畜牧兽医学报  2024, Vol. 55 Issue (4): 1412-1422. DOI: 10.11843/j.issn.0366-6964.2024.04.007    PDF    
奶牛同期发情-定时输精技术研究进展
向辉1, 桂林森1, 杨迪1, 魏士昊1, 宫艳斌2, 史远刚1, 马云1, 淡新刚1     
1. 宁夏大学动物科技学院,银川 750021;
2. 青铜峡市恒源林牧有限公司,青铜峡 751600
摘要:减少输精次数,缩短空怀间隔, 提高奶牛妊娠率是提高奶牛繁殖效率,节约养殖成本的重要保障。奶牛同期发情-定时输精技术不仅能满足上述要求,还能跳过发情鉴定环节,直接进行定时输精,进而最大限度提高奶牛繁殖率。本文介绍了奶牛同期发情-定时人工输精(estrous synchronization-fixed-timed artificial insemination, ES-TAI)发展过程中的常用技术和新技术,并将这些技术按不同的处理方式进行归纳分析,重点论述各类技术的原理、操作流程以及实际应用效果,以期为进一步研发更加高效的奶牛同期发情-定时输精新技术和规模化牧场奶牛的繁殖管理提供一定的参考。
关键词奶牛    同期发情-定时输精技术    妊娠率    预同期    双同期    
Research Progress on the Estrus Synchronization-fixed-timed Artificial Insemination Technology in Dairy Cows
XIANG Hui1, GUI Linsen1, YANG Di1, WEI Shihao1, GONG Yanbin2, SHI Yuangang1, MA Yun1, DAN Xingang1     
1. College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China;
2. Heng Yuan Lin Farming & Animal Husbandry Ltd., Qingtongxia 751600, China
Abstract: Reducing the numbers of insemination, shortening pregnancy intervals, and increasing the pregnancy rate of cows are the important guarantee for improving the reproductive efficiency of dairy cows and reducing breeding costs. Estrous synchronization-fixed-time artificial insemination (ES-TAI) can not only meet the above requirements, but also skip the estrus identification process and directly carry out timed insemination, thus maximizing the reproduction rate of dairy cows. In the article, classic and new ES-TAI technologies of dairy cows were summarizes according to different processing methods, focusing on the principles, handling procedures and practical application effects of those technologies, which will provide some references for the further research and development of more efficient ES-TAI technologies in dairy cows and the reproduction management of dairy cows in large-scale farms.
Key words: dairy cows    estrus synchronization-fixed-timed artificial insemination technology    pregnancy rate    pre-ovsynch    double ovsynch    

繁殖效率是确保奶牛场盈利的关键因素[1]。近几十年奶牛的选育一直侧重于产奶量,然而奶牛的产奶量与繁殖效率呈负相关[2]。同时,泌乳期奶牛的发情表现差且发情检出率较低[3],这些因素都会直接降低奶牛繁殖效率。

人工授精(artificial insemination,AI)是牛群加速扩繁和遗传改良的重要方法[4]。然而,由于奶牛的发情鉴定需要花大量的人力和时间,并且部分奶牛存在隐性发情、夜间发情[5]或乏情等情况而导致发情鉴定效果不佳,故在牛群中大规模单独使用AI并不能切实提高奶牛繁殖力[6]。为进一步提高奶牛繁殖效率,降低奶牛空怀天数,研究者开发了效果更好的奶牛同期发情-定时输精技术(estrous synchronization-fixed-timed artificial insemination,ES-TAI),以提高奶牛的繁殖效率和遗传价值,这是一种通过外源激素控制奶牛发情并定时输精(fixed-timed artificial insemination,TAI)的技术[7]

奶牛同期发情-定时输精技术基于Pursley等[8]发明的GnRH+PG+GnRH技术(GPG),经过20多年的不断探索,其使用范围逐渐扩大且效果也得到显著提高[9]。该技术利用外源激素控制牛的发情,其核心是利用外源激素人为控制卵泡更替和黄体消退[10]。这既能减少牛隐性发情造成的漏配[11]和病理条件下产生的负面影响[12],也能在省去发情监测的同时确保妊娠率不降[13],还能提高对优良奶牛遗传资源的利用[14]

同期发情-定时输精技术作为奶牛繁殖技术的重大突破和革新,将同期发情和AI的优势相结合,既提高了奶牛参配率和繁殖效率也降低了经济成本和劳动时间。本文就同期发情-定时输精技术的研究进展进行归纳总结,重点阐述同期发情-定时输精技术原理、处理流程、临床应用效果,并分析比较各种技术的优缺点以及综合效益,以期为进一步研发更为高效的同期发情-定时输精技术和牧场繁殖管理提供一定参考。

1 同期发情-定时输精技术原理和优点 1.1 同期发情-定时输精技术原理

同期发情-定时输精是通过外源激素控制奶牛发情并定时输精的繁殖技术。最初Pursley等[8]发明了GPG(GnRH-PG-GnRH),也称Ovsynch56(ovulation synchronization,Ovsynch,图 1)。该技术共使用3次外源激素处理以达到人为控制奶牛卵巢功能的目的[8],通常在奶牛产后50~55 d实施。第一剂促性腺激素释放激素(gonadotropin-releasing hormone,GnRH)通过肌肉注射,诱导黄体生成素(luteinizing hormone,LH)激增,从而促使发育成熟的卵泡排卵以及启动新一轮卵泡波发育[15],排卵也会诱发附属黄体,进而增加排卵期卵泡波发育过程中的循环孕酮(progesterone,P4)浓度;随后前列腺素F(prostaglandin F,PGF)在GnRH给药7 d后诱导黄体(corpus luteum,CL)溶解,进而降低P4浓度,为发情的同步做准备;第二剂GnRH(下文简称为GnRH2)于注射PGF后56 h给药以同步排卵,并在GnRH注射后16~18 h后进行TAI,以便在排出卵泡的最佳时间进行人工授精,从而提高妊娠率。

图 1 奶牛同期发情-定时输精技术(Ovsynch56)原理 Fig. 1 Diagram of primary ES-TAI technology (Ovsynch56) in dairy cows
1.2 同期发情-定时输精技术的优点

受发情检测的制约,发情检测不良或不足是导致牛群参配率和繁殖效率低下的主要原因[16]。同期发情-定时输精技术可省去发情鉴定,提高奶牛的参配率和受胎率。再者,使用ES-TAI可提高奶牛优良基因的遗传利用率[14]。此外,ES-TAI程序中前期所使用的激素为后期授精提供了更好的条件,如PG即对囊性卵巢疾病有良好的治疗效果[17],又有助于奶牛产后子宫复旧[18]

2 奶牛同期发情-定时输精技术 2.1 同期发情-定时输精技术(ES-TAI)

奶牛ES-TAI最初只是基于GnRH的技术,并与PG配合使用。若PG处理时奶牛的黄体(corpus luteum,CL)仍处于早期,则不能溶解黄体[19]。而经PG处理后约有12%~21% 的奶牛存在黄体不完全消退现象[20],黄体的不完全消退会引发第2剂GnRH注射后P4浓度升高[21],而高浓度P4导致子宫内膜变薄,最终降低奶牛的繁殖力[22]

为了确保第2剂GnRH注射之前黄体完全消退,研究者采用调整Ovsynch方案中PG使用剂量和PG与第2剂GnRH注射之间时长两种方法(图 2)。Tippenhauer等[21]通过改变PG剂量,发现两次注射PG(即GPPG技术,也称二次PG法)的方法进一步提高奶牛黄体完全消退的占比,而单次加倍注射PG(即GDPG技术)却不能提高人工受精后妊娠率(Pregnancy per artificial insemination,P/AI),并经Lauber等[23]验证二次PG法的G2-16效果更佳(G2-16∶G2-24=50%∶44%)。随后,Heidari等[24]发现延长PGF至第2剂GnRH注射之间的时间间隔可降低黄体不完全消退奶牛的比例。Ovsynch48相较于Ovsynch56操作更加简单且节省时间,但P/AI却稍低(Ovsynch48∶Ovsynch56=25.2%∶39%)。另外,Hill等[25]发现改变第2剂GnRH注射到TAI的时长也能影响奶牛P/AI,并通过延迟发情不明显奶牛的授精时间成功提高了奶牛的P/AI。这是因为卵泡大小与卵母细胞成熟和母牛的生育能力有关[26]。Perry等[27]发现,排卵卵泡直径大小可以显著影响随后奶牛的P/AI。排卵前卵泡直径小的奶牛有较低的P/AI,尽管推迟排卵前较小卵泡(< 11 mm)奶牛的TAI时间可以提高其P/AI,但仍低于排卵前具有较大卵泡直径的奶牛[28]

(1)Ovsynch48、(2)Ovsynch56、(3)GPPG、(4)G2-16和(5)GDPG的激素剂量:GnRH 100 μg,PG 500 μg;(6)Heatsynch的激素剂量:GnRH 100 μg,PG 500 μg,环戊丙酸雌二醇(estradiol cypionate,ECP) 1 mg Hormone doses for (1) Ovsynch48, (2) Ovsynch56, (3) GPPG, (4) G2-16, and (5) GDPG: GnRH 100 μg, PG 500 μg; Hormone doses for (6) Heatsynch: GnRH 100 μg, PG 500 μg, ECP 1 mg 图 2 不同类型的Ovsynch技术处理流程图 Fig. 2 Flowchart of different Ovsynch technologies

随后,在Ovsynch的基础上又出现激素替换的新技术。Thatcher等[29]提出将第2次GnRH注射替换成雌激素的Heatsynch技术(图 2),并经Bartolome等[30]研究证明该技术更适合发情后期的经产牛(Ovsynch48的27 d受胎率∶间情期∶发情后期∶发情前期∶卵巢囊肿=30.2%∶15.4%∶19.2%∶30.0%;Heatsynch的27 d受胎率∶间情期∶发情后期∶发情前期∶卵巢囊肿=24.1%∶52.2%∶24.1%∶5.0%),但其整体效果与Ovsynch无显著差异(Ovsynch48∶Hestsynch的27 d受胎率=25.2%∶25.8%)。

另外,高产奶牛自身孕激素(P4)分泌稍低[31],而排卵卵泡在低P4浓度(< 2 ng·mL-1)环境下生长会导致后续奶牛的胚胎质量受损并降低P/AI[32]。Pereira等[33]研究表明在实施Ovsynch时,PG处理时高浓度P4可以提高泌乳奶牛的繁殖力。为提高PG处理时奶牛P4浓度,由此衍生出使用孕酮阴道栓(CIDR/PRID)的同期发情-定时输精技术[34] (图 3),它依赖含有P4的CIDR/PRID以抑制GnRH和LH分泌[35]。另外,在该技术开始实施时注射一定剂量雌激素,并在撤除CIDR/PRID时注射PG,可以加速黄体溶解,缩短黄体期,进而在给药后约4 d诱导新的卵泡波募集,最终能够提高孕激素处理后卵泡发育的同期率[36]。随后,Stevenson等[37]在Ovsynch56方案中添加CIDR,以提高PG处理时低P4奶牛的P/AI。

(1)7D2PGF的激素剂量:GnRH用量100 μg,PG用量25 mg,PRID插入物含1.55 g孕酮;(2)2PGG的激素剂量:GnRH用量100 μg,CIDR插入物含1.38 g孕酮,PG用量25 mg;(3)5-day Cosynch的激素剂量:GnRH用量100 μg,CIDR插入物含1.38 g孕酮,PG用量25 mg;(4)CIDR5的激素剂量:CIDR插入物含1.38 g孕酮,PG 25 mg,GnRH 100 μg;(5)CIDR-7的激素剂量:GnRH 100 μg,CIDR插入物含1.38 g孕酮,PG用量25 mg (1) Hormone dosage for 7D2PGF: GnRH dosage 100 μg, PG dosage 25 mg, PRID containing 1.55 g progesterone; (2) Hormonal dose for 2PGG: GnRH 100 μg, CIDR containing 1.38 g progesterone, PG 25 mg; (3) Hormonal dosage for 5-day Cosynch: GnRH 100 μg, CIDR containning 1.38 g progesterone, PG dosage 25 mg; (4) Hormone dosage for CIDR5: CIDR containing 1.38 g progesterone, PG 25 mg, GnRH 100 μg; (5) Hormone dose for CIDR-7: GnRH 100 μg, CIDR containing 1.38 g progesterone, PG dosage 25 mg 图 3 添加孕酮的不同类型ES-AI流程图 Fig. 3 Flowchart of different types of ES-AI with progesterone

此外,从节省成本的角度出发,研究者在进行AI时注射GnRH,即Cosynch技术[38],这种技术通过改善卵母细胞成熟或黄体功能,对奶牛的排卵和P/AI产生积极作用[39]。然而,Pancarci等[40]发现,在5 d CIDR-Cosynch实施时给予GnRH并没有影响奶牛的P/AI。另外,置入5 d CIDR奶牛的P/AI要好于置入7 d的P/AI[41],并且CIDR5方案和CIDR7方案的成本相近[42]。尽管CIDR的放置时长最好是5 d,且方案开始时使用的GnRH可以省去,但其P/AI低于其他Ovsynch技术。目前,不同的ES-TAI技术在牧场实际应用中的效果已经证实,不同的同期发情-定时输精后P/AI相差较大,以Ovsynch+CIDR的方案效果最好(表 1)。

表 1 不同ES-TAI技术的应用效果 Table 1 Application effects of different ES-TAI technologies

另外,马绒毛膜促性腺激素(equine chorionic gonadotropin,eCG)是一种具有促性腺激素样活性的糖蛋白,可促进卵泡发育,但对闭锁卵泡无效[46]。因为它具有改善排卵的同步性并有益于胚胎发育和存活,目前已被用于同期发情-定时人工授精[47]。研究表明,在CIDR移除当天注射eCG,可以促进无发情的初产或低BCS奶牛的卵泡生长,并提高排卵率[48]。另外,有研究发现将eCG注射剂量从400 IU降低至300 IU时不会改变P/AI[49]。此外,在AI后注射其他激素也能提高P/AI。Shabankareh等[50]证明, AI后5 d注射人绒毛膜促性腺激素(human chorionic gonadotrophin,hCG)可以显著提高Heatsynch方案实施后奶牛的妊娠率。此外,Zheng等[51]证实, AI后使用促黄体激素释放激素(luteinizing hormone-releasing hormone A3,LRH-A3)和hCG均能提高奶牛妊娠率。

2.2 预同期发情-定时输精技术(presynchronization estrous synchronization-fixed-timed artificial insemination,PES-TAI)

预同期发情-定时输精技术的核心是预处理(presynchronization),可确保后续实施繁育方案时奶牛具备发情的3个必备事件(卵泡波出现、黄体消退和排卵)[52]。在对奶牛实施繁育方案之前进行预处理,可以将奶牛提前同步到最佳的发情阶段,从而增加同步排卵奶牛的比例[53]。GnRH和PG在预处理过程中发挥重要作用。GnRH能够诱导促黄体素(LH)的释放,进而促使不排卵或不发情的经产奶牛排卵[54],而PG能够促进功能性黄体溶解,促进奶牛发情。

对产后不发情奶牛不能仅靠PG进行预处理,还需配合使用GnRH。在预处理过程中给予GnRH能够增加后续ES-TAI实施时具有功能性黄体奶牛的比率,进而提高奶牛情期受胎率[24]。PO(presynch ovsynch)技术的预处理是先通过GnRH促进卵泡发育,并利用PG消除卵巢囊肿等疾病的负面影响,以同步繁育技术处理时奶牛的生理状态[55]。PES-TAI相较于ES-TAI可以改善卵泡生长波的同步性,增加同步发情率,从而提高奶牛的繁殖力。因此,为提高ES-TAI处理的P/AI,可在ES-TAI技术实施前进行预处理[56]。近些年,研究者已经开发了不同的PES-TAI技术(图 4),并且实施后获得了不同的奶牛情期受胎率(表 2)。

(1)PSOv的激素剂量:GnRH用量100 μg;PG用量25 mg。(2)PG7G的激素剂量:GnRH用量100 μg;PG用量25 mg。(3)PO的激素剂量:GnRH用量100 μg;PG用量25 mg。(4)G6G的激素剂量:GnRH用量100 μg;PG用量25 mg。(5)PRE54的激素剂量:GnRH用量100 μg;CIDR含1.38 g孕酮;PG用量25 mg;(6)DO的激素剂量:GnRH 100 μg;PG 25 mg (1) Hormone dose for PSOv: GnRH dosage 100 μg; PG dosage 25 mg.(2) Hormone dosage for PG7G: GnRH dosage 100 μg; PG dosage 25 mg.(3) Hormone dosage for PO(presynch ovsynch): GnRH dosage 100 μg; PG dosage 25 mg.(4) Hormone dosage for G6G: GnRH dosage 100 μg; PG dosage 25 mg.(5) Hormone dosage for PRE54: GnRH dosage 100 μg; CIDR containing 1.38 g progesterone; PG dosage 25 mg.(6) Hormone dosage for DO (double ovsynch): GnRH 100 μg; PG 25 mg 图 4 不同的PES-TAI技术流程图 Fig. 4 Flowchart of different PES-TAI technologies
表 2 不同的PES-TAI技术的应用效果 Table 2 Application effects of different PES-TAI technologies

预处理即能增加有CL奶牛的占比,也能提高奶牛的排卵率[57]。PSOv技术是通过两次PGF2α预处理,并在12 d后再实施Ovsynch56[58]。Giordano等[59]通过将预处理与同期技术之间的时间由12 d延长至14 d来简化管理,但该方案依旧对无排卵奶牛没有效果,并不能提高奶牛的繁殖性能。这是因为该技术仅使用PG进行预处理,而PG并不具备类似GnRH促进黄体和优势卵泡发育的作用,对无CL的奶牛无效。为此,针对没有CL的奶牛,研究者又开发了Presynch-GnRH-Ovsynch(PGO)技术,该技术利用了PGF2α只对功能性黄体有效,将GnRH整合到非周期奶牛卵泡发育中,促使黄体发育成功能性黄体,进而提高奶牛受胎率[60]。随后,Martins等[61]也验证了PGO相较于PSOv更有效(PGO∶PSOv=40.2%∶33.6%)。然而,预处理时间较长会降低规模化牧场奶牛繁殖管理效率。

为进一步缩短预处理时间,Bello等[62]通过开发一系列的同期技术,最终确定G6G效果最好(G4G∶G5G∶G6G的P/AI=24%∶39%∶50%,对照组Ovsynch的P/AI=27%)。另外,Dirandeh等[3]证明在开始G6G或G7G前14 d使用PG,能够明显提高经产荷斯坦奶牛的晚期胚胎/早期胎儿存活率。

此外,Souza等[64]提出将两个Ovsynch56(间隔7 d)结合起来形成一种新的PES-TAI技术,也称为双同期(double ovsynch,DO)技术。DO比PSOv处理的效果更好,这可能是因为在第二个同期GnRH注射时具有功能性黄体奶牛的比例更高[68]。随后,Astiz和Fargas[69]证明DO方案是最适合初产奶牛的同期方法,DO处理显著降低了无排卵和无发情奶牛的比例。同时,Dirandeh等[56]也证实了DO相较于PO和PGO技术,可以更有效地诱导无CL奶牛的同期发情排卵。

另外,Cabrera等[65]采用人绒毛膜促性腺激素(2 500 UI hCG)代替DO方案中首次注射用的GnRH,尽管提高了奶牛的排卵率,但却降低了奶牛的情期受胎率。同时,Allahyari等[70]通过将DO技术中首次GnRH注射替换成雌激素成功提高了奶牛的P/AI。夏季奶牛常有的热应激会损害卵巢卵泡发育,降低奶牛繁殖效率[71],但DO技术对热应激具有较好的抗性,Dirandeh等[56]证实在夏季高湿热的热应激环境下,DO方案的P/AI最高(DO∶PGO∶PO=23.2%∶16.7%∶12.4%)。此外,为了降低成本,提高牧场经济效益,可根据奶牛的胎次和自愿等待期(voluntary waiting period,VWP)[72],对初产奶牛选用VWP较短的DO60技术[66],而对经产牛选用VWP较长的DO88技术[67]。此外,PES-TAI方案中以DO技术和G6G应用较多,并且DO技术不仅能够使奶牛产生高的繁殖效率和好的热应激抗性,更适合初产牛(初产P/AI∶经产P/AI=44.3%±11.4%∶31.4%±8.2%),而在经产牛中实施G6G技术后的奶牛P/AI高于实施DO技术的奶牛[69]

3 小结与展望

不同的ES-TAI技术被广泛应用到奶牛产后繁殖管理当中,相较于ES-TAI技术,PES-TAI不仅适用范围广泛,还能提高奶牛的P/AI。然而,预处理过程耗时约7~26 d,倘若预先知晓奶牛的生理状况,并针对性的选取更适合的PES-TAI,这将会更好的提高奶牛的繁殖效率[73]。因此,牧场管理者需要结合牧场自身条件并及时评估产后奶牛生理状况,选择适合自己牧场的奶牛同期发情-定时输精方案,这样既能提高奶牛繁殖率,还能增加牧场的综合经济效益。

另外,在追求提高奶牛繁殖效率的同时,还应保护消费者的健康免受激素残留物的侵害[74]。国际上已经有部分地区限制使用特定的激素,如:欧盟限制雌二醇及其衍生物的使用[60],美国不允许使用eCG[75]。因此,开发更加绿色且能够代替传统激素的新型可用于奶牛同期发情-定时输精的蛋白化合物是将来研究的新方向。此外,传统的给药方式有其弊端,如肌肉注射会影响注射部位肉的品质,阴道栓可能会增加母畜生殖道炎症的发病率[76]。如何更好的解决上述问题也是科学家将来需要研究的方向。

此外,目前不同激素、不同同期发情-定时输精技术的效果还不稳定,同一种技术的处理效果也会因地、因时、因牛而异。因此,研发更加高效、稳定的同期发情-定时输精技术也是将来亟待解决的问题。

参考文献
[1]
BANDAI K, KUSAKA H, MIURA H, et al. A simple and practical short-term timed artificial insemination protocol using estradiol benzoate with prostaglandin F2α in lactating dairy cows[J]. Theriogenology, 2020, 141: 197-201. DOI:10.1016/j.theriogenology.2019.09.024
[2]
PEREIRA M H C, WILTBANK M C, GUIDA T G, et al. Evaluation of presynchronization and addition of GnRH at the beginning of an estradiol/progesterone protocol on circulating progesterone and fertility of lactating dairy cows[J]. Theriogenology, 2020, 147: 124-134. DOI:10.1016/j.theriogenology.2019.11.025
[3]
DIRANDEH E, ROODBARI A R, GHOLIZADEH M, et al. Administration of prostaglandin F 14 d before initiating a G6G or a G7G timed artificial insemination protocol increased circulating progesterone prior to artificial insemination and reduced pregnancy loss in multiparous Holstein cows[J]. J Dairy Sci, 2015, 98(8): 5414-5421. DOI:10.3168/jds.2015-9417
[4]
FERRAZ JUNIOR M V C, PIRES A V, BIEHL M V, et al. Comparison of two timed artificial insemination system schemes to synchronize estrus and ovulation in Nellore cattle[J]. Theriogenology, 2016, 86(8): 1939-1943. DOI:10.1016/j.theriogenology.2016.06.012
[5]
田宏志, 陈晓丽, 李欣, 等. 同期排卵处理母牛体温和活动量变化规律及效果分析[J]. 畜牧兽医学报, 2020, 51(7): 1619-1627.
TIAN H Z, CHEN X L, LI X, et al. Study on the body temperature and physical activity alteration of cow treated with ovulation synchronization and effect analysis[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(7): 1619-1627. (in Chinese)
[6]
SARTORI R, BARROS C M. Reproductive cycles in Bos indicus cattle[J]. Anim Reprod Sci, 2011, 124(3-4): 244-250. DOI:10.1016/j.anireprosci.2011.02.006
[7]
SANTOS V G, CARVALHO P D, MAIA C, et al. Adding a second prostaglandin F treatment to but not reducing the duration of a PRID-Synch protocol increases fertility after resynchronization of ovulation in lactating Holstein cows[J]. J Dairy Sci, 2016, 99(5): 3869-3879. DOI:10.3168/jds.2015-10557
[8]
PURSLEY J R, MEE M O, WILTBANK M C. Synchronization of ovulation in dairy cows using PGF and GnRH[J]. Theriogenology, 1995, 44(7): 915-923. DOI:10.1016/0093-691X(95)00279-H
[9]
EL-TARABANY M S, AL-MARAKBY K M. Effect of synchronization protocols on reproductive indices, progesterone profile and fertility under subtropical environmental conditions in repeat breeder Holstein cows[J]. Reprod Domest Anim, 2019, 54(2): 234-242. DOI:10.1111/rda.13342
[10]
GENTRY G T JR, WALKER R S, GENTRY L R. Impacts of incorporation of follicle stimulating hormone into an estrous synchronization protocol for timed artificial insemination of crossbred beef cattle[J]. Anim Reprod Sci, 2016, 168: 19-25. DOI:10.1016/j.anireprosci.2016.02.021
[11]
周正义, 田莉, 田宏志, 等. 母牛安静发情鉴定技术概况及影响因素分析[J]. 畜牧兽医学报, 2021, 52(4): 862-871.
ZHOU Z Y, TIAN L, TIAN H Z, et al. Analysis of identification technology and influence factors on silent estrus of cows[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(4): 862-871. (in Chinese)
[12]
BARUSELLI P S, FERREIRA R M, COLLI M H A, et al. Timed artificial insemination: current challenges and recent advances in reproductive efficiency in beef and dairy herds in Brazil[J]. Anim Reprod, 2017, 14(3): 558-571. DOI:10.21451/1984-3143-AR999
[13]
GUNER B, ERTURK M, DURSUN M, et al. Effect of oestrous expression prior to timed artificial insemination with sexed semen on pregnancy rate in dairy cows[J]. Reprod Domest Anim, 2023, 58(2): 342-348. DOI:10.1111/rda.14293
[14]
BÓ G A, DE LA MATA J J, BARUSELLI P S, et al. Alternative programs for synchronizing and resynchronizing ovulation in beef cattle[J]. Theriogenology, 2016, 86(1): 388-396. DOI:10.1016/j.theriogenology.2016.04.053
[15]
GINTHER O J, WILTBANK M C, FRICKE P M, et al. Selection of the dominant follicle in cattle[J]. Biol Reprod, 1996, 55(6): 1187-1194. DOI:10.1095/biolreprod55.6.1187
[16]
COLAZO M G, MAPLETOFT R J. A review of current timed-AI (TAI) programs for beef and dairy cattle[J]. Can Vet J, 2014, 55(8): 772-780.
[17]
ABDALLA H, DE MESTRE A M, SALEM S E. Efficacy of ovulation synchronization with timed artificial insemination in treatment of follicular cysts in dairy cows[J]. Theriogenology, 2020, 154: 171-180. DOI:10.1016/j.theriogenology.2020.05.029
[18]
马子明, 郭星汝, 戴天姝, 等. 牛子宫复旧调控机制及促进子宫复旧方法的研究进展[J]. 畜牧兽医学报, 2023, 54(1): 58-68.
MA Z M, GUO X R, DAI T S, et al. Research progress on regulatory mechanism of cattle uterine involution and methods of promoting uterine involution[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1): 58-68. (in Chinese)
[19]
LÓPEZ-GATIUS F. Ovarian response to prostaglandin F in lactating dairy cows: a clinical update[J]. J Reprod Dev, 2022, 68(2): 104-109. DOI:10.1262/jrd.2021-119
[20]
CARVALHO P D, FUENZALIDA M J, RICCI A, et al. Modifications to ovsynch improve fertility during resynchronization: evaluation of presynchronization with gonadotropin-releasing hormone 6 d before initiation of ovsynch and addition of a second prostaglandin F treatment[J]. J Dairy Sci, 2015, 98(12): 8741-8752. DOI:10.3168/jds.2015-9719
[21]
TIPPENHAUER C M, STEINMETZ I, HEUWIESER W, et al. Effect of dose and timing of prostaglandin F treatments during a 7-d ovsynch protocol on progesterone concentration at the end of the protocol and pregnancy outcomes in lactating Holstein cows[J]. Theriogenology, 2021, 162: 49-58. DOI:10.1016/j.theriogenology.2020.12.020
[22]
SOUZA A H, SILVA E P B, CUNHA A P, et al. Ultrasonographic evaluation of endometrial thickness near timed AI as a predictor of fertility in high-producing dairy cows[J]. Theriogenology, 2011, 75(4): 722-733. DOI:10.1016/j.theriogenology.2010.10.013
[23]
LAUBER M R, MCMULLEN B, PARRISH J J, et al. Short communication: effect of timing of induction of ovulation relative to timed artificial insemination using sexed semen on pregnancy outcomes in primiparous Holstein cows[J]. J Dairy Sci, 2020, 103(11): 10856-10861. DOI:10.3168/jds.2020-18836
[24]
HEIDARI F, DIRANDEH E, ANSARI PIRSARAEI Z, et al. Modifications of the G6G timed-AI protocol improved pregnancy per AI and reduced pregnancy loss in lactating dairy cows[J]. Animal, 2017, 11(11): 2002-2009. DOI:10.1017/S1751731117000520
[25]
HILL S L, GRIEGER D M, OLSON K C, et al. Using estrus detection patches to optimally time insemination improved pregnancy risk in suckled beef cows enrolled in a fixed-time artificial insemination program12[J]. J Anim Sci, 2016, 94(9): 3703-3710. DOI:10.2527/jas.2016-0469
[26]
OOSTHUIZEN N, CANAL L B, FONTES P L P, et al. Prostaglandin F 7 d prior to initiation of the 7-d CO-synch+CIDR protocol failed to enhance estrus response and pregnancy rates in beef heifers[J]. J Anim Sci, 2018, 96(4): 1466-1473. DOI:10.1093/jas/sky058
[27]
PERRY G A, SMITH M F, ROBERTS A J, et al. Relationship between size of the ovulatory follicle and pregnancy success in beef heifers[J]. J Anim Sci, 2007, 85(3): 684-689. DOI:10.2527/jas.2006-519
[28]
PFEIFER L F M, GASPERIN B G, CESTARO J P, et al. Postponing TAI in beef cows with small preovulatory follicles[J]. Anim Reprod Sci, 2022, 242: 107006. DOI:10.1016/j.anireprosci.2022.107006
[29]
THATCHER W W, MOREIRA F, PANCARCI S M, et al. Strategies to optimize reproductive efficiency by regulation of ovarian function[J]. Domest Anim Endocrinol, 2002, 23(1/2): 243-254.
[30]
BARTOLOME J A, SILVESTRE F T, KAMIMURA S, et al. Resynchronization of ovulation and timed insemination in lactating dairy cows: I: use of the ovsynch and heatsynch protocols after non-pregnancy diagnosis by ultrasonography[J]. Theriogenology, 2005, 63(6): 1617-1627. DOI:10.1016/j.theriogenology.2004.07.016
[31]
COLAZO M G, DOUREY A, RAJAMAHENDRAN R, et al. Progesterone supplementation before timed AI increased ovulation synchrony and pregnancy per AI, and supplementation after timed AI reduced pregnancy losses in lactating dairy cows[J]. Theriogenology, 2013, 79(5): 833-841. DOI:10.1016/j.theriogenology.2012.12.011
[32]
CERRI R L A, RUTIGLIANO H M, CHEBEL R C, et al. Period of dominance of the ovulatory follicle influences embryo quality in lactating dairy cows[J]. Reproduction, 2009, 137(5): 813-823. DOI:10.1530/REP-08-0242
[33]
PEREIRA M H C, WILTBANK M C, GUIDA T G, et al. Comparison of 2 protocols to increase circulating progesterone concentration before timed artificial insemination in lactating dairy cows with or without elevated body temperature[J]. J Dairy Sci, 2017, 100(10): 8455-8470. DOI:10.3168/jds.2016-12145
[34]
PEREIRA M H C, SANCHES C P, GUIDA T G, et al. Comparison of fertility following use of one versus two intravaginal progesterone inserts in dairy cows without a CL during a synchronization protocol before timed AI or timed embryo transfer[J]. Theriogenology, 2017, 89: 72-78. DOI:10.1016/j.theriogenology.2016.10.006
[35]
OOSTHUIZEN N, FONTES P L P, SANFORD C D, et al. Estrus synchronization and fixed-time artificial insemination alter calving distribution in Bos indicus influenced beef heifers[J]. Theriogenology, 2018, 106: 210-213. DOI:10.1016/j.theriogenology.2017.10.028
[36]
BO G A, ADAMS G P, PIERSON R A, et al. Effect of progestogen plus estradiol-17β treatment on superovulatory response in beef cattle[J]. Theriogenology, 1996, 45(5): 897-910. DOI:10.1016/0093-691X(96)00020-9
[37]
STEVENSON J S, PURSLEY J R, GARVERICK H A, et al. Treatment of cycling and noncycling lactating dairy cows with progesterone during ovsynch[J]. J Dairy Sci, 2006, 89(7): 2567-2578. DOI:10.3168/jds.S0022-0302(06)72333-5
[38]
SHEPHARD R W, MORTON J M, NORMAN S T. Effects of administration of gonadotropin-releasing hormone at artificial insemination on conception rates in dairy cows[J]. Anim Reprod Sci, 2014, 144(1/2): 14-21.
[39]
RODRIGUES W B, SILVA A S, SILVA J C B, et al. Timed artificial insemination plus heat II: gonadorelin injection in cows with low estrus expression scores increased pregnancy in progesterone/estradiol-based protocol[J]. Animal, 2019, 13(10): 2313-2318. DOI:10.1017/S1751731119000454
[40]
PANCARCI S M, GÜNGÖR Ö, HARPUT O, et al. Effect of one-day delaying CIDR administration in 5-day cosynch protocol in dairy heifers[J]. Animals (Basel), 2021, 11(5): 1402.
[41]
LÓPEZ-GATIUS F, LÓPEZ-HELGUERA I, DE RENSIS F, et al. Effects of different five-day progesterone-based synchronization protocols on the estrous response and follicular/luteal dynamics in dairy cows[J]. J Reprod Dev, 2015, 61(5): 465-471. DOI:10.1262/jrd.2015-053
[42]
LOPES G, JOHNSON C R, MENDONÇA L G D, et al. Evaluation of reproductive and economic outcomes of dairy heifers inseminated at induced estrus or at fixed time after a 5-day or 7-day progesterone insert-based ovulation synchronization protocol[J]. J Dairy Sci, 2013, 96(3): 1612-1622. DOI:10.3168/jds.2012-5971
[43]
BRUNO R G S, MORAES J G N, HERNÁNDEZ-RIVERA J A H, et al. Effect of an Ovsynch56 protocol initiated at different intervals after insemination with or without a presynchronizing injection of gonadotropin-releasing hormone on fertility in lactating dairy cows[J]. J Dairy Sci, 2014, 97(1): 185-194. DOI:10.3168/jds.2013-6827
[44]
BARLETTA R V, CARVALHO P D, SANTOS V G, et al. Effect of dose and timing of prostaglandin F treatments during a Resynch protocol on luteal regression and fertility to timed artificial insemination in lactating Holstein cows[J]. J Dairy Sci, 2018, 101(2): 1730-1736. DOI:10.3168/jds.2017-13628
[45]
SPENCER J A, CARNAHAN K, SHAFII B, et al. Pregnancy outcomes are not improved by administering gonadotropin-releasing hormone at initiation of a 5-day CIDR-Cosynch resynchronization protocol for lactating dairy cows[J]. J Dairy Sci, 2018, 101(9): 8524-8531. DOI:10.3168/jds.2017-13491
[46]
DE RENSIS F, LÓPEZ-GATIUS F. Use of equine chorionic gonadotropin to control reproduction of the dairy cow: a review[J]. Reprod Domest Anim, 2014, 49(2): 177-182. DOI:10.1111/rda.12268
[47]
NASSER L F, REIS E L, OLIVEIRA M A, et al. Comparison of four synchronization protocols for fixed-time bovine embryo transfer in Bos indicus×Bos taurus recipients[J]. Theriogenology, 2004, 62(9): 1577-1584. DOI:10.1016/j.theriogenology.2004.03.013
[48]
BOTTINO M P, SIMÕES L M S, SILVA L A C L, et al. Effects of eCG and FSH in timed artificial insemination treatment regimens on estrous expression and pregnancy rates in primiparous and multiparous Bos indicus cows[J]. Anim Reprod Sci, 2021, 228: 106751. DOI:10.1016/j.anireprosci.2021.106751
[49]
PESSOA G A, MARTINI A P, CARLOTO G W, et al. Different doses of equine chorionic gonadotropin on ovarian follicular growth and pregnancy rate of suckled Bos taurus beef cows subjected to timed artificial insemination protocol[J]. Theriogenology, 2016, 85(5): 792-799. DOI:10.1016/j.theriogenology.2015.09.057
[50]
SHABANKAREH H K, ZANDI M, GANJALI M. First service pregnancy rates following post-AI use of HCG in ovsynch and Heatsynch programmes in lactating dairy cows[J]. Reprod Domest Anim, 2010, 45(4): 711-716.
[51]
ZHENG P, HUANG H, LI X Y, et al. LRH-A3 and HCG increase pregnancy rate during timed artificial insemination in dairy cows[J]. Anim Sci J, 2021, 92(1): e13549. DOI:10.1111/asj.13549
[52]
KIM I H, JEONG J K, KANG H G. Reproductive performance following a modified presynch-ovsynch, double-ovsynch, or conventional reproductive management program in Korean dairy herds[J]. Theriogenology, 2020, 156: 27-35. DOI:10.1016/j.theriogenology.2020.06.019
[53]
CHEBEL R C, SCANAVEZ A A, SILVA P R B, et al. Evaluation of presynchronized resynchronization protocols for lactating dairy cows[J]. J Dairy Sci, 2013, 96(2): 1009-1020. DOI:10.3168/jds.2012-5892
[54]
MENDONÇA L G D, ROCHA L S, VOELZ B E, et al. Presynchronization strategy using prostaglandin F, gonadotropin-releasing hormone, and detection of estrus to improve fertility in a resynchronization program for dairy cows[J]. Theriogenology, 2019, 124: 39-47. DOI:10.1016/j.theriogenology.2018.09.027
[55]
ABDALLA H, MAKAU D N, SALEM S E. Treatment of cows that fail to respond to pre-synchronization treatments with a CIDR-ovsynch regimen improves the overall pregnancy percentage after a double ovsynch treatment regimen[J]. Anim Reprod Sci, 2020, 216: 106356. DOI:10.1016/j.anireprosci.2020.106356
[56]
DIRANDEH E, ROODBARI A R, COLAZO M G. Double-ovsynch, compared with presynch with or without GnRH, improves fertility in heat-stressed lactating dairy cows[J]. Theriogenology, 2015, 83(3): 438-443. DOI:10.1016/j.theriogenology.2014.10.011
[57]
SIMÕES L M S, ORLANDI R E, MASSONETO J P M, et al. Exposure to progesterone previous to the protocol of ovulation synchronization increases the follicular diameter and the fertility of suckled Bos indicus cows[J]. Theriogenology, 2018, 116: 28-33. DOI:10.1016/j.theriogenology.2018.04.031
[58]
MOREIRA F, ORLANDI C, RISCO C A, et al. Effects of presynchronization and bovine somatotropin on pregnancy rates to a timed artificial insemination protocol in lactating dairy cows[J]. J Dairy Sci, 2001, 84(7): 1646-1659. DOI:10.3168/jds.S0022-0302(01)74600-0
[59]
GIORDANO J O, THOMAS M J, CATUCUAMBA G, et al. Effect of extending the interval from presynch to initiation of ovsynch in a presynch-ovsynch protocol on fertility of timed artificial insemination services in lactating dairy cows[J]. J Dairy Sci, 2016, 99(1): 746-757. DOI:10.3168/jds.2015-10083
[60]
LANE E A, AUSTIN E J, CROWE M A. Oestrous synchronisation in cattle—current options following the EU regulations restricting use of oestrogenic compounds in food-producing animals: a review[J]. Anim Reprod Sci, 2008, 109(1/4): 1-16.
[61]
MARTINS J P N, CUNHA T O, MARTINEZ W, et al. Presynchronization with prostaglandin F2α and gonadotropin-releasing hormone simultaneously improved first-service pregnancy per artificial insemination in lactating Holstein cows compared with Presynch-14 when combined with detection of estrus[J]. J Dairy Sci, 2023, 106(7): 5115-5126. DOI:10.3168/jds.2022-22651
[62]
BELLO N M, STEIBEL J P, PURSLEY J R. Optimizing ovulation to first GnRH improved outcomes to each hormonal injection of ovsynch in lactating dairy cows[J]. J Dairy Sci, 2006, 89(9): 3413-3424. DOI:10.3168/jds.S0022-0302(06)72378-5
[63]
OOSTHUIZEN N, FONTES P L P, OLIVEIRA FILHO R V, et al. Pre-synchronization of ovulation timing and delayed fixed-time artificial insemination increases pregnancy rates when sex-sorted semen is used for insemination of heifers[J]. Anim Reprod Sci, 2021, 226: 106699. DOI:10.1016/j.anireprosci.2021.106699
[64]
SOUZA A H, AYRES H, FERREIRA R M, et al. A new presynchronization system (double-ovsynch) increases fertility at first postpartum timed AI in lactating dairy cows[J]. Theriogenology, 2008, 70(2): 208-215. DOI:10.1016/j.theriogenology.2008.03.014
[65]
CABRERA E M, LAUBER M R, VALDES-ARCINIEGA T, et al. Replacing the first gonadotropin-releasing hormone treatment in an ovsynch protocol with human chorionic gonadotropin decreased pregnancies per artificial insemination in lactating dairy cows[J]. J Dairy Sci, 2021, 104(7): 8290-8300. DOI:10.3168/jds.2021-20274
[66]
STANGAFERRO M L, WIJMA R, MASELLO M, et al. Reproductive performance and herd exit dynamics of lactating dairy cows managed for first service with the presynch-ovsynch or double-ovsynch protocol and different duration of the voluntary waiting period[J]. J Dairy Sci, 2018, 101(2): 1673-1686. DOI:10.3168/jds.2017-13425
[67]
STANGAFERRO M L, WIJMA R W, GIORDANO J O. Profitability of dairy cows submitted to the first service with the presynch-ovsynch or double-ovsynch protocol and different duration of the voluntary waiting period[J]. J Dairy Sci, 2019, 102(5): 4546-4562. DOI:10.3168/jds.2018-15567
[68]
GIORDANO J O, WILTBANK M C, GUENTHER J N, et al. Increased fertility in lactating dairy cows resynchronized with double-ovsynch compared with Ovsynch initiated 32 d after timed artificial insemination[J]. J Dairy Sci, 2012, 95(2): 639-653. DOI:10.3168/jds.2011-4418
[69]
ASTIZ S, FARGAS O. Pregnancy per AI differences between primiparous and multiparous high-yield dairy cows after using double ovsynch or G6G synchronization protocols[J]. Theriogenology, 2013, 79(7): 1065-1070. DOI:10.1016/j.theriogenology.2013.01.026
[70]
ALLAHYARI I, GHARAGOZLOU F, VOJGANI M, et al. Replacement of the first GnRH by estradiol in the breeding ovsynch of double ovsynch protocol could improve fertility in Holstein dairy cows[J]. Anim Reprod Sci, 2023, 252: 107228. DOI:10.1016/j.anireprosci.2023.107228
[71]
DIRANDEH E. Starting ovsynch protocol on day 6 of first postpartum estrous cycle increased fertility in dairy cows by affecting ovarian response during heat stress[J]. Anim Reprod Sci, 2014, 149(3/4): 135-140.
[72]
KIM I H, JEONG J K, KANG H G. Factors affecting reproductive outcomes in lactating dairy cows that undergo presynchronization-ovsynch and successive resynchronization programs[J]. Theriogenology, 2022, 187: 9-18. DOI:10.1016/j.theriogenology.2022.04.017
[73]
RICCI A, CARVALHO P D, AMUNDSON M C, et al. Characterization of luteal dynamics in lactating Holstein cows for 32 days after synchronization of ovulation and timed artificial insemination[J]. J Dairy Sci, 2017, 100(12): 9851-9860. DOI:10.3168/jds.2017-13293
[74]
MOUSSA F, DOUMIATI S, BERNABÒ N, et al. Hormones residues in bovine animals: sampling, analysis and health risk assessment[J]. Steroids, 2022, 181: 108994. DOI:10.1016/j.steroids.2022.108994
[75]
RANDI F, KELLY A K, PARR M H, et al. Effect of ovulation synchronization program and season on pregnancy to timed artificial insemination in suckled beef cows[J]. Theriogenology, 2021, 172: 223-229. DOI:10.1016/j.theriogenology.2021.06.021
[76]
KAJAYSRI J, CHUMCHOUNG C, WUTTHIWITTHAYAPHONG S, et al. Comparison of estrus synchronization by controlled internal drug release device (CIDR) and adhesive transdermal progestin patch in postpartum beef cows[J]. Theriogenology, 2017, 100: 66-71. DOI:10.1016/j.theriogenology.2017.06.006

(编辑   郭云雁)