药学学报  2016, Vol. 51 Issue (2): 189-196   PDF    
调控肿瘤干细胞干性的靶向作用与相关机制的研究进展
马赫遥, 何苗, 魏敏杰     
中国医科大学药学院, 辽宁沈阳 110122
摘要: 肿瘤干细胞(cancer stem cells, CSCs)是制约肿瘤治疗的瓶颈。近年来研究证实异质性、可塑性和肿瘤微环境相互作用,成为影响CSCs动态转换的重要因素。提示作用于CSCs的靶点与作用机制,不仅要瞄准具有干性特征的CSCs,还要考虑调控参与CSCs干性动态转化的相关因素。上皮间质转化(epithelial-mesenchymal transition, EMT)和CSCs赖以生存的壁龛环境中的调节通路及相关因子,成为调节CSCs干性的重要机制,为靶向CSCs开展肿瘤治疗的研究提供重要的依据。本文以CSCs动态调控机制为基础,针对EMT和壁龛环境对CSCs干性的调控机制,及近年来靶向CSCs的相关研究作如下综述。
关键词: 肿瘤干细胞     干性     可塑性     上皮间质转化     壁龛     靶向治疗    
Research progress on targeting effect and regulating mechanisms of the stemness of cancer stem cells
MA He-yao, HE Miao, WEI Min-jie     
School of Pharmacy, China Medical University, Shenyang 110122, China
Abstract: Cancer stem cells (CSCs) have become an important target to overcome the obstacle of tumor therapy. In recent years, many reports have shown that the heterogenicity and plasticity of CSCs, and the microenvironment interact with each other, which become important factors affecting the dynamic conversion of CSCs. Therefore, we should not only focus on the stem characteristics of CSCs, but also consider the factors related to the regulation of the dynamic transformation of CSCs stemness. The signaling pathways, epithelial-mesenchymal transition (EMT) and the niche of CSCs, are proved to play an important role in the regulation of stemness of CSCs. The aspects are important in the studies of tumor therapy by targeting CSCs. This article summarizes the mechanisms for regulation of the stemness of cancer stem cells and the progress in the studies of targeting cancer stem cells with a focus on the CSCs dynamic regulation.
Key words: cancer stem cell     stemness     plasticity     epithelial-mesenchymal transition     niche     target therapy    
1 CSCs概述及其特性 1.1 CSCs概念的提出

干细胞概念于1909年首次被提出。直到1961年,Till和McCulloch通过将健康小鼠骨髓中的造血

细胞移植到电离辐射损伤骨髓的小鼠中,并在脾脏中成功获得可以分化为成熟血细胞的造血干细胞,总结出干细胞的两个基本特征即干性: 自我更新和分化为成熟细胞的能力[1]

肿瘤干细胞 (cancer stem cells,CSCs) 概念的发现与普通干细胞相关。根据干细胞干性特征的研究基础,随着1994年在急性白血病粒细胞中的CSCs被首次鉴定之后,近年来,在乳腺、脑、肺和胃肠等多种癌症中存在的CSCs也被相继发现[2]。不仅如此,1997

年Bonnet和Dick[3]还根据在肿瘤中能否满足自我更新和形成异质性肿瘤细胞群的能力,提出了用异种移植的方法来鉴定肿瘤干细胞的方法。

1.2 CSCs的特性

CSCs只有数量很少的细胞群,它的自我更新与形成异质性肿瘤细胞群的特征和普通干细胞很相似。与不具有干性的肿瘤细胞相比,CSCs通过DNA损伤修复、抑制凋亡通路和产生耐药蛋白等自我保护机制,增强了肿瘤进展、转移、耐药和自我更新能力[4]。这解释了临床上癌症治疗过程中,化疗抵抗、肿瘤复发等导致癌症治疗失败的原因[5]。为了根治肿瘤,特异性靶向CSCs的药物、作用靶点及信号通路不断被研究发现[6, 7, 8]

与普通干细胞不同,CSCs由于存在部位和成瘤过程的不同,其表型变化也很复杂。CSCs通过其自我更新与多向分化的特性,使其对肿瘤细胞的生物学侵袭性起到重要的作用[2, 9]。在经过一定刺激或者持续分化传代后的大量肿瘤细胞中,CSCs的干性消失,从而失去肿瘤细胞的侵袭性[9, 10]。相反,肿瘤细胞激活可具有CSCs的干性特征,以重获干细胞的侵袭性和分化能力[11]。近年来,除了识别CSCs的表面标志物外,诱导干性特征的共同表面标志物也被发现,为更有效靶向CSCs提供了新的途径[11, 12]。因此,人类肿瘤又可被视为关于干细胞的疾病,研究调节CSCs干性的机制,靶向CSCs对肿瘤的治疗有重要意义。

2 CSCs的动态理论及其影响因素 2.1 CSCs动态理论

越来越多的研究[13, 14]证明无论是在肿瘤细胞还是普通细胞中,干性都不是一个稳定的状态。CSCs从被普遍认为的静态变为动态CSCs的说法不断得到证实,而且这种转变与肿瘤干细胞干性的得失密切相关[15]。在动态CSCs的理论中,已经分化的肿瘤细胞通过去分化的方式,可重新获得干细胞特性[16]。比如,在CD133标记的结肠癌干细胞中,CD133-细胞可以在数周后转换成CD133+细胞,表明在CSCs中,干性不再仅仅是细胞内部特征,而是一种暂时的、可以转换的状态[17]。影响CSCs干性的因素,如异质性、可塑性和肿瘤微环境的相互影响也同样成为CSCs的动态转换因素。

2.2 CSCs动态理论的影响因素 2.2.1 异质性影响CSCs动态变化

CSCs是一类持续进化和发生功能异质性变化的群体,其异质性以不同形式存在[18]。肿瘤发展的不同阶段,CSCs的数量和比例随之改变,影响了其侵袭性,这是肿瘤细胞之间的相互异质性[19, 20, 21]。此外,尽管有共同的基因排列,仍然存在CSCs和非CSCs两个可转换的表型状态,这是一种细胞内表型的异质性,影响肿瘤的治疗效率和病情发展[22, 23, 24]

2.2.2 可塑性影响CSCs动态变化

可塑性主要表现为未分化的肿瘤干细胞与已分化的普通肿瘤细胞的相互转换现象,也包括干性获得与失去的过程。通过可塑性产生的癌细胞也成为肿瘤异质性的来源[25]。在非CSCs向CSCs的转变中,非CSCs通过白细胞 介素-6 (IL-6) 和ZEB1 (Zinc-finger E-box binding homeobox 1) 刺激可以获得自我更新能力,从而形 成新阶段的侵袭性克隆[25, 26, 27]。另外,不同外部处理 和内部调节机制,促进癌细胞转变为更加敏感或耐药的细胞型,从而影响耐药性。比如,电离辐射可能通过抗凋亡的survivin蛋白调节恶性胶质瘤细胞(glioblastomas cells,GBM cells) 的可塑性,促使GBM细胞去分化成有干性特征的细胞,影响其对电离辐射的抵抗性[28]

2.2.3 肿瘤微环境影响CSCs动态变化

肿瘤微环境刺激CSCs自我更新、血管新生和重塑免疫,提供其他有利于肿瘤侵袭转移力和CSCs动态变化的良好环境[17, 29]。微环境通过特殊信号通路和细胞间的接触影响CSCs的动态变化。如Chang等[30]揭示了激活微环境中的hedgehog信号通路可以使普通的前列腺细胞转化成干细胞。肿瘤微环境主要影响肿瘤的恶化过程,而存在于肿瘤微环境中的CSCs壁龛对肿瘤的起源和进化有重要作用,证明了CSCs微环境对CSCs发生发展的各个阶段都有着重要影响。

CSCs动态的理论模型,一定程度上使得已经被研究很久的干细胞模型更加复杂。因此,相应靶向CSCs也需要动态化,除了改善之前通过诱导CSCs分化从而削弱干性的方法,更应瞄准CSCs的特征,靶向影响干性转化的关键机制[31]

3 CSCs干性的调控因素 3.1 上皮间质转化(EMT) 对CSCs干性的影响 3.1.1 CSCs的干性与EMT紧密相关

EMT的过程在很多种肿瘤中被激活,其中,上皮细胞可以转化成间质细胞,并再次转化回上皮细胞,是肿瘤干细胞特征可塑性的主要表现[32]。由于上皮细胞失去了细胞间的连接和极性,具备了间质细胞迁移侵袭的特征,并且部分CSCs的干性特征与EMT相关的研究[33]已有报道,EMT被认为与肿瘤发展息息相关。最近有研究[34, 35]表明,已经分化的上皮细胞是CSCs的来源之一,对调节CSCs的干性有着重要作用。CSCs的EMT状态对肿瘤的耐药性、复发和转移有重要影响,这在解释肿瘤进化过程中的细胞变化必不可少[36, 37]。EMT对肿瘤发生过程的影响与对胚胎发育过程的影响相似,能保证癌细胞的扩散转移,提高癌细胞的自我更新能力,因此提高了癌细胞的干性,从而促进肿瘤宏观转移的形成[38]

3.1.2 EMT调节CSCs干性的分子机制

EMT的活化对CSCs的干性、CSCs传代以及肿瘤细胞干性获得的影响已得到了分子层面的证实。在肿瘤微环境中,EMT受到大量复杂的信号通路及相关影响因子的调控,如转化生长因子-β (transforming growth factor-β,TGF-β)、肝细胞生长因子 (hepatocyte growth factor,HGF)、表皮生长因子 (epidermal growth factor,EGF) 或者成纤维细胞生长因子(fibroblast growth factors,FGFs); 还有一些EMT活化因子,即为可以诱导上皮细胞基因表达的一类转录因子,如ZFH家族的ZEB1和ZEB2、碱性螺旋-环-螺旋转录因子家族 (basic helix-loop-helix,bHLH) 的E12/47,还有Twist、Snail和Slug[39]。其中,TGF-β是促进肿瘤生长,并可以激活EMT的重要因子,与肿瘤的侵袭和转移息息相关。在具有干性特征的乳腺癌CD44+/CD24-细胞群中,可以通过TGF-β1调控表观遗传基因gelsolin (GSN) 的表达,促进EMT的发生,延续肿瘤侵袭性,证明TGF-β通路可以诱导GSN从而调节肿瘤细胞的EMT以影响CSCs干性[40]。Yu等[41]证明了HGF在肝癌细胞中,通过激活HGF/Met通路以激活EMT,降低细胞的耐药性,增加肿瘤的干细胞样特征。Zhang等[42]揭示了EGF在鳞状细胞癌细胞中调控ALDH+CD44+干细胞比例的作用,并证明了EGF通过PI3K/AKT通路活化EMT的机制。另有研究[43]表明,通过介导Wnt/FGF通路,上调Wnt1和FGF3的表达,明显提高乳腺癌细胞MCF7的成球性,并增加EMT标志物的表达和肿瘤干细胞能量代谢相关蛋白的表达,为通过代谢途径靶向CSCs提供了新途径。Chaffer研 究组[20]发现与EMT相关的调控因子ZEB1可促进CD44low向CD44high的转变过程,并进一步说明EMT诱导的非CSCs向CSCs转化与TGF-β相关。

另外,通过激活EMT的转录因子等活化CSCs中的EMT,对CSCs干性的影响也很重要。Mani等[44]通过异常表达转录因子Twist或Snail,激活EMT,他们发现可以引起非致癌性的人乳腺上皮细胞HMLES的球囊形成能力提高,并获得CD44high/CD24low的典型乳腺癌干细胞特征。与EMT多条通路紧密相关的转录因子FOXC2,也同时影响CSCs的干性特征表达,对富集EMT/CSC的肿瘤有效治疗有重要意义[45]。Preca等[46]发现存在CD44s/ZEB1的正反馈自主循环调节环,在肿瘤发展过程中即使脱离活化EMT的刺激,也能保持肿瘤细胞干性,影响肿瘤耐药及复发几率。此外,DNA结合蛋白BORIS/CTCFL与干性基因表达的正相关性,进一步证明了BORIS/CTCFL与EMT特征性表达和干细胞的自我更新能力的相关性[47]

3.2 壁龛环境对CSCs干性的影响

3.2.1 CSCs赖以生存的壁龛环境

目前认为大多数CSCs都存在于壁龛 (niche) 中,这和普通的干细胞相似,是被特意化的肿瘤微环境,富集致癌性细胞的基质环境,可以保护CSCs不被分化,并限制CSCs的比例,限制生长空间,是保持干性的基础空间[48]。由于细胞之间接触和相关因子作用的影响对成熟干细胞的功能起着重要作用,CSCs被证实具有龛笼的依赖性[49, 50]。最近,有研究[51]报道抗肿瘤物质通过在体内和体外两种方式给药,处理相同的CSCs后产生不同的效果,提示CSCs壁龛对药物治疗效率的重要性。CSCs一旦失去了壁龛环境,就会扰乱CSCs标记物和降低CSCs移植分析实验的成功率[52]。近年,Rongvaux等[53]利用人细胞因子和巨噬细胞人性化因子以优化免疫缺陷鼠模型,能够更好地区分CSCs内因和实验外因对细胞可塑性的影响,准确评估候选药物在体内的免疫功能。

3.2.2 CSCs壁龛中的干性调节通路

在CSCs的壁龛中存在的如Wnt、Notch、SHH和BMP等通路是影响CSCs功能和干性表达的主要因素。其中Wnt和Notch通路被认为是主导CSCs并诱导干性的主要通路,SHH和BMPs通路是决定CSCs功能的主要信号通路[23, 54]。壁龛中,CAF (cancer-associated fibroblasts) 可以通过Wnt和Notch的活化诱导干性的表达,也可以产生MMPs诱导EMT,促进CSCs相关的标记表达[55]。在壁龛中存在的已分化的上皮非干性细胞中,活化Wnt可促使干细胞标记的表达,并去分化成具有干性特征的细胞[56]。Notch通路抑制细胞对分化信号的反应,并与Wnt和其他通路相关联,比如BMPs和hedgehog通路,以决定细胞的分化状态[48, 57]

为了逃避免疫监视,壁龛中存在NKs和CD8+ T细胞等免疫细胞,TAMs (tumor-associated macrophages) 和TANs (tumor-associated neutrophils) 等趋化因子和细胞活素等对肿瘤的生长、迁移和干性的维持也有重要作用[58, 59, 60]。其中,TAMs和CD4+ T细胞通过TNFα活化NF-κB通路,进一步激活Snail、Slug和Twist家族,增加了与TGF-β的对话,与本文关于EMT的论述一致[61]。龛笼的低氧微环境,不但能抑制免疫监视作用,也可以刺激ROS活化TGF-β、TNFα和Wnt通路,还可以使CSCs高表达低氧诱导因子 (HIFs),激活Notch通路,促进干性的调控[62, 63]

与肿瘤发展密切相关的炎性通路NF-κB,可通过激活Wnt来实现非CSCs的去分化,提高干性能 力[56]。骨髓间充质干细胞 (mesenchymal stem cells,MSCs) 通过NF-κB通路调控CXCL12、IL-6和IL-8,提高了肿瘤细胞的干性[64]。此外,还有一些其他影响因素,在壁龛中发挥调节干性的作用。如Lu等[65]发现蛋白CD90/Thy1和EphA4可以使壁龛中存在的TAMs与CSCs直接接触,而与CSCs干性调节密切相关的EMT可以上调CD90/Thy1和EphA4的表达,激活NF-κB并释放与维持干性相关的细胞因子,同时也证明了壁笼中TAMs对CSCs干性调节的重要性。

4 靶向CSCs的研究进展 4.1 靶向CSCs的细胞因子的研究

根据CSCs的特征,整合素αvβ3 (integrin αvβ3) 作为可以诱导干性的细胞表面黏合分子,在乳腺癌、肺癌和胰腺癌中,通过KRas/RalB/NF-κB诱导干性 的产生,有望成为抑制干性的有效靶点[12]。Song等[66]发现在结肠癌细胞中,CSCs线粒体膜的PRX3基因高表达,通过FOXM1刺激CD133和PRX3的表达增加,调节了结肠癌干细胞的干性。在普通干细胞和CSCs中同时表达的CR1 (embryonic protein Cripto-1) 被敲除后,CSCs的生长被抑制,揭示CR1对动态调控结肠癌干细胞功能的重要性,为动态CSCs模型的靶向研究提供了新靶点[67]

4.2 靶向CSCs的通路抑制剂的研究

考虑CSCs是引起肿瘤耐药性产生的关键因素,通过合用抑制剂,提高现有的抗肿瘤治疗效率,也是有效、经济的治疗方法。比如,microRNAs (miRNAs)介导PI3K/AKT通路,降低子宫内膜癌中EMT和CSCs的特征表达,推测联合miRNAs和PI3K/AKT抑制剂,可提升治疗效率[68]。合用Wnt通路抑制剂可以抑制长期使用化疗药的细胞压力所导致的干细胞干性特征增加的现象[69]。IWIF1 (Wnt抑制因子1) 下调干性标志物OCT4和c-Myc,及miR-200c、BMI1、ZEB1和ZEB2,削弱了干细胞的自我更新和多向分化的能力[70]。在肝癌细胞中,NF-κB通路抑制剂可以有效靶向CSCs,再联用HDAC抑制剂可以提升靶向治疗的效果[71]

4.3 靶向CSCs的非编码RNA的研究

最近,lncRNA、miRNA被发现作为影响干性的崭新靶点。在骨肉瘤中,lncRNA HIF2PUT的表达影响干细胞的增殖和转移,并与HIF-2α的表达相关,提示其作为治疗靶点的可能性[72]。miR-612对肝癌 细胞HCC具有多重影响,不但影响其侵袭转移,还能通过Wnt/β-catenin通路抑制HCC与EMT相关的干性特征[73]。在乳腺癌细胞中,lncRNA-Hh (lncRNA- hedgehog signaling) 通过Twist诱导的SHH-GLI1通 路激活,增强乳腺癌细胞的干性,揭示lncRNAs对EMT细胞获得干性的重要性[74]。在恶性胶质瘤的研究中,具有肿瘤抑制作用的miR-218,通过控制表观遗传学相关通路,调控干性,成为治疗恶性胶质瘤的新靶点[75]。在肺腺癌的研究中发现,miR-214可以靶向Wnt通路的调控蛋白CTNNBIP1 (catenin beta inter­acting protein 1),调节肺癌干细胞样细胞的干性[76]

4.4 靶向CSCs的相关蛋白的研究

还有关于抑制CSCs干性密切相关的蛋白的研究。如直接抑制BMI1,可以削弱胃癌细胞的自我更新能力[77]。在鼻咽癌中,发现Wnt家族中的Wnt5A糖蛋白可聚集CD24-CD44+细胞,诱导EMT的发生,并进一步发现Wnt5A可激活PKC循环通路,从而揭示了Wnt5A在干细胞特性中的重要作用[78]。Jun等[79]证明,Met通路与恶性胶质瘤干细胞 (glioma stem cell,GSCs) 的干性正相关,而抑制EGFR的作用可以活化Met通路,Met成为靶向GSCs的新切入点。

5 展望

随着对肿瘤耐药性和复发的临床现状的研究,靶向CSCs的研究不断更新,表 1整合了部分近年来通过抑制干性以靶向CSCs的新靶点。由于干性特征对CSCs侵袭性和耐药性等的影响,CSCs不再仅仅是一类静止的细胞,而是一种具有干性特征状态的细胞。CSCs的动态理论证实了CSCs或非CSCs通过 去极化和分化转变的过程,为靶向CSCs带来了更多的难题。越来越多关于CSCs的研究表明,根据影响干性的因素,以干性的动态变化为切入点,动态靶向CSCs对肿瘤治疗的重要性。如果在传统靶向CSCs的方法基础上,配合动态靶向影响CSCs干性动态变化的调控通路和相关因子,为高效靶向CSCs带来新的希望。

Table 1 Candidate targets for cancer stem cells

近年来,根据CSCs干性的调控因素,通过对与EMT和CSCs壁龛相关的的信号通路和分子靶点等的研究,调控CSCs干性的机制研究取得了一定进展。不过,由于肿瘤的多样化,不同肿瘤的CSCs之间的特征存在一定的差异,所以靶向CSCs,要根据各自细胞的特性,选择合理的靶点。另外,进一步研 究发现多靶点的抗CSCs的药物,可大大提高药物的抗肿瘤效率。总之,随着对CSCs研究的不断深入,更加准确有效地靶向CSCs是肿瘤治疗研究的目标。

参考文献
[1] Fulawka L, Donizy P, Halon A, et al. Cancer stem cells-the current status of an old concept:literature review and clinical approaches[J]. Biol Res, 2014, 47:66.
[2] Lee HE, Kim JH, Kim YJ, et al. An increase in cancer stem cell population after primary systemic therapy is a poor prognostic factor in breast cancer[J]. Br J Cancer, 2011, 104:1730-1738.
[3] Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell[J]. Nat Med, 1997, 3:730-737.
[4] Vermeulen L, de Sousa e Melo F, Richel DJ, et al. The developing cancer stem-cell model:clinical challenges and opportunities[J]. Lancet Oncol, 2012, 13:e83-e89.
[5] Williams K, Motiani K, Giridhar PV, et al. CD44 integrates signaling in normal stem cell, cancer stem cell and (pre) metastatic niches[J]. Exp Biol Med, 2013, 238:324-338.
[6] Liu P, Kumar IS, Brown S, et al. Disulfiram targets cancer stem-like cells and reverses resistance and cross-resistance in acquired paclitaxel-resistant triple-negative breast cancer cells[J]. Br J Cancer, 2013, 109:1876-1885.
[7] Sachlos E, Risueño RM, Laronde S, et al. Identification of drugs including a dopamine receptor antagonist that selectively target cancer stem cells[J]. Cell, 2012, 149:1284-1297.
[8] Sato A, Sunayama J, Okada M, et al. Glioma-initiating cell elimination by metformin activation of FOXO3 via AMPK[J]. Stem Cells Transl Med, 2012, 1:811-824.
[9] Jaworska D, Król W, Szliszka E. Prostate cancer stem cells:research advances[J]. Int J Mol Sci, 2015, 16:27433-27449.
[10] Pisanu ME, Noto A, De Vitis C, et al. Lung cancer stem cell lose their stemness default state after exposure to microgravity[J]. Biomed Res Int, 2014, 2014:470253.
[11] Oshima N, Yamada Y, Nagayama S, et al. Induction of cancer stem cell properties in colon cancer cells by defined factors[J]. PLoS One, 2014, 9:e101735.
[12] Seguin L, Kato S, Franovic A, et al. An integrin β3-KRas-RalB complex drives tumor stemness and resistance to EGFR inhibition[J]. Nat Cell Biol, 2014, 16:457-468.
[13] Sánchez Alvarado A, Yamanaka S. Rethinking differentiation:stem cells, regeneration and plasticity[J]. Cell, 2014, 157:110-119.
[14] Kreso A, Dick JE. Evolution of the cancer stem cell model[J]. Cell Stem Cell, 2014, 14:275-291.
[15] Park TS, Donnenberg VS, Donnenberg AD, et al. Dynamic interactions between cancer stem cells and their stromal partners[J]. Curr Pathobiol Rep, 2014, 2:41-52.
[16] Islam F, Qiao B, Smith RA, et al. Cancer stem cell:fundamental experimental pathological concepts and updates[J]. Exp Mol Pathol, 2015, 98:184-191.
[17] Bjornson CR, Rietze RL, Reynolds BA, et al. Turning brain into blood:a hematopoietic fate adopted by adult neural stem cells in vivo[J]. Science, 1999, 283:534-537.
[18] Yang T, Rycaj K, Liu ZM, et al. Cancer stem cells:constantly evolving and functionally heterogeneous therapeutic targets[J]. Cancer Res, 2014, 74:2922-2927.
[19] Clevers H. The cancer stem cell:premises, promises and challenges[J]. Nat Med, 2011, 17:313-319.
[20] Chaffer CL, Marjanovic ND, Lee T, et al. Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity[J]. Cell, 2013, 154:61-74.
[21] Lapouge G, Beck B, Nassar D, et al. Skin squamous cell carcinoma propagating cells increase with tumour progression and invasiveness[J]. EMBO J, 2012, 31:4563-4575.
[22] Ni C, Huang J. Dynamic regulation of cancer stem cells and clinical challenges[J]. Clin Transl Oncol, 2013, 15:253-258.
[23] Safa AR, Saadatzadeh MR, Cohen-Gadol AA, et al. Glioblas-toma stem cells (GSCs) epigenetic plasticity and interconvert-sion between differentiated non-GSCs and GSCs[J]. Genes Dis, 2015, 2:152-163.
[24] Pattabiraman DR, Weinberg RA. Tackling the cancer stem cells-what challenges do they pose?[J]. Nat Rev Drug Discov, 2014, 13:497-512.
[25] Friedmann-Morvinski D. Glioblastoma heterogeneity and cancer cell plasticity[J]. Crit Rev Oncog, 2014, 19:327-336.
[26] Chaffer CL, Brueckmann I, Scheel C, et al. Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state[J]. Proc Natl Acad Sci U S A, 2011, 108:7950-7955.
[27] Iliopoulos D, Hirsch HA, Wang G, et al. Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion[J]. Proc Natl Acad Sci U S A, 2011, 108:1397-1402.
[28] Dahan P, Martinez Gala J, Delmas C, et al. Ionizing radia-tions sustain glioblastoma cell dedifferentiation to a stem-like phenotype through survivin:possible involvement in radio-resistance[J]. Cell Death Dis, 2014, 5:e1543.
[29] Oskarsson T, Batlle E, Massagué J. Metastatic stem cells:sources, niches, and vital pathways[J]. Cell Stem Cell, 2014, 14:306-321.
[30] Chang HH, Chen BY, Wu CY, et al. Hedgehog overexpres-sion leads to the formation of prostate cancer stem cells with metastatic property irrespective of androgen receptor expres-sion in the mouse model[J]. J Biomed Sci, 2011, 18:6.
[31] Francipane MG, Chandler J, Lagasse E, et al. Cancer stem cells:a moving target[J]. Curr Pathobiol Rep, 2013, 1:111-118.
[32] Cabrera MC, Hollingsworth RE, Hurt EM, et al. Cancer stem cell plasticity and tumor hierarchy[J]. World J Stem Cells, 2015, 7:27-36.
[33] Tomaskovic-Crook E, Thompson EW, Thiery JP, et al. Epithelial to mesenchymal transition and breast cancer[J]. Breast Cancer Res, 2009, 11:213.
[34] Zhang L, Jiao M, Wu K, et al. TNF-α induced epithelial mesenchymal transition increases stemness properties in renal cell carcinoma cells[J]. Int J Clin Exp Med, 2014, 7:4951-4958.
[35] May CD, Sphyris N, Evans KW, et al. Epithelial-mesen-chymal transition and cancer stem cells:a dangerously dynamic duo in breast cancer progression[J]. Breast Cancer Res, 2011, 13:202.
[36] Yasui K, Shimamura M, Mitsutake N, et al. Snail induces epithelial-to-mesenchymal transition and cancer stem cell-like properties in aldehyde dehydroghenase-negative thyroid cancer cells[J]. Thyroid, 2013, 23:989-996.
[37] Yi SY, Hao YB, Nan KJ, et al. Cancer stem cells niche:a target for novel cancer therapeutics[J]. Cancer Treat Rev, 2013, 39:290-296.
[38] Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states:acquisition of malignant and stem cell traits[J]. Nat Rev Cancer, 2009, 9:265-273.
[39] Medema JP. Cancer stem cells:the challenges ahead[J]. Nat Cell Biol, 2013, 15:338-344.
[40] Chen ZY, Wang PW, Shieh DB, et al. Involvement of gel-solin in TGF-beta 1 induced epithelial to mesenchymal transition in breast cancer cells[J]. J Biomed Sci, 2015, 22:90.
[41] Yu G, Jing Y, Kou X, et al. Hepatic stellate cells secreted hepatocyte growth factor contributes to the chemoresistance of hepatocellular carcinoma[J]. PLoS One, 2013, 8:e73312.
[42] Zhang Z, Dong Z, Lauxen IS, et al. Endothelial cell-secreted EGF induces epithelial to mesenchymal transition and endows head and neck cancer cells with stem-like phenotype[J]. Cancer Res, 2014, 74:2869-2881.
[43] Lamb R, Bonuccelli G, Ozsvári B, et al. Mitochondrial mass, a new metabolic biomarker for stem-like cancer cells:understanding Wnt/FGF-driven anabolic signaling[J]. Oncotarget, 2015, 6:30453-30471.
[44] Mani SA, Guo W, Liao MJ, et al. The epithe-lial-mesenchymal transition generates cells with properties of stem cells[J]. Cell, 2008, 133:704-715.
[45] Hollier BG, Tinnirello AA, Werden SJ, et al. FOXC2c expression links epithelial-mesenchymal transition and stem cell properties in breast cancer[J]. Cancer Res, 2013, 73:1981-1992.
[46] Preca BT, Bajdak K, Mock K, et al. A self-enforcing CD44s/ZEB1 feedback loop maintains EMT and stemness properties in cancer cells[J]. Int J Cancer, 2015, 137:2566-2577.
[47] Alberti L, Losi L, Leyvraz S, et al. Different effects of BORIS/CTCFL on stemness gene expression, sphere formation and cell survival in epithelial cancer stem cells[J]. PLoS One, 2015, 10:e0132977.
[48] Fessler E, Dijkgraaf FE, De Sousa E Melo F, et al. Cancer stem cell dynamics in tumor progression and metastasis:is the microenvironment to blame?[J]. Cancer Lett, 2013, 341:97-104.
[49] Hanahan D, Coussens LM. Accessories to the crime:func-tions of cells recruited to the tumor microenvironment[J]. Cancer Cell, 2012, 21:309-322.
[50] Greaves M. Cancer stem cells as ‘units of selection’[J]. Evol Appl, 2013, 6:102-108.
[51] Junttila MR, de Sauvage FJ. Influence of tumour micro-environment heterogeneityon therapeutic response[J]. Nature, 2013, 501:346-354.
[52] Valent P, Bonnet D, De Maria R, et al. Cancer stem cell definitions and terminology:the devilis in the details[J]. Nat Rev Cancer, 2012, 12:767-775.
[53] Rongvaux A, Willinger T, Martinek J, et al. Development and function of human innate immune cells in a humanized mouse model[J]. Nat Biotechnol, 2014, 32:364-372.
[54] Ye J, Wu D, Wu P, et al. The cancer stem cell niche:cross talk between cancer stem cells and their microenvironment[J]. Tumour Biol, 2014, 35:3945-3951.
[55] Kessenbrock K, Dijkgraaf GJ, Lawson DA, et al. A role for matrix metalloproteinases in regulating mammary stem cell function via the Wnt signaling pathway[J]. Cell Stem Cell, 2013, 13:300-313.
[56] Schwitalla S, Fingerle AA, Cammareri P, et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties[J]. Cell, 2013, 152:25-38.
[57] Milner LA, Bigas A. Notch as a mediator of cell fate determination in hematopoiesis:evidence and speculation[J]. Blood, 1999, 93:2431-2448.
[58] Broz ML, Binnewies M, Boldajipour B, et al. Dissecting the tumor myeloid compartment reveals rare activating anti-gen-presenting cells critical for T cell immunity[J]. Cancer Cell, 2014, 26:638-652.
[59] Chanmee T, Ontong P, Konno K, et al. Tumor-associated macrophages as major players in the tumor microenvironment[J]. Cancers, 2014, 6:1670-1690.
[60] Kitamura T, Qian BZ, Pollard JW, et al. Immune cell promo-tion of metastasis[J]. Nat Rev Immunol, 2015, 15:73-86.
[61] Smith AL, Robin TP, Ford HL, et al. Molecular pathways:targeting the TGF-β pathway for cancer therapy[J]. Clin Cancer Res, 2012, 18:4514-4521.
[62] Wei J, Wu A, Kong LY, et al. Hypoxia potentiates glioma-mediated immunosuppression[J]. PLoS One, 2011, 6:e16195.
[63] Quail DF, Taylor MJ, Postovit LM. Microenvironmental regulation of cancer stem cell phenotypes[J]. Curr Stem Cell Res, 2012, 7:197-216.
[64] Cabarcas SM, Mathews LA, Farrar WL. The cancer stem cell niche-there goes the neighborhood?[J]. Int J Cancer, 2011, 129:2315-2327.
[65] Lu H, Clauser KR, Tam WL, et al. A breast cancer stem cell niche supported by juxtacrine signaling from monocytes and macrophages[J]. Nat Cell Biol, 2014, 16:1105-1117.
[66] Song IS, Jeong YJ, Jeong SH, et al. FOXM1-induced PRX3 regulates stemness and survival of colon cancer cells via maintenance of mitochondrial function[J]. Gastroenterology, 2015, 149:1006-1016.
[67] Francescangeli F, Contavalli P, De Angelis ML, et al. Dynamic regulation of the cancer stem cell compartment by Cripto-1 in colorectal cancer[J]. Cell Death Differ, 2015, 22:1700-1713.
[68] Dong P, Konno Y, Watari H, et al. The impact of mi-croRNA-mediated PI3K/AKT signaling on epithelial-mesenchymal transition and cancer stemness in endometrial cancer[J]. J Transl Med, 2014, 12:231.
[69] Nagaraj AB, Joseph P, Kovalenko O, et al. Critical role of Wnt/β-catenin signaling in driving epithelial ovarian cancer platinum resistance[J]. Oncotarget, 2015, 6:23720-23734.
[70] Ramachandran I, Ganapathy V, Gillies E, et al. Wnt inhibitory factor 1 suppresses cancer stemnessand induces cellular senescence[J]. Cell Death Dis, 2014, 5:e1246.
[71] Marquardt JU, Gomez-Quiroz L, Arreguin Camacho LO, et al. Curcumin effectively inhibits oncogenic NF-κB signaling and restrains stemness features in liver cancer[J]. J Hepatol, 2015, 63:661-669.
[72] Wang Y, Yao J, Meng H, et al. A novel long non-coding RNA, hypoxia-inducible factor-2α promoter upstream tran-script, functions as an inhibitor of osteosarcoma stem cells in vitro[J]. Mol Med Rep, 2015, 11:2534-2540.
[73] Tang J, Tao ZH, Wen D, et al. miR-612 suppresses the stemness of liver cancer via Wnt/β-catenin signaling[J]. Biochem Biophys Res Commun, 2014, 447:210-215.
[74] Zhou M, Hou Y, Yang G, et al. lncRNA-Hh strengthen cancer stem cells generation in twist-positive breast cancer via activation of hedgehog signaling pathway[J]. Stem Cells, 2015. DOI:10.1002/stem.2219.
[75] Gao X, Jin W. The emerging role of tumor-suppressive microRNA-218 in targeting glioblastoma stemness[J]. Cancer Lett, 2014, 353:25-31.
[76] Qi W, Chen J, Cheng X, et al. Targeting the Wnt-regulatory protein CTNNBIP1 by microRNA-214 enhances the stemness and self-renewal of cancer stem-like cells in lung adenocarci-nomas[J]. Stem Cells, 2015. DOI:10.1002/stem.2188.
[77] Kreso A, van Galen P, Pedley NM, et al. Self-renewal as a therapeutic target in human colorectal cancer[J]. Nat Med, 2014, 20:29-36.
[78] Qin L, Yin YT, Zheng FJ, et al. Wnt5A promotes stemness characteristics in nasopharyngeal carcinoma cells leading to metastasis and tumorigenesis[J]. Oncotarget, 2015, 6:10239-10252.
[79] Jun HJ, Bronson RT, Charest A. Inhibition of EGFR induces a c-Met-driven stem cell population in glioblastoma[J]. Stem Cells, 2014, 32:338-348.