2. 山西农业大学动物科学学院, 太谷 030801
2. College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
牛生殖系统炎症是目前畜牧业面临的问题之一。革兰氏阴性菌细胞壁的内毒素——脂多糖(lipopolysaccharide,LPS)是导致炎症发生的主要原因[1]。之前研究表明,牛分娩后的子宫约有90%被细菌感染,其中40%发展为临床疾病。生殖系统的细菌感染能破坏子宫和卵巢的功能,导致排卵延迟、生育能力下降甚至不孕,引发卵巢炎、盆腔炎、子宫内膜炎等疾病[2-3]。卵巢中的卵泡颗粒细胞(granulosa cells,GCs)是组成卵泡的主要细胞群,在卵泡形成和发育过程中起着重要的作用,为卵母细胞的生长和成熟提供必要的营养[4]。在卵泡生长发育过程中GCs进行着增殖和分化,同时合成和分泌类固醇激素。类固醇生物合成信号通路对GCs的功能起着及其重要调控作用[5]。LPS对牛生理活动产生严重的损害,如改变GCs基因的表达,降低其产生雌二醇(E2)的量[6-7]。LPS可以引起免疫刺激的级联反应和机体的毒性病理生理活动,导致多种细胞因子和炎症递质合成及释放[8-9]。研究人员在患有子宫内膜炎的牛卵巢卵泡液中测出高浓度的LPS[10]。由此推测,患生殖系统炎症的动物,通过微环境中LPS的积累引发一系列炎性损伤并导致卵泡中GCs功能性紊乱。
萘醌类化合物(NQs)已被证明具有抗炎活性,它们通过对各种细胞因子和调节蛋白的作用,影响细胞信号通路,保护细胞免受炎症损伤[11]。Asiri等[12]从滇紫草提取物中分离得到了两个呋喃型萘醌类化合物,它们能有效抑制NO的释放,表明了其潜在的抗炎活性。Dong等[13]从onosma paniculatum甲醇提取物中分离到4种新的萘醌和6种已知的萘醌化合物,均对小鼠巨噬细胞(RAW 264.7)NO的产生具有抑制作用。Pinho等[14]评估了一系列单体和二聚物NQs的抗炎活性,结果表明一些二聚物能显著降低NO的释放量和促炎因子TNF-α和IL-6的表达量,并且没有细胞毒性。2-甲氧基-1, 4-萘醌(2-methoxy-1, 4-naphthoquinone,MNQ)是存在于凤仙花(Impatiens balsamina L)根、茎中的一种NQs,能作用于细胞壁、细胞膜及线粒体等多个靶点,具有抗菌、消炎、抗过敏、抗瘙痒、抗肿瘤、抗氧化等活性[15]。
目前, 对MNQ的研究主要集中于细胞毒性和抗癌作用,对抗炎活性的研究较少。人工合成MNQ的衍生物,理论上增强了其生物学活性。课题组已经证实MNQ及其一种衍生物D21具有消炎作用[16-17]。本试验将体外培养的牛卵泡GCs暴露于LPS中,形成炎症损伤的细胞。本研究试图用MNQ的另一种衍生物D19保护GCs免受炎症损伤,并恢复其生理功能。
1 材料与方法 1.1 试验材料1.1.1 主要材料 本试验从屠宰场采集健康的荷斯坦牛卵巢组织,将其置于含有1%的青链霉素混合液并灭菌的DPBS中,2 h内冰上带回实验室。
从凤仙花(Impatiens balsamina L)中提取MNQ,并合成MNQ的衍生物D19(图 1)。
![]() |
图 1 MNQ及其衍生物D19的分子结构式 Fig. 1 Molecular structural formulae of MNQ and its derivative D19 |
1.1.2 主要仪器 细胞培养箱(ThermoFisher,美国);荧光倒置显微镜(Leica,德国);透射电子显微镜(JEOL,日本);酶标仪(BIO-EKON,北京);超低温冰箱(ThermoFisher,美国);核酸/蛋白测定仪(NanoDrop,美国)。
1.1.3 主要试剂 MNQ的衍生物D19(Luis实验室,英国);青链霉素混合液(Gibco,美国);DPBS(Solarbio,中国);胎牛血清(Solarbio,中国);DMEM/F12培养基(BOSTER,中国);DMSO(Solarbio,北京);LPS(Solarbio,中国);PBS(Solarbio,中国);MTT(Solarbio,中国);PrimeScriptTMRT reagent Kit with gDNA Eraser试剂盒(TaKaRa,北京);TB GreenTM Premix Ex TaqTMⅡ试剂盒(TaKaRa,北京);戊二醛(LILAI,成都);四氧化锇(LILAI,成都);ELISA试剂盒(酶免,中国)。
1.2 方法1.2.1 卵泡GCs的分离和培养 用提前灭菌的剪刀从牛卵巢组织中分离出卵泡。选择直径为4~8 mm的卵泡,从其内壁轻轻刮取卵泡GCs。收集并洗涤GCs。用含有10%胎牛血清的培养基培养GCs,培养条件为37 ℃,5%的CO2[18]。
1.2.2 MTT试验 收集对数期的卵泡GCs接种于96孔板中培养,培养条件为37 ℃,5% CO2。待细胞长至20%~40%时,去掉上清。
加入含有D19的培养液(D19溶解于DMSO中,DMSO的终浓度小于0.1%),终浓度分别为1、2、4、8、16、32、64、128 μmol ·L-1(n=6),设置对照组,分别培养12、24和48 h。
加入含有LPS的培养液(LPS溶解于PBS),浓度分别为0.1、1、10 μg ·mL-1(n=6),设置对照组,培养12 h。浓度梯度的设置参考生殖道炎症卵泡液中LPS浓度和LPS用于免疫分析的浓度[19]。
去掉上清,每孔加入90 μL培养液,再加10 μL MTT溶液,继续培养4 h。弃去培养液,每孔加110 μL DMSO溶解结晶物。490 nm处测量OD值,计算细胞存活率。
细胞存活率=(药物组OD值-空白组OD值)/(对照组OD值-空白组OD值)×100%。
1.2.3 实时荧光定量PCR(qRT-PCR) 使用Trizol法提取总RNA,按照PrimeScriptTMRT reagent Kit with gDNA Eraser试剂盒说明书进行反转录[20]。根据NCBI上牛的预测序列,利用Primer 5.0设计目的基因引物,由上海生物工程股份有限公司合成。以荷斯坦牛β-actin作为内参基因,引物序列及产物长度见表 1。依据TB GreenTM Premix Ex TaqTMⅡ试剂盒说明书,以cDNA为模板,构建10 μL反应体系(TB Green Premix Ex TaqⅡ 5 μL、上游引物0.4 μL、下游引物0.4 μL、cDNA 2 μL、RNase Free dH2O 2.2 μL),进行qRT-PCR反应。反应条件为95 ℃,30 s;95 ℃,5 s;60 ℃,30 s,共45个循环。扩增后生成扩增曲线、熔解曲线,计算CT值分析结果。
![]() |
表 1 引物信息 Table 1 Primers information |
1.2.4 试验分组 试验分为3组:CK组、LPS组和D19+L组。CK组为对照组;LPS组,前12 h处理细胞同CK组,之后用浓度为10 μg ·mL-1的LPS处理细胞12 h;D19+L组,前12 h用浓度为64 μmol ·L-1的D19处理细胞,之后用浓度为10 μg ·mL-1的LPS处理细胞12 h。每组设置3个重复,作用时间共计24 h。
1.2.5 TEM观察D19对LPS损伤GCs的保护 用60 mm的培养皿培养GCs,按照试验要求处理细胞。待细胞长满整个培养皿时,胰酶消化并收集于EP管中。分别用3%戊二醛和1%四氧化锇固定细胞。经过丙酮逐级脱水,渗透和包埋后切片、染色,最后使用TEM采集图像。
1.2.6 酶联免疫吸附试验(ELISA) 收集细胞培养液,用ELISA试剂盒检测培养液中E2和P4的浓度。在96孔板中加入100 μL的标准品和待测样品,37 ℃下反应60 min。洗涤后各孔中加入100 μL显色剂,37 ℃避光反应15~20 min。加入50 μL终止液,终止反应。450 nm波长下测定OD值。
1.2.7 统计学分析 试验数据利用SPSS 22.0进行分析,并采用单因素方差分析和显著性检验的方法,P<0.05表示差异显著,而P<0.01表示差异极显著。使用GraphPad Prism 8.0软件作图。qRT-PCR相对表达量检测结果采用2-ΔΔCt法计数,各基因表达量均经过内参β-actin校正。E2和P4的浓度根据标准曲线确定。所有试验至少重复3次。
2 结果 2.1 D19对GCs活性的影响在一定的浓度范围内,D19对卵泡GCs的存活率影响较小,甚至会促进其增殖。浓度在64 μmol ·L-1以下,作用时间为12和24 h时,GCs的存活率均在90%以上;浓度为128 μmol ·L-1时,作用时间为12 h时,GCs的存活率小于90%,且与对照组相比存在显著性差异(P<0.01)。因此D19对GCs作用12 h的最大安全浓度为64 μmol ·L-1(最大安全浓度:MNTC,maximum no-cytotoxic concentration,是指能够使90%以上细胞存活的化合物的最大浓度)。后期试验选择浓度为64 μmol ·L-1的D19处理细胞时间为12 h(图 2)。
![]() |
“ **”表示不同浓度的D19对卵泡GCs作用12 h与CK组比较差异极显著(P<0.01) " **" indicates that the difference between different concentrations of D19 acting on follicular GCs for 12 h was highly significant compared with the CK group (P < 0.01) 图 2 不同浓度的D19处理不同时间(12、24、48 h)后GCs的存活率 Fig. 2 Survival rate of GCs after treatment with different concentrations of D19 for different times (12, 24, 48 h) |
MTT试验检测了不同浓度的LPS(0.1、1、10 μg ·mL-1)处理卵泡GCs 12 h后对其存活率的影响。结果表明,试验浓度范围之内的LPS对卵泡GCs的存活率没有显著影响(图 3A)。
![]() |
A.不同浓度的LPS(0.1、1、10 μg ·mL-1)作用12 h对GCs存活率的影响。B. 不同浓度的LPS作用12 h对IL-6、IL-1β和TNF-α的mRNA相对表达量的影响。“ **”表示与对照组比较差异极显著(P<0.01) A. Effects of different concentrations of LPS (0.1, 1, 10 μg ·mL-1) acting for 12 h on the survival rate of GCs. B. Effects of different concentrations of LPS acting for 12 h on the relative mRNA expression of IL-6, IL-1β and TNF-α. " **" indicates highly significant difference (P < 0.01) compared with the control group 图 3 LPS对GCs存活率及炎症因子表达量的影响 Fig. 3 Effect of LPS on the survival rate of GCs and expression of inflammatory factors |
不同浓度的LPS处理卵泡GCs 12 h,使用qRT-PCR检测炎症因子IL-6、IL-1β和TNF-α的相对表达量。结果表明,随着LPS浓度的增加,炎性因子的相对表达量逐渐升高,10 μg ·mL-1的LPS处理后IL-6、IL-1β和TNF-α的相对表达量均显著升高(P<0.01,图 3B)。后续选择浓度为10 μg ·mL-1的LPS诱导卵泡GCs产生炎症反应。
2.3 衍生物D19的抗炎作用qRT-PCR检测不同处理组IL-6、IL-1β和TNF-α的mRNA相对表达量,发现LPS组与CK组相比炎性因子mRNA的表达量显著升高(P<0.01),但D19+L组与LPS组相比表达量却显著下降(P<0.01)(图 4)。结果表明浓度为64 μmol ·L-1的D19能有效抑制由LPS引发的炎症反应。
![]() |
A、B、C分别表示不同处理组对GCs作用24 h后,IL-6、IL-1β和TNF-α的相对表达量。“ **”表示LPS组与CK组比较差异极显著(P<0.01),“##”表示D19+L组与LPS组比较差异极显著(P<0.01) A, B, C indicate the relative expression of IL-6, IL-1β and TNF-α in different treatment groups after 24 h of action on GCs, respectively. " **" indicates highly significant differences between the LPS group and the CK group (P < 0.01), and "##" indicates highly significant differences between the D19+L group and the LPS group (P < 0.01) 图 4 炎性因子的相对表达量 Fig. 4 Relative expression of inflammatory factors |
使用TEM分别观察了CK组、LPS组和D19+L组的亚显微结构图。结果发现LPS组与CK组相比线粒体固缩、嵴减少变粗、膜密度增高、粗面内质网发生扩张、胞浆中自噬溶酶体数量减少。D19+L组与LPS组相比线粒体形态结构一定程度恢复正常,外膜平滑、内膜向腔内形成嵴、基质电子密度均匀、粗面内质网扁囊轻度增大、高尔基体含量丰富、自噬溶酶体数量增多(图 5)。
![]() |
蓝色剪头表示线粒体,红色箭头表示自噬溶酶体,绿色箭头表示内质网 Blue arrows indicate mitochondria, red arrows indicate autophagic lysosomes and green arrows indicate endoplasmic reticulum 图 5 D19对LPS诱导细胞损伤保护的TEM图(比例尺2 μm) Fig. 5 TEM image of D19 protection against LPS-induced cell damage(scale bar 2 μm) |
用ELISA试剂盒检测不同处理组培养液上清中E2和P4的浓度,并用qRT-PCR检测类固醇合成相关基因的表达情况,结果见图 6。
![]() |
A、B分别表示不同处理组培养液中E2和P4的含量。C、D、E和F分别表示不同处理组中CYP19A1、CYP11A1、3β-HSD和STAR的相对表达量。“ **”表示LPS组与CK组比较差异极显著(P<0.01),“##”表示D19+L组与LPS组比较差异极显著(P<0.01) A, B indicate the content of E2 and P4 in the culture medium of different treatment groups, respectively. C, D, E and F indicate the relative expression of CYP19A1, CYP11A1, 3β-HSD and STAR in different treatment groups, respectively. "**" indicates highly significant differences between the LPS group and the CK group (P < 0.01), and "##" indicates highly significant differences between the D19+L group and the LPS group (P < 0.01) 图 6 培养液中类固醇激素的含量及类固醇合成相关基因的相对表达量 Fig. 6 Steroid hormone content and relative expression of steroid synthesis-related genes in the culture broth |
体外暴露在LPS中的卵泡GCs功能受到影响,表现为E2和P4的分泌量显著降低(P<0.01),如图 6A、6B所示。同时,检测了CYP19A1(图 6C)、CYP11A1(图 6D)、3β-HSD(图 6E)和STAR(图 6F)的表达情况,结果表明与CK组相比LPS组均显著下降(P<0.01)。但是,D19+L组的E2和P4分泌情况和类固醇合成相关基因表达情况,发现均比LPS组升高(P<0.01),因此表明D19能在一定程度恢复LPS对卵泡GCs造成的功能性损伤。
3 讨论NQs是重要的细胞毒性化合物,通过不同的机制发挥作用,如氧化还原反应、诱导DNA断裂以及产生自由基、活性氧等[21]。MNQ属于萘醌类化合物,它也表现出一定的细胞毒性。研究人员从海娜花(Impatiens balsamina)中分离得到MNQ,使用含有MNQ的培养基对肺癌人类肺泡基底上皮细胞(A549)进行体外培养,得到MNQ的IC50为7.5 μmol ·L-1[22]。Chen等[23]研究表明,当浓度为0.1和1 μmol ·L-1时,MNQ增强了细胞活力,在1 μmol ·L-1时效果最明显;但当浓度达到10 μmol ·L-1时,细胞活力明显下降,MNQ表现出细胞毒性。MNQ的萘醌环3号位氢原子被含有苯环的其他基团取代,形成衍生物D19。通过试验表明D19表现出对卵泡GCs较小的毒性,因此推测MNQ及其衍生物的细胞毒性与其分子结构密切相关。
生命科学研究者经常使用LPS诱导机体产生炎症反应,建立体内、外炎症模型。以此模型为基础,验证某些提取物和药物的抗炎作用[24-25]。研究人员在小鼠体内注射LPS,使得血清中IL-6、IL-1β等炎性因子浓度显著升高,表明成功诱导了小鼠炎症模型[26-28]。此外,研究人员用LPS诱导巨噬细胞(RAW264.7)产生炎症反应,并进行了一系列相关的研究[29-30]。GCs位于卵巢卵泡的基底膜内,基底膜阻止了免疫细胞入内。卵巢卵泡的基底膜可以拦截分子量为100~850 kDa的分子进入,但是对LPS分子是高度通透的。Herath等[31]使用无菌针头将产后患有不同程度(轻度、中度、重度)子宫内膜炎奶牛的卵泡液吸出,检测卵泡液中LPS的含量。结果发现随着炎症程度的增加,卵泡液中LPS的含量显著增多。体外采集卵泡,检测卵泡液中LPS的浓度,得到了同样的结果。本试验将体外培养的卵泡GCs暴露在不同浓度的LPS中,发现随着LPS浓度的增大,炎性因子IL-6、IL-1β和TNF-α的mRNA相对表达量逐渐增多,这和现有的研究结论基本一致。LPS可能通过炎症相关信号通路诱导卵泡GCs的炎症反应,如TNF/NF-κB信号通路、AMPK信号通路等。将体外培养的卵泡GCs暴露于LPS中,可以模拟患有生殖系统炎症的卵泡GCs的状态。
之前研究表明LPS可以作用于卵泡GCs,并影响其生理功能。牛和鼠的卵泡GCs暴露于LPS中,细胞表达TLR4受体,受体与LPS结合导致炎症因子的产生[32]。LPS通过AMPK和mTOR信号通路诱导牛卵泡GCs产生炎症反应,炎性因子IL-1α、IL-1β、TNF-α、IL-6和IL-8表达量发生显著改变[33-34]。Onnureddy等[35]用浓度为1 μg ·mL-1的LPS成功诱导水牛(Bubalus bubalis)卵泡GCs促炎因子IL-6、IL-1β、TNF-α的表达升高。之后用IGF-1逆转了LPS的作用,降低了促炎因子的表达。CYP19A1被称为雌激素合成酶,是细胞色素P450超家族的成员,在卵泡GCs合成E2中起重要作用[36]。在哺乳动物中,由胆固醇合成孕烯醇酮是甾醇类激素合成的第一个步骤。STAR将游离的胆固醇从细胞质输送到线粒体内膜,在线粒体内膜中CYP11A1(P450scc)催化胆固醇生成孕烯醇酮,然后将其运输到内质网,通过3β-HSD转化为P4[37]。研究表明将优势卵泡的GCs体外暴露于LPS中,产生的E2减少[31]。细菌产生的LPS通过TLR2和TLR4途径作用于卵泡GCs引发炎症并扰乱GCs内分泌功能,使得E2和P4的分泌量减少[2]。Onnureddy等[35]发现LPS有效抑制了卵泡GCs中CYP19A1的表达,进而影响类固醇激素的合成。Shimizu等[38]研究表明LPS和PGN对颗粒细胞E2产生的抑制作用,导致了子宫炎奶牛的卵巢功能障碍。本研究也证实了LPS会影响GCs的正常生理功能,导致其E2和P4的合成和分泌量减少。同时我们检测了类固醇激素合成相关基因的表达情况,推测LPS是通过改变类固醇激素合成相关基因的表达进而影响了类固醇激素的合成。
MNQ广泛存在于凤仙花等植物体内,其衍生物的合成简单易行,且有效增强了抗炎效应。植物体内活性物质的药用功能避免了传统消炎药物可能引起机体的免疫失调、伴有一系列不良反应以及微生物对药物的耐药性等缺点,为有效治疗奶牛生殖系统炎症,改善奶牛的生殖健康提供了理论依据。
4 结论试验确定了MNQ的衍生物D19对奶牛卵巢卵泡GCs作用12 h的最大无毒浓度为64 μmol ·L-1。证明了D19在最大无毒浓度范围之内对LPS体外诱导的卵泡GCs炎症损伤具有一定的保护作用,并能一定程度缓减LPS导致的GCs功能性紊乱。
[1] |
DEO P, CHOW S H, HAN M L, et al. Mitochondrial dysfunction caused by outer membrane vesicles from Gram-negative bacteria activates intrinsic apoptosis and inflammation[J]. Nat Microbiol, 2020, 5(11): 1418-1427. DOI:10.1038/s41564-020-0773-2 |
[2] |
PRICE J C, BROMFIELD J J, SHELDON I M. Pathogen-associated molecular patterns initiate inflammation and perturb the endocrine function of bovine granulosa cells from ovarian dominant follicles via TLR2 and TLR4 pathways[J]. Endocrinology, 2013, 154(9): 3377-3386. DOI:10.1210/en.2013-1102 |
[3] |
ROSALES E B, AMETAJ B N. Reproductive tract infections in dairy cows: can probiotics curb down the incidence rate?[J]. Dairy, 2021, 2(1): 40-64. |
[4] |
SABRY R. The effects of bisphenol a on the expression of microRNA-21 and miR-21 mediated pathways including epigenetic regulation and apoptosis in bovine granulosa cells[D]. Guelph: University of Guelph, 2023.
|
[5] |
SHEN Q Z, LIU Y, LI H G, et al. Effect of mitophagy in oocytes and granulosa cells on oocyte quality[J]. Biol Reprod, 2021, 104(2): 294-304. |
[6] |
TABANDEH M R, JOZAIE S, GHOTBEDIN Z, et al. Dimethyl itaconic acid improves viability and steroidogenesis and suppresses cytokine production in LPS-treated bovine ovarian granulosa cells by regulating TLR4/nfkβ, NLRP3, JNK signaling pathways[J]. Res Vet Sci, 2022, 152: 89-98. DOI:10.1016/j.rvsc.2022.07.024 |
[7] |
SHEN J, ZHAO W M, CHENG J R, et al. Lipopolysaccharide accelerates tryptophan degradation in the ovary and the derivative kynurenine disturbs hormone biosynthesis and reproductive performance[J]. J Hazard Mater, 2023, 458: 131988. DOI:10.1016/j.jhazmat.2023.131988 |
[8] |
ROSADINI C V, KAGAN J C. Early innate immune responses to bacterial LPS[J]. Curr Opin Immunol, 2017, 44: 14-19. DOI:10.1016/j.coi.2016.10.005 |
[9] |
RATHINAM V A K, ZHAO Y, SHAO F. Innate immunity to intracellular LPS[J]. Nat Immunol, 2019, 20(5): 527-533. DOI:10.1038/s41590-019-0368-3 |
[10] |
WANG D J, WENG Y J, ZHANG Y L, et al. Exposure to hyperandrogen drives ovarian dysfunction and fibrosis by activating the NLRP3 inflammasome in mice[J]. Sci Total Environ, 2020, 745(31): 141049. |
[11] |
RAUF A, Abu-IZNEID T, RASHID U, et al. Anti-inflammatory, antibacterial, toxicological profile, and in silico studies of dimeric naphthoquinones from Diospyros lotus[J]. BioMed Res Int, 2020, 2020: 7942549. |
[12] |
ASIRI S M, SHAARI K, ABAS F, et al. Two new naphthoquinone derivatives from the stem bark of Callicarpa maingayi[J]. Nat Prod Commun, 2012, 7(10): 1333-1336. |
[13] |
DONG M, LIU D, LI Y H, et al. Naphthoquinones from Onosma paniculatum with potential anti-inflammatory activity[J]. Planta Med, 2017, 83(7): 631-635. |
[14] |
PINHO B R, SOUSA C, VALENTÃO P, et al. Is nitric oxide decrease observed with naphthoquinones in LPS stimulated RAW 264.7 macrophages a beneficial property?[J]. PLoS One, 2011, 6(8): e24098. DOI:10.1371/journal.pone.0024098 |
[15] |
JIANG H F, ZHUANG Z H, HOU B W, et al. Adverse effects of hydroalcoholic extracts and the major components in the stems of Impatiens balsamina L. on Caenorhabditis elegans[J]. Evid Based Complement Alternat Med, 2017, 2017: 4245830. |
[16] |
YANG X F, GUO T, DU Z S, et al. Protective effects of MNQ against Lipopolysaccharide-induced inflammatory damage in bovine ovarian follicular granulosa cells in vitro[J]. J Steroid Biochem Mol Biol, 2023, 230: 106274. DOI:10.1016/j.jsbmb.2023.106274 |
[17] |
YANG X F, QIN X W, WANG K, et al. MNQ derivative D21 protects against LPS-induced inflammatory damage in bovine ovarian follicular GCs in vitro via the steroid biosynthesis signaling pathway[J]. Theriogenology, 2023, 206: 149-160. DOI:10.1016/j.theriogenology.2023.05.010 |
[18] |
SANTOS P H, NUNES S G, FRANCHI F F, et al. Expression of bta-miR-222 and LHCGR in bovine cultured granulosa cells: impact of follicle deviation and regulation by FSH/insulin in vitro[J]. Theriogenology, 2022, 182: 71-77. DOI:10.1016/j.theriogenology.2022.01.034 |
[19] |
TSATSANIS C, ANDROULIDAKI A, ALISSAFI T, et al. Corticotropin-releasing factor and the urocortins induce the expression of TLR4 in macrophages via activation of the transcription factors PU.1 and AP-1[J]. J Immunol, 2006, 176(3): 1869-1877. DOI:10.4049/jimmunol.176.3.1869 |
[20] |
RIO D C, ARES JR M, HANNON G J, et al. Purification of RNA using TRIzol (TRI reagent)[J]. Cold Spring Harb Protoc, 2010, 2010(6): pdb.prot5439. DOI:10.1101/pdb.prot5439 |
[21] |
FUTURO D O, FERREIRA P G, NICOLETTI C D, et al. The antifungal activity of naphthoquinones: an integrative review[J]. An Acad Bras Ciênc, 2018, 90(1 Suppl 2): 1187-1214. DOI:10.1590/0001-3765201820170815 |
[22] |
AHMADI E S, TAJBAKHSH A, IRANSHAHY M, et al. Naphthoquinone derivatives isolated from plants: recent advances in biological activity[J]. Mini Rev Med Chem, 2020, 20(19): 2019-2035. DOI:10.2174/1389557520666200818212020 |
[23] |
CHEN M, VIAL M L, GEE L, et al. The plant natural product 2-methoxy-1, 4-naphthoquinone stimulates therapeutic neural repair properties of olfactory ensheathing cells[J]. Sci Rep, 2020, 10(1): 951. DOI:10.1038/s41598-020-57793-2 |
[24] |
WU H, WANG Y, ZHANG Y P, et al. Breaking the vicious loop between inflammation, oxidative stress and coagulation, a novel anti-thrombus insight of nattokinase by inhibiting LPS-induced inflammation and oxidative stress[J]. Redox Biol, 2020, 32: 101500. DOI:10.1016/j.redox.2020.101500 |
[25] |
LIU J, CHANG G J, HUANG J, et al. Sodium butyrate inhibits the inflammation of lipopolysaccharide-induced acute lung injury in mice by regulating the toll-like receptor 4/nuclear factor κB signaling pathway[J]. J Agric Food Chem, 2019, 67(6): 1674-1682. DOI:10.1021/acs.jafc.8b06359 |
[26] |
MASTINU A, BONINI S A, PREMOLI M, et al. Protective effects of Gynostemma pentaphyllum (var. Ginpent) against lipopolysaccharide-induced inflammation and motor alteration in mice[J]. Molecules, 2021, 26(3): 570. DOI:10.3390/molecules26030570 |
[27] |
ROUSTA A M, MIRAHMADI S M S, SHAHMOHAMMADI A, et al. Protective effect of sesamin in lipopolysaccharide-induced mouse model of acute kidney injury via attenuation of oxidative stress, inflammation, and apoptosis[J]. Immunopharm Immunot, 2018, 40(5): 423-429. DOI:10.1080/08923973.2018.1523926 |
[28] |
XIE W, LU Q C, WANG K L, et al. miR-34b-5p inhibition attenuates lung inflammation and apoptosis in an LPS-induced acute lung injury mouse model by targeting progranulin[J]. J Cell Physiol, 2018, 233(9): 6615-6631. DOI:10.1002/jcp.26274 |
[29] |
TANG J, DIAO P, SHU X H, et al. Quercetin and quercitrin attenuates the inflammatory response and oxidative stress in LPS-induced RAW264.7 cells: in vitro assessment and a theoretical mode[J]. BioMed Res Int, 2019, 2019: 7039802. |
[30] |
CHEN L, LIN X J, XIAO J B, et al. Sonchus oleraceus Linn protects against LPS-induced sepsis and inhibits inflammatory responses in RAW264.7 cells[J]. J Ethnopharmacol, 2019, 236: 63-69. DOI:10.1016/j.jep.2019.02.039 |
[31] |
HERATH S, WILLIAMS E J, LILLY S T, et al. Ovarian follicular cells have innate immune capabilities that modulate their endocrine function[J]. Reproduction, 2007, 134(5): 683-693. DOI:10.1530/REP-07-0229 |
[32] |
SHIMADA M, HERNANDEZ-GONZALEZ I, GONZALEZ-ROBANYA I, et al. Induced expression of pattern recognition receptors in cumulus oocyte complexes: novel evidence for innate immune-like functions during ovulation[J]. Mol Endocrinol, 2006, 20(12): 3228-3239. DOI:10.1210/me.2006-0194 |
[33] |
VASHISHT M, RANI P, SUNITA, et al. Curcumin primed exosomes reverses LPS-induced pro-inflammatory gene expression in buffalo granulosa cells[J]. J Cell Biochem, 2017, 119(2): 1488-1500. |
[34] |
HORLOCK A D, ORMSBY T J R, CLIFT M J D, et al. Manipulating bovine granulosa cell energy metabolism limits inflammation[J]. Reproduction, 2021, 161(5): 499-512. DOI:10.1530/REP-20-0554 |
[35] |
ONNUREDDY K, RAVINDER, ONTERU S K, et al. IGF-1 attenuates LPS induced pro-inflammatory cytokines expression in buffalo (Bubalus bubalis) granulosa cells[J]. Mol Immunol, 2015, 64(1): 136-143. DOI:10.1016/j.molimm.2014.11.008 |
[36] |
GIACOMINI E, MINETTO S, KLEEMAN F, et al. P-300 Evaluation of CYP19A1 gene expression in luteinized granulosa cells of women affected by endometriosis undergoing assisted reproductive technology (ART) treatments[J]. Hum Reprod, 2022, 37(Suppl 1): deac104.073. |
[37] |
COLE T J, SHORT K L, HOOPER S B. The science of steroids[J]. Semin Fetal Neonatal Med, 2019, 24(3): 170-175. |
[38] |
SHIMIZU T, MIYAUCHI K, SHIRASUNA K, et al. Effects of lipopolysaccharide (LPS) and peptidoglycan (PGN) on estradiol production in bovine granulosa cells from small and large follicles[J]. Toxicol in Vitro, 2012, 26(7): 1134-1142. |
(编辑 郭云雁)