C-16), 20.8 (C-17), 29.0 (C-18), 16.6(C-19), 57.2 (C-20), 166.0 (C-9'), 119.0 (C-8'), 146.7 (C-7'), 135.2 (C-1'),129.2 (C-2',6'), 129.8 (C-3',5'), 131.5 (C-4'). 以上NMR数据与文献[25, 26]报道续随子醇A (jolkinol A) 的数据一致, 其结构和NMR数据归属得到2D NMR和NOE差谱解析的确证。

化合物6    白色无定形固体; [α]D20 +27.0 (c 0.19, MeOH); UV (MeOH) λmax (logε)281 (2.74) nm; CD (MeOH) 198 (Δε +4.64),220 (Δε -7.26),230 (Δε -6.65),242 (Δε -7.43),280 (Δε +8.40); IR νmax 3 559,2 986, 2 930, 2 874,1 721, 1 641,1 612, 1 453,1 421, 1 371, 1 277,1 251, 1 214,1 147, 1 112,1 056, 1 030,1 008, 984, 959, 927,904, 856, 784, 732, 631, 581, 539 cm-1; ESI-MS m/z 361 [M+H]+, 383 [M+Na]+, 399 [M+K]+, 743 [2M+Na]+; HR-ESI-MS m/z 383.221 6 [M+Na]+ (calcd. for C30H48O3Na,383.219 3); 1H NMR (acetone-d6, 600 MHz) δ3.33 (1H, dd, J = 13.2 Hz, 8.4 Hz, H-1a), 1.50 (1H, t, J = 13.2 Hz, H-1b), 1.88 (1H, m, H-2), 3.85 (1H, m, H-3), 3.52 (1H, brs, OH-3),2.31 (1H, dd, J = 10.8, 3.6 Hz, H-4), 5.78 (1H, d, J = 10.8 Hz,H-5), 2.50 (1H, dt, J = 13.2, 3.6 Hz, H-7a), 1.80 (1H, dt, J = 13.2, 3.0 Hz, H-7b), 2.19 (1H, m, H-8a), 1.56 (1H, m, H-8b), 1.12 (1H, m, H-9), 1.47 (1H, m, H-11), 6.71 (1H, d, J = 11.4 Hz, H-12), 1.02 (3H, d, J= 6.6 Hz, H3-16), 1.47 (3H, s, H3-17), 1.18 (3H, s, H3-18),1.07 (3H, s, H3-19), 1.76 (3H, s, H3-20), 1.95 (3H, s,OAc); 13C NMR (acetone-d6, 150 MHz) δ44.6 (C-1), 40.1 (C-2), 79.4 (C-3), 53.7 (C-4), 122.1 (C-5), 141.7 (C-6), 37.5(C-7), 29.0 (C-8), 34.6 (C-9), 24.7 (C-10), 30.1 (C-11), 146.3 (C-12), 132.5(C-13), 195.6 (C-14), 95.5 (C-15), 14.0 (C-16), 20.8 (C-17), 29.2 (C-18), 16.6 (C-19), 12.5 (C-20), 170.1 (OAc-CO), 21.5 (OAc-CH3)。以上1H NMR数据与文献[27]报道续随子醇D (jolkinol D) 的数据一致。该化合物的13C NMR数据为首次报道, 其结构和NMR数据归属得到2D NMR和NOE差谱解析的确证。

化合物7    白色无定形固体; [α]D20 -118.1 (c 0.31, MeOH); UV (MeOH) λmax (logε) 232(3.22), 271 (2.49) nm; CD (MeOH) 240 (Δε -3.72),272 (Δε +3.70),317 (Δε -1.70)nm; ESI-MS m/z 439 [M+H]+, 461 [M+Na]+, 477 [M+K]+and 899 [2M+Na]+; 1H NMR (acetone-d6, 500 MHz) δ 3.45 (1H, dd, J = 13.0, 8.0 Hz, H-1a), 1.76 (1H, t, J = 13.0 Hz, H-1b), 1.93 (1H, m, H-2), 4.08 (1H, m, H-3), 3.98 (1H, d, J = 5.0 Hz, OH-3), 1.54 (1H, m, H-4), 3.72 (1H, d, J = 9.5Hz, H-5), 2.02 (1H, m, H-7a), 1.48 (1H, m, H-7b), 1.92 (1H, m, H-8a), 1.50 (1H, m, H-8b), 1.16 (1H, m, H-9), 1.50 (1H, m, H-11), 7.01 (1H, d, J = 11.0 Hz, H-12), 1.05 (3H, d, J = 7.0 Hz, H3-16),1.14 (3H, s, H3-17), 1.04 (3H, s, H3-18), 0.26 (3H, s, H3-19),1.81 (3H, s, H3-20), 8.06 (2H, d, J = 7.0 Hz, H-2'/H-6'),7.53 (2H, t, J = 7.5 Hz, H-3'/H-5'), 7.64 (1H, t, J = 7.5 Hz,H-4'); 13C NMR (acetone-d6, 125 MHz) δ 45.8 (C-1), 39.7 (C-2), 78.6 (C-3), 53.7 (C-4), 58.9(C-5), 63.6 (C-6), 39.7 (C-7), 23.9 (C-8), 34.6 (C-9), 26.6 (C-10), 30.5(C-11), 144.8 (C-12), 134.6 (C-13), 195.3 (C-14), 93.2 (C-15), 13.7 (C-16),20.4 (C-17), 29.0 (C-18), 15.3 (C-19), 12.6 (C-20), 131.4 (C-1'), 130.4(C-2'/C-6'), 129.6 (C-3'/C-5'), 134.4 (C-4'), 165.6 (C-7')。以上1H NMR数据与文献[28]报道latilagascene F的数据一致。该化合物的13C NMR数据为首次报道, 其结构和NMR数据归属得到2D NMR和NOE差谱解析的确证。

化合物8     白色无定形固体; [α]D20 +12.2 (c 0.23, MeOH); UV (MeOH) λmax(logε) 214 (2.22), 226 (2.18), 273 (2.33) nm; CD (MeOH) 214 (Δε -1.13),276 (Δε +2.16) nm; ESI-MS m/z 317 [M+H]+,339 [M+Na]+, 355 [M+K]+, 655 [2M+Na]+; 1H NMR (acetone-d6, 600 MHz) δ 1.98 (1H, dt, J = 13.2, 3.6 Hz, H-1a), 1.28 (1H, dt, J = 3.6, 13.2 Hz, H-1b), 1.67 (1H, m, H-2a), 1.63 (1H, m, H-2b), 3.23 (1H, dt, J = 10.8, 5.0 Hz, H-3), 3.49 (1H, d, J = 5.0 Hz, OH-3), 1.24 (1H, dd,J = 12.6, 1.8 Hz, H-5), 1.86 (1H, m, H-6a), 1.46 (1H, m, H-6b), 2.54 (1H, dd, J = 13.2, 5.4 Hz, H-7a), 2.24 (1H, m, H-7b), 2.27 (1H, d, J = 8.4 Hz, H-9), 2.54 (1H, dd, J = 13.2, 6.0 Hz, H-11a), 1.43 (1H, m, H-11b), 4.85 (1H, dd, J = 12.8, 6.0 Hz, H-12), 6.40 (1H, s, H-14), 1.02 (3H, s, H3-17), 0.81 (3H, s, H3-18), 0.96 (3H, s, H3-19),1.76 (3H, s, H3-20); 13C NMR (acetone-d6, 125 MHz) δ 38.0 (C-1), 28.4 (C-2), 78.4 (C-3), 39.8 (C-4), 55.1(C-5), 24.3 (C-6), 37.5 (C-7), 152.7 (C-8), 52.3 (C-9), 42.0 (C-10), 28.4(C-11), 76.2 (C-12), 156.8 (C-13), 114.7 (C-14), 116.7 (C-15), 174.9 (C-16),29.2 (C-17), 16.2 (C-18), 17.0 (C-19), 8.3 (C-20)。以上NMR数据与文献[29]报道泽漆内酯A (helioscopinolide A) 的数据一致。其绝对构型得到实验CD与计算ECD图谱比较的确证。

化合物9     白色无定形固体; [α]D20 +17.3 (c 0.21, MeOH); UV (MeOH) λmax (log ε)217 (2.04), 226 (2.01), 277 (2.16) nm; CD (MeOH) 218 (Δε -0.75),278 (Δε +1.49) nm; ESI-MS m/z 317 [M+H]+,339 [M+Na]+, 355 [M+K]+, 655 [2M+Na]+; 1H NMR (acetone-d6, 500 MHz) δ 1.97(1H, m, H-1a), 1.63 (1H, m, H-1b), 1.74 (1H, m, H-2a), 1.72 (1H, m, H-2b), 3.39 (1H, brd, J = 4.0 Hz, H-3), 3.46 (1H, d, J = 4.0 Hz, OH-3), 1.64 (1H, m, H-5), 1.75 (1H, m, H-6a), 1.42 (1H, m, H-6b), 2.53 (1H, brd, J = 11.5 Hz, H-7a), 2.25 (1H, m, H-7b), 2.33 (1H, d, J = 8.5 Hz, H-9), 2.56 (1H, dd, J = 13.5, 6.0 Hz, H-11a), 1.44 (1H, m, H-11b), 4.86 (1H, dd, J = 13.5, 6.0 Hz, H-12), 6.38 (1H, s, H-14), 0.98 (3H, s, H3-17), 0.87 (3H, s, H3-18), 0.97 (3H, s, H3-19),1.76 (3H, s, H3-20); 13C NMR (acetone-d6, 125 MHz) δ 32.8 (C-1), 26.8 (C-2), 75.3 (C-3), 38.5 (C-4),49.0 (C-5), 22.7 (C-6), 37.6 (C-7), 153.1 (C-8), 52.4 (C-9), 42.0 (C-10), 28.3(C-11), 76.3 (C-12), 156.8 (C-13), 114.6 (C-14), 116.5 (C-15), 174.9 (C-16),29.5 (C-17), 22.7 (C-18), 17.1 (C-19), 8.2 (C-20)。以上NMR数据与文献[30]报道泽漆内酯B (helioscopinolide B) 的数据一致。其绝对构型得到实验CD与计算ECD图谱比较的确证。

化合物10     白色无定形固体; ESI-MS m/z 359 [M+H]+, 381[M+Na]+, 397 [M+K]+, 739 [2M+Na]+; 1H NMR (acetone-d6, 500 MHz) δ 1.98 (1H, m, H-1a), 1.68 (1H, m, H-1b), 1.79 (1H, m, H-2a), 1.53 (1H, m, H-2b), 4.64 (1H, brs, H-3), 1.70 (1H, m, H-5), 1.76 (1H, m, H-6a), 1.48 (1H, m, H-6b), 2.57 (1H, brd, J = 13.5 Hz, H-7a), 2.28 (1H, d, dt, J = 5.5, 13.5 Hz, H-7b), 2.37 (1H, d, J = 9.0 Hz, H-9), 2.55 (1H, brd, J = 13.0 Hz, H-11a), 1.46 (1H, m, H-11b), 4.87 (1H, dd, J = 13.0, 6.0 Hz, H-12), 6.41 (1H, s, H-14), 1.02 (3H, s, H3-17),0.90 (3H, s, H3-18), 0.96 (3H, s, H3-19), 1.78 (3H, s, H3-20),2.04 (3H, s, CH3CO); 13C NMR (acetone-d6, 125 MHz) δ33.3 (C-1), 24.0 (C-2), 78.0 (C-3), 37.6 (C-4), 50.4 (C-5), 22.2 (C-6), 37.4(C-7), 152.5 (C-8), 52.3 (C-9), 41.9 (C-10), 28.7 (C-11), 76.2 (C-12), 156.7(C-13), 114.8 (C-14), 116.8 (C-15), 174.9 (C-16), 28.3 (C-17), 23.8 (C-18),16.9 (C-19), 8.3 (C-20), 170.4 (CH3CO), 21.0 (CH3CO)。以上NMR数据与文献[31]报道3-O-乙酰基泽漆内酯B (3-O-acetylhelioscopinolideB) 的数据一致。

化合物11     白色无定形固体; ESI-MS m/z 331 [M+H]+, 353[M+Na]+, 369 [M+K]+; 1H NMR (acetone- d6,500 MHz) δ 2.42(1H, m, H-1a), 1.92 (1H, m, H-1b), 2.59 (1H, m, H-2a), 2.41 (1H, m, H-2b), 2.52 (1H, dd, J = 12.5, 3.0 Hz, H-5), 1.74 (1H, m, H-6a), 1.54 (1H, dd, J = 12.5, 3.0 Hz, H-6a), 2.80 (1H, m, H-7a), 2.35 (1H, m, H-7b), 4.28 (1H, s, OH-9), 3.04 (1H, dd, J = 13.0, 6.0 Hz, H-11a), 1.44 (1H, t, J = 13.0 Hz, H-11b), 4.92 (1H, dd, J = 13.0, 6.0 Hz, H-12), 6.52 (1H, s, H-14), 1.14 (3H, s, H3-17), 1.04 (3H,s, H3-18), 1.09 (3H, s, H3-19), 1.78 (3H, s, H3-20);13C NMR (acetone- d6,125 MHz) δ 31.3 (C-1), 34.9 (C-2), 215.5 (C-3), 47.6 (C-4),47.0 (C-5), 25.0 (C-6), 32.9 (C-7), 153.9 (C-8), 77.1 (C-9), 44.7 (C-10), 40.2(C-11), 77.6 (C-12), 156.0 (C-13), 116.0 (C-14), 117.6 (C-15), 174.6 (C-16),27.4 (C-17), 22.0 (C-18), 17.9 (C-19), 8.3 (C-20)。以上NMR数据与文献[29]报道泽漆内酯D (helioscopinolide D) 的数据一致。

化合物12    白色无定形固体; ESI-MS m/z 315 [M+H]+, 337[M+Na]+, 353 [M+K]+ and 651 [2M+Na]+; 1H NMR (CDCl3, 500 MHz) δ2.21 (1H, m, H-1a), 1.60 (1H, m, H-1b), 2.65 (1H, m, H-2a), 2.47 (1H, m, H-2b), 1.67 (1H, dd, J = 12.5, 1.5 Hz, H-5), 1.81 (1H, m, H-6a), 1.59 (1H, m, H-6b), 2.56 (1H, brd, J = 13.5 Hz, H-7a), 2.20 (1H, m, H-7b), 2.26 (1H, d, J = 8.0 Hz, H-9), 2.54 (1H, brd, J = 13.0 Hz, H-11a), 1.61 (1H, m, H-11b), 4.89 (1H, dd, J = 13.0, 6.0 Hz, H-12), 6.34 (1H, s, H-14), 1.14 (3H, s, H3-17), 1.06(3H, s, H3-18), 1.09 (3H, s, H3-19), 1.85 (3H, s, H3-20);13C NMR (CDCl3, 125 MHz) δ 37.3(C-1), 34.3 (C-2), 215.5 (C-3), 47.5 (C-4), 54.7 (C-5), 24.5 (C-6), 36.5 (C-7),150.1 (C-8), 50.6 (C-9), 40.9 (C-10), 27.7 (C-11), 75.6 (C-12), 155.5 (C-13),114.7 (C-14), 117.0 (C-15), 175.0 (C-16), 26.5 (C-17), 21.7 (C-18), 16.2(C-19), 8.2 (C-20)。以上NMR数据与文献[29]报道泽漆内酯E (helioscopinolide E) 的数据一致。

化合物13     白色无定形固体; [α]D20 -28.4 (c 0.04, MeOH); UV (CHCl3)λmax (logε) 212 (1.20), 272 (0.47) nm; CD (MeOH) 198 (Δε +1.65),217 (Δε -0.08),230 (Δε +0.04),250 (Δε -0.03),297 (Δε +0.22);IR νmax 2 966,2 920, 2 874,1 739, 1 711,1 655, 1 460,1 418, 1 402, 1 377,1 319, 1 265,1 235, 1 201,1 176, 1 106,1 033, 1 012, 961, 933, 918, 844, 712, 636, 609, 588, 557 cm-1; ESI-MS m/z 381 [M+Na]+, 739 [2M+Na]+, 393 [M+Cl]-; HR-ESI-MS m/z397.178 9 [M+K]+ (calcd. for C22H30O4K, 397.178 1); 1H NMR (acetone-d6, 500 MHz) δ2.03 (1H, m, H-1a), 1.61 (1H, m, H-1b), 2.52 (1H, m, H-2a), 2.29 (1H, m, H-2b), 1.47 (1H, brd, J = 10.0 Hz, H-5), 1.62 (1H, m, H-6a), 1.45 (1H, m, H-6b), 2.27 (1H, m, H-7a), 1.00 (1H, m, H-7b), 2.12 (1H, d, J = 10.0 Hz, H-9), 5.46 (1H, brd, J = 10.0 Hz, H-11), 2.76 (1H, brs,H-12), 2.72 (1H, dd, J = 19.0, 2.5 Hz, H-13a), 2.09 (1H, d, J = 19.0 Hz, H-13b), 2.28 (2H, m, H2-15), 5.01 (1H, s, H-17a), 4.82 (1H, d, J = 1.0 Hz, H-17b), 1.03 (1H, s, H-18), 0.99 (1H, s, H-19), 1.15 (1H, s, H-20), 2.10 (3H, s, CH3CO);13C NMR (acetone- d6,125 MHz) δ 38.0 (C-1), 33.8 (C-2), 214.6 (C-3), 47.4(C-4), 55.8 (C-5), 20.2 (C-6), 30.7 (C-7), 48.5 (C-8), 55.5 (C-9), 38.6 (C-10),71.3 (C-11), 44.4 (C-12), 38.6 (C-13), 213.6 (C-14), 42.6 (C-15), 144.1 (C-16),109.6 (C-17), 26.5 (C-18), 21.1 (C-19), 15.7 (C-20), 169.4 (CH3CO),20.9 (CH3CO)。以上NMR数据与文献[32]报道 (-)-11-乙酰氧基对应阿替烷-16-烯-3,14-二酮的数据一致, 13C NMR数据为首次报道。该化合物的结构及其NMR数据归属得到2D NMR和NOE差谱解析的确证; 且其绝对构型得到实验CD与计算ECD图谱比较的确证。

化合物14     白色粉末, [α]D20 +73.6 (c0.2, MeOH); EI-MS 70 eV m/z(%) 442 [M]+∙ (18%), 424 [M-H2O]+∙ (15%), 411 [M-CH2OH]+∙(14%), 406 [M-2H2O]+∙ (10%), 234 (50), 216 (29), 203 (100); 1H NMR (CDCl3,500 MHz) δ 5.19 (1H, t, J = 3.0 Hz, H-12), 3.22 (1H, m, H-3),0.94 (3H, s, H3-23), 0.79 (3H, s, H3-24), 0.93 (3H, s, H3-25),1.00 (3H, s, H3-26), 1.17 (3H, s, H3-27), 3.55 (1H, d, J= 11.0 Hz, H-28a), 3.21 (1H, d, J = 11.0 Hz, H-28b), 0.89 (3H, s, H3-29),0.87 (3H, s, H3-30); 13C NMR (CDCl3, 125 MHz) δ 38.6(C-1), 27.2 (C-2), 79.0 (C-3), 38.8 (C-4), 55.2 (C-5), 18.3 (C-6), 32.6 (C-7), 39.8 (C-8), 47.6 (C-9), 36.9 (C-10), 23.5 (C-11), 122.4(C-12), 144.2 (C-13), 41.7 (C-14), 25.5 (C-15), 22.0 (C-16), 36.9 (C-17), 42.3(C-18), 46.5 (C-19), 30.9 (C-20), 34.1 (C-21), 31.0 (C-22), 28.1 (C-23), 15.5(C-24), 15.6 (C- 25), 16.7 (C-26), 25.9 (C-27), 69.7(C-28), 33.2 (C-29), 23.6 (C-30)。以上NMR数据与文献[33, 34]报道高根二醇 (erythrodiol) 的数据一致。

化合物15     白色粉末; EI-MS 70 eV m/z (%) 442 [M]+∙ (8%), 424[M-H2O]+∙ (12%), 411 [M-CH2OH]+∙(7%), 406 [M-2H2O]+∙ (6%), 234 (48), 216 (18), 207 (35),203 (100), 189 (30), 133 (62); 1H NMR (CDCl3, 500 MHz) δ3.22 (1H, brdd, J = 10.5, 5.0 Hz, H-3), 5.14 (1H, t, J = 3.0 Hz,H-12), 0.95 (3H, s, H3-23), 0.79 (3H, s, H3-24), 1.10(3H, s, H3-25), 1.01 (3H, s, H3-26), 1.03 (3H, s, H3-27),3.55 (1H, d, J = 11.5 Hz, H-28a), 3.20 (1H, d, J = 11.5 Hz, H-28b), 0.81 (3H, d, J = 6.0 Hz, H3-29), 0.94 (3H, d, J =6.5 Hz, H3-30); 13C NMR (CDCl3, 125 MHz) δ 38.8 (C-1), 27.3 (C-2), 79.0 (C-3), 38.8 (C-4), 55.2 (C-5), 18.3(C-6), 32.8 (C-7), 40.0 (C-8), 47.7 (C-9), 36.9 (C-10), 23.4 (C-11), 125.0(C-12), 138.7 (C-13), 42.0 (C-14), 26.0 (C-15), 23.3 (C-16), 38.0 (C-17), 54.0(C-18), 39.4 (C-19), 39.4 (C-20), 30.6 (C-21), 35.2 (C-22), 28.1 (C-23), 15.6(C-24), 15.7 (C-25), 17.3 (C-26), 23.3 (C-27), 69.9 (C-28), 21.3 (C-29), 16.8(C-30)。以上NMR数据与文献[35]报道熊果醇 (uvaol) 的数据一致。

化合物16     白色粉末; EI-MS 70 eV m/z (%) 442 [M]+∙ (33%),424 [M-H2O]+∙ (26%), 411 [M-CH2OH]+∙(50%), 406 [M-2H2O]+∙ (12%), 399 (8), 393 (12), 381 (16),363 (10), 234 (27), 220 (20), 207 (62), 203 (79), 189 (100), 175 (45), 161(34), 147 (40), 135 (72), 121 (66), 119 (57), 107 (67), 95 (83); 1HNMR (CDCl3, 500 MHz) δ 3.19 (1H, dd, J = 11.0, 5.0 Hz,H-3 ), 2.38 (1H, ddd, J = 11.0, 11.0, 6.0 Hz, H-19), 0.97 (3H, s, H3-23),0.76 (3H, s, H3-24), 0.82 (3H, s, H3-25), 0.98 (3H, s, H3-26),1.05 (3H, s, H3-27), 3.80 (1H, d, J = 11.0 Hz, H-28a), 3.33 (1H, d, J = 11.0 Hz, H-28b), 4.68 (1H, s, H-29a), 4.58 (1H, s, H-29b), 1.68 (3H, s, H3-30); 13C NMR (CDCl3, 125 MHz) δ 38.9 (C-1), 27.4 (C-2), 79.0 (C-3), 38.7 (C-4), 55.3 (C-5), 18.3 (C-6), 34.2(C-7), 40.9 (C-8), 50.4 (C-9), 37.3 (C-10), 20.8 (C-11), 25.2 (C-12), 37.2(C-13), 42.7 (C-14), 27.0 (C-15), 29.2 (C-16), 47.8 (C-17), 47.8 (C-18), 48.8(C-19), 150.5 (C-20), 29.8 (C-21), 34.0 (C-22), 28.0 (C-23), 15.3 (C-24), 16.1(C-25), 16.0 (C-26), 14.8 (C-27), 60.6 (C-28), 109.7 (C-29), 19.1 (C-30)。以上NMR数据与文献[36]报道白桦脂醇 (betulin)的数据一致。

3 生物活性

在作者前期报道中, 通过几种细胞药理模型初步筛选, 发现了数个化合物具有一定抑制HIV-1复制、肿瘤细胞毒和抑制血管平滑肌收缩活性[18, 19, 20, 21, 22], 在相同的筛选模型上, 在10 μmol·L-1浓度下, 除白桦脂醇 (16)[18]外,本文报道的其他化合物均未表现出明显活性。因此, 这些多样性成分, 尤其是具有多样性骨架类型的萜类成分, 对甘青大戟临床功效的贡献和影响等尚需通过在其他药理模型上的筛选和评价进一步探究。

参考文献
[1] Wu ZY, Zhou TY, Xiao PG, et al. Xin Hua Ben Cao Gang Yao (新华本草纲要)[M]. Shanghai:Shanghai Sience and Technology Press, 1991, 2:219.
[2] Shi QW, Su XH, Kiyota H. Chemical and pharmacological research of the plants in genus Euphorbia[J]. Chem Rev, 2008, 108:4295-4327.
[3] Keating, GM. Ingenol mebutate gel 0.015% and 0.05%:in actinic keratosis[J]. Drugs, 2012, 72:2397-2405.
[4] Wang F, Jiang YP, Wang XL, et al. Chemcal constituents from flower buds of Lonicera japonica[J]. China J Chin Mater Med (中国中药杂志), 2013, 38:1378-1385.
[5] Wang XL, Chen MH, Wang F, et al. Chemcal constituents from root of Isatis indigotica[J]. China J Chin Mater Med (中国中药杂志), 2013, 38:1172-1182.
[6] Song WX, Yang YC, Shi JG. Two new β-hydroxy amino acid-coupled secoiridoids from the flower buds of Lonicera japonica:isolation, structure elucidation, semisynthesis, and biological activities[J]. Chin Chem Lett, 2014, 25:1215-1219.
[7] Jiang ZB, Song WX, Shi JG. Two 1-(6'-O-acyl-β-Dglucopyranosyl) pyridinium-3-carboxylates from the flower buds of Lonicera japonica[J]. Chin Chem Lett, 2015, 26:69-72.
[8] Song WX, Guo QL, Yang YC, et al. Two homosecoiridoids from the flower buds of Lonicera japonica[J]. Chin Chem Lett, 2015, 26:517-521.
[9] Yu Y, Jiang Z, Song W, et al. Glucosylated caffeoylquinic dcid derivatives from the flower buds of Lonicera japonica[J]. Acta Pharm Sin B, 2015, 5:210-214.
[10] Jiang Y, Liu Y, Guo Q, et al. Acetylenes and fatty acids from Codonopsis pilosula[J]. Acta Pharm Sin B, 2015, 5:215-222.
[11] Jiang ZB, Meng XH, Jiang BY, et al. Two 2-(quinonylcarboxamino) benzoates from the lateral roots of Aconitum carmichaelii[J]. Chin Chem Lett, 2015, 26:653-656.
[12] Guo QL, Wang YN, Zhu CG, et al. 4-Hydroxybenzylsubstituted glutathione derivatives from Gastrodia elata[J]. J Asian Nat Prod Res, 2015, 17:439-454.
[13] Liu YF, Chen MH, Wang XL, et al. Antiviral enantiomers of a bisindole alkaloid with a new carbon skeleton from the roots of Isatis indigotica[J]. Chin Chem Lett, 2015, 26:931-936.
[14] Guo QL, Wang YN, Lin S, et al. 4-Hydroxybenzyl-substituted amino acid derivatives from Gastrodia elata[J]. Acta Pharm Sin B, 2015, 5:350-357.
[15] Jiang YP, Liu Y, Guo Q, Jiang ZB, et al. C14-Polyacetylene glucosides from Codonopsis pilosula[J]. J Asian Nat Prod Res, 2015, 17:601-614.
[16] Liu YF, Chen MH, Guo QL, et al. Antiviral glycosidic bisindole alkaloids from the roots of Isatis indigotica[J]. J Asian Nat Prod Res, 2015, 17:689-704.
[17] Shi JG, Jia ZJ, Yang L. Diterpenoids from Euphorbia micractina[J]. Chem J Chin Univ (高等学校化学学报), 1994, 15:861-863.
[18] Xu W, Zhu C, Cheng W, et al. Chemical constituents of the roots of Euphorbia micractina[J]. J Nat Prod, 2009, 72:1620-1626.
[19] Tian Y, Xu W, Zhu C, et al. Lathyrane diterpenoids from the roots of Euphorbia micractina and their biological activities[J]. J Nat Prod, 2011, 74:1221-1229.
[20] Tian Y, Xu W, Zhu C, et al. Diterpenoids with diverse skeletons from the roots of Euphorbia micractina[J]. J Nat Prod, 2013, 76:1039-1046.
[21] Tian Y, Guo Q, Xu W, et al. A minor diterpenoid with a new 6/5/7/3 fused-ring skeleton from Euphorbia micractina[J]. Org Lett, 2014, 16:3950-3953.
[22] Xu WD, Tian Y, Guo QL, et al. Secoeuphoractin, a minor diterpenoid with a new skeleton from Euphorbia micractina[J]. Chin Chem Lett, 2014, 25:1531-1534.
[23] Bai JF, Liu ZQ, Wang SM, et al. Isolation and structure identification of novel monoterpene lactone fron Ornithogalum caudatum Ait[J]. Chem J Chin Univ (高等学校化学学报), 2005, 26:1817-1819.
[24] Yuan ZH, Han LJ, Fan X, et al. Chemical constituents from red alga Corallina pilulifera[J]. China J Chin Mater Med (中国中药杂志), 2006, 31:1787-1790.
[25] Kuriyama K, Uchida I. The π-π* circular dichroism of α, β-unsaturated γ-lactones[J]. Tetrahedron Lett, 1974, 15:3761-3764.
[26] Valente C, Pedro M, Ascenso JR, et al. Euphopubescenol and euphopubescene, two new jatrophane polyesters, and lathyrane-type diterpenes from Euphorbia pubescens[J]. Planta Med, 2004, 70:244-249.
[27] Uemura D, Nobuhara K, Nakayama Y, et al. The structure of new lathyrane diterpenes, jolkinols a, b, c, and d, from Euphorbia Jolkini Boiss[J]. Tetrahedron Lett, 1976, 17:4593-4596.
[28] Duarte N, Varga A, Cherepnev G, et al. Apoptosis induction and modulation of P-glycoprotein mediated multidrug resistance by new macrocyclic lathyrane-type diterpenoids[J]. Bioorg Med Chem, 2007, 15:546-554.
[29] Borghi D, Baumer L, Ballabio M, et al. Structure elucidation of helioscopinolides D and E from Euphorbia calyptrata cell cultures[J]. J Nat Prod, 1991, 54:1503-1508.
[30] Crespi-Perellino N, Garofano L, Arlandini E, et al. Identification of new diterpenoids from Euphorbia calyptrata cell cultures[J]. J Nat Prod, 1996, 59:773-776.
[31] Talapatra SK, Pal P, Das G, et al. Some interesting reactions of gelomulides, the natural diterpene lactones[J]. J Indian Chem Soc, 1997, 74:848-854.
[32] He F, Pu JX, Huang SX, et al. Eight new diterpenoids from the roots of Euphorbia nematocypha[J]. Helv Chim Acta, 2008, 91:2139-2147.
[33] Lee CK, Chang MH. The chemical constituents from the heartwood of Eucalyptus citriodora[J]. J Chin Chem Soc, 2000, 47:555-560.
[34] Xue HZ, Lu ZZ, Konno C, et al. 3β-(3,4-Dihydroxycinnamoyl)-erythrodiol and 3β-(4-dihydroxycinnamoyl)-erythrodiol from Larrea tridentata[J]. Phytochemistry, 1988, 27:233-235.
[35] Xie GB, Zhou SX, Lei LD, et al. Studies on tritepenoid constituents in leaf of Ilex pernyi[J]. China J Chin Mater Med (中国中药杂志), 2007, 32:1890-1892.
[36] Siddiqui S, Hafeez F, Begum S, et al. Oleanderol, a new pentacyclic triterpene from the leaves of Nerium oleander[J]. J Nat Prod, 1988, 51:229-233.