2. 新疆农业大学动物医学学院,乌鲁木齐 830052
2. College of Animal Medicine, Xinjiang Agricultural University, Urumqi 830052, China
猪流行性腹泻(porcine epidemic diarrhea,PED)是一种接触性、高死亡率的肠道传染病,可导致仔猪肠细胞大量丢失,小肠绒毛萎缩,与刷状缘结合的消化酶减少,从而引发消化吸收不良,临床表现为食欲减退、呕吐和腹泻,严重时可能致命。其病原PEDV是套式病毒目、冠状病毒科、α病毒属的一种RNA病毒,主要感染新生仔猪,给养殖业造成严重的经济损失。动物冠状病毒的不断变异,加上其庞大的基因组和复杂的复制过程,增加了研究其发病机制的难度[1]。从病毒-宿主细胞蛋白入手有助于全面了解其发病机制,同时有助于确定新的治疗靶点。NHE3表达于分化的肠上皮细胞顶膜,是肠道中的关键转运蛋白,主要介导Na+和营养物质的吸收[2]。在小鼠中,肠道NHE3的缺失会导致各种局部和全身病变,并影响微生物群的定植[3]。本课题组在前期研究中发现,PEDV感染引起的仔猪腹泻与机体中NHE3的活性和表达下降有关,NHE3表达降低导致其向小肠上皮细胞质膜的易位减少,仔猪肠道中Na+-H+交换失调,从而诱发腹泻。同时,NHE3活性降低表现出对PEDV感染剂量的依赖性[4-5]。
CD44是一种非激酶细胞表面跨膜糖蛋白,属于软骨素家族的成员,在多种细胞中高表达[6]。CD44也是细胞黏附分子(cell adhesion molecules,CAM) 家族的一员,可以与多种配体如乙酰透明质酸HA、骨桥蛋白OPN、胶原蛋白和基质金属蛋白酶MMP等结合以激活多种信号通路,从而诱导细胞增殖、提高细胞存活率、介导细胞骨架变化,并在细胞黏附到细胞外基质(ECM) 中发挥重要作用[7-10]。有研究报道CD44在小肠上皮细胞中显著表达并且能够维持肠道稳态[11-12]。CD44的减少导致结肠缩短并引起严重的炎症反应。此外,早期研究表明,CD44对癌症的发展具有促进作用[13],CD44还具有抗病毒作用[14]。CD44可以通过促进配体蛋白的组装和维持正常的内皮屏障来抵抗寨卡病毒(Zika virus,ZIKV)的侵袭[15],同时还能抑制人类免疫缺陷病毒(HIV-1)p24抗原的产生[16]。CD44肽PD1能够抑制登革热病毒(DENV) 包膜蛋白的结构域Ⅲ与细胞受体的相互作用,从而产生抗病毒作用[17]。然而,CD44与PEDV之间的关系有待进一步探究。在本研究中,作者发现CD44具有抗PEDV作用并介导IPEC-J2细胞中NHE3活性的调节,进一步影响细胞内外Na+交换。这能为阐明NHE3活性调控的分子机制提供参考,并为探索CD44作为PEDV控制措施的靶点提供新思路。
1 材料与方法 1.1 细胞、毒株和试剂猪小肠上皮细胞(IPEC-J2)和非洲绿猴肾细胞(Vero)由本实验室冻存,培养细胞所用的DMEM培养基、胎牛血清、青链霉素双抗和胰蛋白酶购自重庆衍庆生物科技有限公司。PEDV-LJX毒株和PEDV N多克隆抗体由中国农业科学院兰州兽医研究所刘光亮研究员惠赠。NHE3兔源多抗、E-cadherin兔源多克隆抗体、CD44兔源多克隆抗体、β-actin鼠源多克隆抗体、HRP偶联的山羊抗兔抗体和HRP偶联的山羊抗小鼠抗体购自武汉三鹰生物技术有限公司。RNAiso plus、5×PrimeScript RT Master Mix和TB Green Premix Ex Taq Ⅱ试剂盒购自成都微克生物技术有限公司。Western及IP细胞裂解液、膜蛋白抽提试剂盒、BCA试剂盒购自上海碧云天生物技术有限公司。TransIntro® EL Transfection Reagent购自北京全式金生物技术有限公司。
1.2 转录组分析按照说明书,使用RNAiso plus提取对照组和PEDV感染组仔猪小肠组织的总RNA。使用Agilent 2100评估RNA完整性,RIN值>7.0。此外,用5×PrimeScript RT Master Mix将裂解的RNA片段反转录成cDNA用于合成U标记的第二链DNA。用UDG酶处理U标记的第二链DNA的热不稳定性后,通过PCR扩增连接产物:95℃预变性3 min,98℃变性15 s,60℃退火15 s,72℃延伸30 s,35个循环。最后,根据供应商推荐的方案对Illumina Hiseq 4000(LC Bio,中国)进行配对末端测序。
1.3 CD44基因过表达和干扰载体质粒的鉴定和筛选CD44基因过表达质粒pEGFP-CD44和干扰质粒pLVX-CD44-2、pLVX-CD44-4的构建委托武汉金开瑞生物工程有限公司完成。pEGFP-CD44质粒经NheⅠ、KpnⅠ双酶切后进行PCR验证。通过Western blot检测转染pEGFP-CD44/pLVX-CD44质粒后的IPEC-J2细胞中CD44蛋白表达情况,从而验证过表达和干扰重组质粒对CD44表达的调控效果,同时筛选出干扰效率最佳的CD44干扰质粒用于后续试验。
1.4 IPEC-J2细胞转染重组质粒和感染PEDV细胞试验设置4个组,分别为Control组、PEDV感染组、PEDV+pEGFP-CD44组和PEDV+ pLVX-CD44组,每组设置3个重复。将状态良好的IPEC-J2细胞按6×105个·mL-1接种于6孔盘或60 mm盘中,37 ℃、5% CO2条件下继续培养,细胞融合度达到70%~90%时使用TransIntro® EL Transfection Reagent向PEDV+pEGFP-CD44组和PEDV+pLVX-CD44组细胞分别转染4.0 μg pEGFP-CD44质粒和pLVX-CD44质粒,6 h后换成DMEM基础培养基。24 h后向PEDV组、PEDV+pEGFP-CD44组和PEDV+pLVX-CD44组细胞接种PEDV-LJX病毒液(MOI=0.1),1.5 h后换成DMEM基础培养基,同时设置空白对照组。在接毒后12、24、36、48 h收集上清液和经Western及IP细胞裂解液处理的细胞裂解液。
1.5 Western blot检测IPEC-J2细胞中蛋白相对表达水平按照Western及IP细胞裂解液和膜蛋白抽提试剂盒说明书,提取总蛋白和膜蛋白,一部分蛋白用BCA试剂盒检测浓度,余下蛋白加入1/5体积protein loading buffer,混匀,煮沸10 min,用于Western blot。检测膜蛋白样品中的钙黏蛋白E(E-cadherin),以反映是否有效抽提出IPEC-J2细胞的膜蛋白。将蛋白质样品等量加入上样孔中,然后进行SDS-PAGE凝胶电泳,200 mA将蛋白印记湿转至经甲醇激活的PVDF膜上。用TBST稀释的5%脱脂奶粉封闭1.5 h,TBST洗涤5 min×6次后,将PVDF膜与5%脱脂奶粉稀释的一抗在4 ℃孵育过夜,TBST洗涤5 min×6次,然后将PVDF膜与TBST稀释的相应二抗在室温下用摇床孵育1 h,TBST洗涤5 min×6次。使用FX5成像系统(VILBER)获得印迹图像,使用Image J软件分析灰度值。
1.6 TCID50测定上清液中病毒滴度将Vero细胞以4×104个·0.1 mL-1的密度接种于96孔板中,待细胞融合度为90%时,将收集的上清液用含10 μg·mL-1胰蛋白酶的DMEM基础培养基进行10-1~10-6梯度稀释,同时创建空白对照组,每个梯度设置6个复孔,在37 ℃、5% CO2条件下孵育,每隔12 h观察一次每个孔的细胞病变并及时记录结果,用Reed-Muench法计算病毒滴度。
1.7 荧光定量PCR(RT-qPCR)检测IPEC-J2细胞中基因表达量使用RNAiso plus和5×PrimeScript RT Master Mix提取总RNA并反转录成cDNA。以β-actin为内参基因,通过实时定量聚合酶链反应(qPCR)扩增并定量目的基因。20 μL反应体系的组成: 10 μL TB Green Premix Ex Taq Ⅱ、0.5 μL正向引物、0.5 μL反向引物、2 μL cDNA和5 μL无菌水。反应条件:预变性95℃ 30 s,变性95℃ 5 s,退火60℃ 15 s,40个循环。每组设置3个复孔。引物序列如表 1所示。基于循环阈值(Ct)进行数据分析,采用2-ΔΔCt公式计算目的基因mRNA的相对表达水平。
![]() |
表 1 引物序列 Table 1 Sequences of primers |
上清液作为细胞外液,细胞经Western及IP细胞裂解液裂解后,取上清作为细胞内液。预先配制Na标准溶液,按照仪器和计算机软件的操作说明依次打开乙炔气阀、仪器和计算机软件,选择Na元素灯并在计算机软件上设置参数,Na的工作波长为589 nm。点击寻峰后能量平衡达到100%时,用一级水彻底冲洗点火器,再用标准介质溶液校零。首先对质量浓度分别为0.05、0.10、0.20、0.30和0.40 μg·mL-1的标准Na溶液稀释液进行测量,建立标准曲线后测量每个样品的吸光度(Abs),记录数值用于后续数据处理。
1.9 数据分析所有统计分析均使用GraphPad Prism软件,文章中的数据为三个独立试验的平均值(x)±s或平均值的标准误差(sx )。单因素方差分析(ANOVA)用于确定多组之间的统计差异。*表示P<0.05,差异显著;**表示P<0.01,***表示P<0.001,差异极显著。
2 结果 2.1 PEDV感染后12~48 h内,IPEC-J2细胞中CD44表达量增多,PEDV N蛋白表达水平降低转录组数据分析结果显示,与对照组相比,PEDV感染组仔猪肠细胞中CD44基因表达量显著上调(图 1A)。作者通过Western blot和RT-qPCR技术检测感染PEDV 12、24、36、48 h后IPEC-J2细胞中CD44的表达情况。结果显示,与对照组相比,PEDV感染组中CD44蛋白表达水平和mRNA表达量均呈上升趋势(图 1B、C)。此外,随着感染时间的延长,PEDV N蛋白表达水平在12~48 h内呈下降趋势(图 1D)。在PEDV感染IPEC-J2细胞后12~ 48 h内,CD44表达呈上升趋势,而PEDV N蛋白表达水平随时间延长逐渐下降,基于此,作者有了如下疑问,即在IPEC-J2细胞中CD44变化是否能影响PEDV复制。
![]() |
A. 仔猪肠道组织的转录组学数据; B. CD44蛋白的Western blot结果; C. CD44 mRNA的RT-qPCR结果; D. PEDV N蛋白的Western blot结果。ns. P>0.05,*. P<0.05,**. P<0.01,***. P<0.001, 下同 A. Transcriptomic data of piglet intestinal tissue; B. Western blot results of CD44 protein; C. RT-qPCR results of CD44 mRNA; D. Western blot results of PEDV N protein. ns. P > 0.05, *. P < 0.05, **. P < 0.01, ***. P < 0.001, the same as below 图 1 PEDV感染后CD44和PEDV N表达量的变化 Fig. 1 Changes of CD44 and PEDV N expression after PEDV infection |
pEGFP-CD44重组质粒经NheⅠ和KpnⅠ双酶切鉴定,结果如图 2A所示,在1 500~2 000 bp之间出现与预期大小一致的条带。利用荧光显微镜观察转染pEGFP-CD44或pLVX-CD44质粒后不同时间的荧光强度,结果显示,转染后12~72 h内,pEGFP-CD44和pLVX-CD44质粒在IPEC-J2细胞内均有明显的绿色荧光(图 2B)。Western blot结果显示,与对照组相比,pEGFP-CD44转染组的CD44蛋白表达水平显著上升(图 2C),pLVX-CD44-2和pLVX-CD44-4均能显著下调CD44蛋白表达水平,且pLVX-CD44-2干扰效果优于pLVX-CD44-4(图 2D),故后续试验均使用干扰质粒pLVX-CD44-2转染IPEC-J2细胞。
![]() |
A. pEGFP-CD44质粒的双酶切鉴定结果;B. 转染CD44重组质粒后IPEC-J2细胞的荧光图;C. Western blot分析pEGFP-CD44过表达效果;D. Western blot分析pLVX-CD44干扰效果 A. The result of double enzyme digestion identification of pEGFP-CD44 plasmid; B. Fluorescence map of IPEC-J2 cells after transfection of CD44 recombinant plasmid; C. Western blot analyzes the overexpression effect of pEGFP-CD44; D. Western blot analyzes the interference effect of pLVX-CD44 图 2 CD44重组质粒的验证与筛选 Fig. 2 Validation and screening of CD44 recombinant plasmid |
采用TCID50法测定病毒滴度,采用Western blot检测PEDV N蛋白表达水平。结果显示,与PEDV感染组相比,过表达CD44后感染PEDV组细胞中病毒滴度和PEDV N蛋白表达水平显著下降(图 3A、C),而干扰CD44后感染PEDV组细胞中病毒滴度和PEDV N蛋白表达水平显著上升(图 3B、D)。
![]() |
A. 过表达CD44后的病毒滴度变化;B. 干扰CD44后的病毒滴度变化;C. Western blot检测过表达CD44后PEDV N蛋白的表达变化;D. Western blot检测干扰CD44后PEDV N蛋白的表达变化 A. Changes in virus titer after CD44 overexpression; B. Changes in virus titer after CD44 interference; C. Western blot analysis of PEDV N protein expression after CD44 overexpression; D. Western blot analysis of PEDV N protein expression after CD44 interference 图 3 IPEC-J2细胞中调控CD44对PEDV复制的影响 Fig. 3 Effect of regulation of CD44 on PEDV replication in IPEC-J2 cells |
与PEDV感染组相比,在PEDV感染后12~48 h内,过表达CD44后感染PEDV组细胞总NHE3蛋白表达水平呈上升趋势(图 4A、C), 干扰CD44后感染PEDV组细胞总NHE3蛋白表达水平呈下降趋势(图 4B、D),在12~24 h内差异显著(P<0.05)。
![]() |
A、C. Western blot分析过表达CD44后NHE3总蛋白变化;B、D. Western blot分析干扰CD44后NHE3总蛋白变化 A, C. Western blot analysis of total NHE3 protein expression after overexpression of CD44; B, D. Western blot analysis of total NHE3 protein expression after interference with CD44 图 4 在感染PEDV的情况下,过表达或干扰CD44对IPEC-J2细胞中NHE3总蛋白表达的影响 Fig. 4 In the case of infection with PEDV, effects of overexpressing or interfering with CD44 on expression of total NHE3 protein in IPEC-J2 cells |
与PEDV感染组相比,在12~48 h内,过表达 CD44后感染PEDV组细胞膜NHE3蛋白表达水平显著上升(图 5A、C),干扰CD44后感染PEDV组细胞膜NHE3蛋白表达水平显著下降(图 5B、D)。
![]() |
A、C. Western blot分析过表达CD44后膜蛋白NHE3变化;B、D. Western blot分析干扰CD44后膜蛋白NHE3变化 A, C. Western blot analysis of surface NHE3 protein after overexpression of CD44; B, D. Western blot analysis of surface NHE3 proteins after interference with CD44 图 5 在感染PEDV的情况下,过表达或干扰CD44对IPEC-J2细胞上膜NHE3蛋白表达的影响 Fig. 5 In the presence of PEDV infection, effects of overexpressing or interfering with CD44 on surface NHE3 protein expression on IPEC-J2 cell membranes |
首先创建了Na标准曲线,由图 5A可知,在0.05~0.4 μg·mL-1范围内的吸光度(Abs)与Na浓度具有良好的线性关系,回归方程为y=0.511 2x+ 0.009 2,R2=0.998 7。火焰原子吸收法结果显示,与对照组相似,单独过表达或干扰CD44组细胞内外Na+浓度在12~48 h内无明显变化,且细胞内Na+浓度始终高于细胞外Na+浓度。与对照组相比,PEDV感染组细胞内外Na+浓度均高于正常水平,且随感染时间延长呈上升趋势(图 6B~E)。与PEDV感染组相比,过表达CD44后感染PEDV组细胞内Na+浓度在24~48 h内有所下降,48 h时细胞外Na+浓度接近对照组(图 6B、C)。与PEDV感染组相比,干扰CD44后感染PEDV组细胞内Na+浓度在12~36 h内有所上升,细胞外Na+浓度呈现持续上升趋势且高于正常水平(图 6D、E)。综上所述,在正常生理条件下,CD44的变化对细胞内和细胞外Na+浓度的变化无显著影响。但在PEDV感染情况下,过表达CD44可导致IPEC-J2细胞内外Na+浓度逐渐向正常水平回降,从而使肠道渗透压恢复平衡,干扰CD44则导致IPEC-J2细胞内外Na+浓度升高,肠道渗透压失衡。
![]() |
A. Na+标准曲线;B.过表达CD44后细胞内Na+浓度变化折线图;C.过表达CD44后细胞外Na+浓度变化折线图;D.干扰CD44后细胞内Na+浓度变化折线图;E.干扰CD44后细胞外Na+浓度变化折线图 A. Na+ standard curve; B. Line plot of intracellular Na+ concentration change after overexpression of CD44; C. Line plot of extracellular Na+ concentration change after overexpression of CD44; D. Line plot of changes in intracellular Na+ concentration after interference with CD44; E. Line plot of extracellular Na+ concentration changes after interference with CD44 图 6 过表达或干扰CD44后,IPEC-J2细胞内外Na+浓度的变化 Fig. 6 Changes of Na+ concentration inside and outside IPEC-J2 cells after overexpression or interference with CD44 |
CD44是一种复杂的宿主跨膜糖蛋白,在小肠细胞中广泛分布和表达,该蛋白质与细胞膜和细胞质中的配体和信号受体如透明质酸、纤连蛋白和层黏连蛋白相互作用[18-20]。此外,一些宿主跨膜蛋白已被证明与病毒复制有关,但个别跨膜蛋白是前病毒因子还是抗病毒靶蛋白还需要进一步研究。CD44促进肿瘤发生和病毒感染,并在某些病毒性疾病如HPV[21]和HBV[22]的发病过程中加剧损伤并促进病毒复制,但在ZIKV[15]、HCV[23]和HIV-1[14]感染过程中,它能够捕获病毒并产生抗病毒作用。因此,CD44在宿主防御病原微生物方面的功能差异归因于病原体种类。
NHE3在胃肠道的顶膜中高度表达,并且在Na+依赖性转运机制中具有重要的调控作用。在正常生理条件下,转移至细胞膜上的NHE3蛋白数量增多,NHE3的活性增加,依靠Na+-K+-ATP酶提供能量,使Na+和H+按等比例交替转运,从而维持Na+在细胞内外的动态平衡。作者的初步研究表明,PEDV感染IPEC-J2细胞后12~48 h内,PEDV N蛋白表达水平随时间延长逐渐降低,而CD44蛋白的表达水平随时间延长逐渐升高,因此作者推测CD44可能在PEDV感染IPEC-J2细胞过程中发挥抗病毒作用。为进一步验证CD44与PEDV之间的关系,构建了CD44过表达质粒pEGFP-CD44和CD44干扰质粒pLVX-CD44,用于研究调控IPEC-J2细胞中CD44表达对PEDV复制的影响。结果表明,过表达CD44能够抑制PEDV在IPEC-J2细胞中的复制水平,而干扰CD44后PEDV在IPEC-J2细胞中的复制水平上升。因此,CD44可能是一种抗PEDV蛋白。课组先前的研究表明,PEDV引发的腹泻与仔猪肠道组织细胞中NHE3的流动性和表达量降低有关[4]。NHE3的一个重要生物学作用是维持细胞膜两侧的Na+浓度梯度,有助于维持肠道渗透压平衡。CD44可以抑制PEDV复制,但PEDV复制被CD44抑制后NHE3活性及细胞内外Na+浓度的变化尚不清楚。后续试验数据表明,过表达CD44后抑制PEDV复制,PEDV病毒载量处于较低水平,机体通过上调NHE3蛋白表达,代偿性维持细胞内外Na+运转平衡。而在CD44干扰条件下,PEDV的复制不能被抑制,PEDV病毒载量处于较高水平,导致细胞中NHE3蛋白下调,细胞内外Na+浓度严重失调。
4 结论CD44通过影响PEDV复制水平来调控膜NHE3表达,NHE3在细胞膜上的表达又与细胞内外Na+交换相关。因此,可以CD44为靶标抑制PEDV复制,使NHE3向质膜的移动数量增多,Na+转运功能增强,维持细胞内外Na+浓度平衡,从而缓解仔猪腹泻症状。综上所述,CD44可能是潜在的抗PEDV靶点。
[1] |
YUAN L X, FUNG T S, HE J W, et al. Modulation of viral replication, apoptosis and antiviral response by induction and mutual regulation of EGR and AP-1 family genes during coronavirus infection[J]. Emerg Microbes Infect, 2022, 11(1): 1717-1729. DOI:10.1080/22221751.2022.2093133 |
[2] |
NIKOLOVSKA K, SEIDLER U E, STOCK C. The role of plasma membrane sodium/hydrogen exchangers in gastrointestinal functions: proliferation and differentiation, fluid/electrolyte transport and barrier integrity[J]. Front Physiol, 2022, 13: 899286. DOI:10.3389/fphys.2022.899286 |
[3] |
XUE J X, DOMINGUEZ RIEG J A, THOMAS L, et al. Intestine-specific NHE3 deletion in adulthood causes microbial dysbiosis[J]. Front Cell Infect Microbiol, 2022, 12: 896309. DOI:10.3389/fcimb.2022.896309 |
[4] |
SONG Z H, YAN T, RAN L, et al. Reduced activity of intestinal surface Na+/H+ exchanger NHE3 is a key factor for induction of diarrhea after PEDV infection in neonatal piglets[J]. Virology, 2021, 563: 64-73. DOI:10.1016/j.virol.2021.08.011 |
[5] |
NIU Z, ZHANG Y L, KAN Z F, et al. Decreased NHE3 activity in intestinal epithelial cells in TGEV and PEDV-induced piglet diarrhea[J]. Vet Microbiol, 2021, 263: 109263. DOI:10.1016/j.vetmic.2021.109263 |
[6] |
LIU K L, MCCUE W M, YANG C W, et al. Combinatorial synthesis of a hyaluronan based polysaccharide library for enhanced CD44 binding[J]. Carbohydr Polym, 2023, 300: 120255. DOI:10.1016/j.carbpol.2022.120255 |
[7] |
HASSN MESRATI M, SYAFRUDDIN S E, MOHTAR M A, et al. CD44:a multifunctional mediator of cancer progression[J]. Biomolecules, 2021, 11(12): 1850. DOI:10.3390/biom11121850 |
[8] |
HO N T, LIN S W, LEE Y R, et al. Osteopontin splicing isoforms contribute to endometriotic proliferation, migration, and epithelial-mesenchymal transition in endometrial epithelial cells[J]. Int J Mol Sci, 2022, 23(23): 15328. DOI:10.3390/ijms232315328 |
[9] |
ZHOU Y, HE M. GSN synergies with actin-related transfer molecular chain to promote invasion and metastasis of HCC[J]. Clin Transl Oncol, 2023, 25(2): 482-490. |
[10] |
OUHTIT A, RIZEQ B, SALEH H A, et al. Novel CD44-downstream signaling pathways mediating breast tumor invasion[J]. Int J Biol Sci, 2018, 14(13): 1782-1790. DOI:10.7150/ijbs.23586 |
[11] |
LIU A J, PAN Q, WANG S Y, et al. Identification of chicken CD44 as a novel B lymphocyte receptor for infectious bursal disease virus[J]. J Virol, 2022, 96(6): e0011322. DOI:10.1128/jvi.00113-22 |
[12] |
WALTER R J, SONNENTAG S J, MUNOZ-SAGREDO L, et al. Wnt signaling is boosted during intestinal regeneration by a CD44-positive feedback loop[J]. Cell Death Dis, 2022, 13(2): 168. DOI:10.1038/s41419-022-04607-0 |
[13] |
JAISWAL A, SINGH R. Loss of epidermal homeostasis underlies the development of squamous cell carcinoma[J]. Stem Cell Rev Rep, 2023, 19(3): 667-679. DOI:10.1007/s12015-022-10486-x |
[14] |
MURAKAMI T, ONO A. Roles of virion-incorporated CD162 (PSGL-1), CD43, and CD44 in HIV-1 infection of T cells[J]. Viruses, 2021, 13(10): 1935. DOI:10.3390/v13101935 |
[15] |
PUERTA-GUARDO H, TABATA T, PETITT M, et al. Zika virus nonstructural protein 1 disrupts glycosaminoglycans and causes permeability in developing human placentas[J]. J Infect Dis, 2020, 221(2): 313-324. DOI:10.1093/infdis/jiz331 |
[16] |
MAHAJAN K, ROJEKAR S, DESAI D, et al. Layer-by-layer assembled nanostructured lipid carriers for CD-44 receptor-based targeting in HIV-infected macrophages for efficient HIV-1 inhibition[J]. AAPS PharmSciTech, 2021, 22(5): 171. DOI:10.1208/s12249-021-01981-4 |
[17] |
RECALDE-REYES D P, RODRÍGUEZ-SALAZAR C A, CASTAÑO-OSORIO J C, et al. PD1 CD44 antiviral peptide as an inhibitor of the protein-protein interaction in dengue virus invasion[J]. Peptides, 2022, 153: 170797. DOI:10.1016/j.peptides.2022.170797 |
[18] |
CHEN H T, FANG Z, SONG M D, et al. Mitochondrial targeted hierarchical drug delivery system based on HA-modified liposomes for cancer therapy[J]. Eur J Med Chem, 2022, 241: 114648. DOI:10.1016/j.ejmech.2022.114648 |
[19] |
KOKORETSIS D, MANIAKI E K, KYRIAKOPOULOU K, et al. Hyaluronan as "Agent Smith" in cancer extracellular matrix pathobiology: Regulatory roles in immune response, cancer progression and targeting[J]. IUBMB Life, 2022, 74(10): 943-954. DOI:10.1002/iub.2608 |
[20] |
DALIMOT J J, KLEI T R L, BEUGER B M, et al. Malaria-associated adhesion molecule activation facilitates the destruction of uninfected red blood cells[J]. Blood Adv, 2022, 6(21): 5798-5810. DOI:10.1182/bloodadvances.2021006171 |
[21] |
SUWIWAT S, TUNGSINMUNLONG K, SIRIAUNGKUL S. Expression of CD44v6 and RCAS1 in uterine cervical carcinoma infected with human papillomavirus and its effect on cell proliferation and differentiation[J]. Asian Pac J Cancer Prev, 2022, 23(7): 2431-2439. DOI:10.31557/APJCP.2022.23.7.2431 |
[22] |
XIAO Y W, CAO J N, ZHANG Z, et al. Hepatitis B virus pregenomic RNA reflecting viral replication in distal non-tumor tissues as a determinant of the stemness and recurrence of hepatocellular carcinoma[J]. Front Microbiol, 2022, 13: 830741. DOI:10.3389/fmicb.2022.830741 |
[23] |
ZHONG L, LIU Y Y, XU L, et al. Exploring the relationship of hyaluronic acid molecular weight and active targeting efficiency for designing hyaluronic acid-modified nanoparticles[J]. Asian J Pharm Sci, 2019, 14(5): 521-530. DOI:10.1016/j.ajps.2018.11.002 |
(编辑 白永平)