畜牧兽医学报  2024, Vol. 55 Issue (2): 619-628. DOI: 10.11843/j.issn.0366-6964.2024.02.019    PDF    
盐酸不溶灰分测定方法影响肉鸡饲粮代谢能准确性的比较研究
宋明强1, 解竞静1, 欧娟2, 王钰明1, 侯嘉2, 谭高明1, 田凯1, 朱云1, 萨仁娜1, 赵峰1     
1. 中国农业科学院北京畜牧兽医研究所 畜禽营养与饲养重点实验室, 北京 100193;
2. 杭州康德权饲料有限公司 包膜饲料添加剂省级重点农业企业研究院, 杭州 311107
摘要:旨在改进美国油脂化学家协会(The American Oil Chemists' Society, 简称AOCS)测定盐酸不溶灰分(AIA)标准方法的上样量和过滤介质, 以简化测定步骤、提高测定精度, 并通过AOCS改进法与AOCS标准方法测定AIA, 比较两种方法的重复性、可加性及准确性, 为准确评价肉鸡对饲粮的代谢能(AME)提供可靠的技术。本研究分为两个试验。试验一采用单因素完全随机设计, 通过两种方法(AOCS改进法、AOCS标准方法)对6个样品(3个饲粮、3个排泄物)分3个批次测定AIA含量, 比较两种测定方法的可重复性; 然后, 通过两种方法测定6个混合饲粮和6个混合排泄物样品AIA的实际含量, 同时, 根据混合饲粮和混合排泄物的组成及AIA含量得到其AIA的计算值, 采用配对设计比较实测值与计算值的差异以检验两种测定方法的可加性。试验二采用配对试验设计, 比较两种方法测定AIA计算13个饲粮AME与全收粪法测定AME的差值, 验证两种方法评价饲粮AME的准确性。结果表明, AOCS改进法测定3个饲粮和3个排泄物AIA的总变异系数(TCV)分别在2.13%~5.83%和1.71%~2.83%, 而AOCS标准方法测定上述样品AIA的TCV分别在4.69%~15.37%和1.50%~5.79%;AOCS改进法测定6个混合饲粮和混合排泄物AIA实测值和计算值的差值分别在0.004%~0.017%和0.002%~0.029%, 而AOCS标准方法测定上述样品实测值和计算值的差值分别在0.037%~0.071%和0.015%~0.072%。AOCS改进法测定AIA评价饲粮AME与全收粪法AME测值相差在0.021~0.251 MJ·kg-1 DM, 而AOCS标准方法测定AIA评价饲粮AME与全收粪法AME测值相差0.025~1.799 MJ·kg-1 DM。综上所述, 从测定AIA的重复性、可加性及对AME测定值的准确性上, AOCS改进法均优于AOCS标准方法。
关键词盐酸不溶灰分    测定方法    代谢能    肉鸡    
Comparative Study on the Accuracy of Dietary Metabolizable Energy Influenced by Methods of Acid Insoluble Ash in Broilers
SONG Mingqiang1, XIE Jingjing1, OU Juan2, WANG Yuming1, HOU Jia2, TAN Gaoming1, TIAN Kai1, ZHU Yun1, SA Renna1, ZHAO Feng1     
1. State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
2. Provincial Key Agricultural Enterprise Research Institute of Encapsulated Feed Additive, King Techina Technology Co., Ltd, Hangzhou 311107, China
Abstract: The objective of this study was to optimize the loading sample size and filter medium of The American Oil Chemists' Society (AOCS) standard method for the determination of acid insoluble ash (AIA) to simplify the assay procedure and improve the accuracy. The repeatability, additivity and accuracy of AIA determined with AOCS modified method and the AOCS standard method were compared to obtain a reliable technique for accurately evaluating the dietary apparent metabolizable energy (AME) for broilers. Two experiments were conducted in the current study. In experiment 1, three batches determination of AIA content for each of 6 samples (3 diets, 3 excreta) using two methods (AOCS modified method, AOCS standard method) in a completely randomized design was to compare the reproducibility of the 2 methods. Then, the actual AIA content of 6 mixed diets and 6 mixed excreta samples were determined by the 2 methods. Meanwhile, the AIA value was calculated according to the composition of the mixed diet and mixed excreta and their AIA content. The difference between the determined and the calculated values was compared to test the additivity of the 2 methods by a paired experimental design. In experiment 2, a paired experimental design was used to compare the difference between the calculated AME of 13 diets using two AIA determination methods and the AME measured by the total collection method to test the accuracy of the 2 methods to evaluate the dietary AME. The results showed that the total coefficient of variation (TCV) of AIA determined by the AOCS modified method in each of 3 diets and 3 excreta samples ranged from 2.13% to 5.83% and 1.71% to 2.83%, respectively, while the TCV of AIA determined by the AOCS standard method ranged from 4.69% to 15.37% and 1.50% to 5.79%, respectively. The difference between the determined and calculated AIA values of 6 mixed diets and 6 mixed excreta by the AOCS modified method ranged from 0.004% to 0.017% and 0.002% to 0.029%, respectively. The difference between determined and calculated values of those samples by AOCS standard method ranged from 0.037% to 0.071% and 0.015% to 0.072%, respectively. The differences of 0.021 to 0.251 MJ·kg-1 DM were observed between the AME evaluated by AIA determined with the AOCS modified method and AME determined by total collection. Whereas the differences of 0.025 to 1.799 MJ·kg-1 DM were observed between AME evaluated by AIA determined with the AOCS standard method and AME determined by total collection. In conclusion, the AOCS modified method is superior to the AOCS standard method in the reproducibility and additivity of AIA determination and in the accuracy of evaluating dietary AME.
Key words: acid insoluble ash    determined method    metabolizable energy    broiler    

盐酸不溶灰分(acid insoluble ash,AIA)作为一种不能被畜禽消化吸收的硅类化合物,测定其在饲粮及排泄物中的含量即可表征畜禽采食量和排泄量的关系[1]。因此,精准测定饲粮和排泄物中AIA的含量至关重要,它直接影响到内源指示剂法测定饲粮养分消化率的准确性。目前,使用AIA作为指示剂测定饲粮养分消化率时通常添加0.5%~1.2%的硅藻土[1-6]以提高饲粮中AIA的含量,从而减少饲粮AIA的测定误差。这是由于在饲粮本底AIA含量较低的条件下,现有的方法测定AIA相对偏差较大,从而影响饲粮养分消化率测定的准确性。然而,Scott和Hall[1]发现,即使饲粮中添加硅藻土提高了AIA的含量,全收粪法和AIA指示剂法测定137个小麦饲粮和97个大麦饲粮的代谢能(AME)的平均差值依然高达0.690 MJ·kg-1 DM。这表明,现有方法测定饲粮或排泄物中AIA的精度难以满足对AME的准确测定。在AIA的测定上,国标方法[7]及美国油脂化学家协会(The American Oil Chemists′ Society,简称AOCS)标准方法[8]对分析过程进行了详细的规范,即通过马弗炉高温灼烧,去除样品中的有机物质,然后与浓盐酸进一步反应后用无灰滤纸进行过滤,从而得到AIA。然而,该方法测定一个样品需要马弗炉灼烧3次,转移2次,耗时3 d,且样品在马弗炉反复灼烧及多次转移均会导致一定程度的损耗,从而影响结果的精确度[9]。其次,生产中饲粮的AIA含量通常在0.1%~0.3%[10],这就要求测定方法的检测限低于0.1%且检出限在0.005%内才能够满足对饲粮养分消化率准确测定的需要。为进一步提高AIA测定方法的精度及准确性,本研究对AOCS测定方法进行优化,比较AOCS改进法和AOCS标准方法测定AIA评价肉鸡对饲粮AME与全收粪法测值的差异,为养殖现场高效、精准地测定饲粮养分的消化率提供参考。

1 材料与方法 1.1 饲粮及排泄物样品

本研究使用的肉鸡代谢试验饲粮、排泄物样品来自Song等[11]描述的试验。13个试验饲粮,包括1个玉米-豆粕基础饲粮以及12个由基础饲粮与其中1个饲料原料按照一定比例配制的试验饲粮。12个饲料原料包括3个能量饲料(1个玉米、2个面粉)、3个油籽粕(1个豆粕、1个花生粕、1个棉籽粕)、3个粗蛋白质(CP)含量不同的玉米蛋白粉(A、B和C)和3个不同加工工艺的羽毛粉(1个酶解羽毛粉、1个水解羽毛粉、1个膨化羽毛粉)。每个试验饲粮对应的排泄物包括6个重复,每个重复的排泄物来自4只25~28日龄的爱拔益加肉公鸡。

1.2 试验设计

本研究包括2个试验。试验一比较AOCS标准方法和AOCS改进法测定样品AIA含量的重复性和可加性。第1部分采用单因素完全随机设计,选用3个饲粮(玉米饲粮、花生粕饲粮、玉米蛋白粉B饲粮)及对应的3个排泄物样品(同一个饲粮的6个排泄物样品,等重量混合为1个样品),分别用两种AIA测定方法连续测定3批次,每个批次4个重复。比较AIA测定结果的批内、批间及总变异系数(CV);第2部分分别以3个饲粮(玉米饲粮、花生粕饲粮、玉米蛋白粉B饲粮)及3个排泄物样品为基础,按一定比例混合后,得到6个不同AIA浓度的混合饲粮和6个不同AIA浓度的混合排泄物样品(表 1)。采用两种方法测定样品的AIA含量。根据混合饲粮或排泄物样品中各成分的组成比例及AIA计算其总AIA含量。比较样品AIA的计算值与实测值的差异。试验二采用配对试验设计,分别比较AOCS标准方法和AOCS改进法测定AIA计算13种饲粮的AME与全收粪法AME测值的差异,检验两种方法测定AIA计算饲粮AME的准确性。

表 1 混合饲粮及混合排泄物的组成(干物质基础) Table 1 Composition of mixed diet and mixed excreta (dry matter basis) 
1.3 AIA测定方法

AOCS标准方法根据AOCS(Ba 5b-68)[8]描述的过程进行测定。AOCS改进法以AOCS标准方法的测定原理为参考,主要针对样品的上样量和残渣的过滤流程进行了改进,它包含以下测定流程:称取20 g饲粮或5 g排泄物样品置于陶瓷坩埚中,用电陶炉灼烧直至有机物燃烧殆尽,然后在马弗炉中(600±15)℃煅烧7 h;冷却后加入5 mL浓盐酸,加热煮沸直至干燥,并持续加热30 min;重新加入5 mL浓盐酸并加热至沸腾,再加入20 mL蒸馏水煮沸;用恒重后的砂芯坩埚(G4:孔径为4~16 μm)连接真空泵进行过滤混合物,并用20 mL加热后的蒸馏水冲洗5次,每次冲洗时间为3 min;剩余残渣与砂芯坩埚放置于恒温烘箱105 ℃恒重4 h,得到的残渣即为AIA。

1.4 数据处理与统计分析

所有数据以绝干基础表示,饲粮AME的计算公式[12]如下:

$ \begin{aligned} & \quad \quad \operatorname{AME}\left(\mathrm{MJ} \cdot \mathrm{kg}^{-1} \mathrm{DM}\right)=\mathrm{GE}_{\text {diet }}-\left(\mathrm{AIA}_{\text {diet }} /\right. \\ & \left.\mathrm{AIA}_{\text {excreta }}\right) \times \mathrm{GE}_{\text {excreta }} \text { 。} \end{aligned} $

AIAdiet:饲粮AIA含量;AIAexcreta:排泄物AIA含量;GEdiet:饲粮总能;GEexcreta:排泄物总能。

数据采用SAS 9.4的MEANS模块对基本统计量进行分析。采用GLM模块对试验一中AOCS标准方法和AOCS改进法在不同批次间测定AIA的含量进行方差分析,以Duncan′s进行多重比较。批内、批间及总变异系数的计算参考蒋红卫和夏结来[13]的公式。采用T-TEST模块对试验一中两种方法测定混合饲粮和混合排泄物样品AIA含量的实测值与计算值进行比较,并采用REG模块对实测值与计算值进行线性回归分析,检验斜率与1、截距与0的差异显著性;采用T-TEST模块对试验二中两种方法测定AIA评价的13个饲粮的AME与全收粪法测定的AME进行差异显著性分析;采用REG模块对AIA测定的AME值与全收粪法测定的AME进行线性回归分析,检验斜率与1、截距与0的差异显著性。P<0.05为显著性水平。

2 结果 2.1 AOCS标准方法和AOCS改进法测定饲粮及排泄物AIA含量的重复性

AOCS标准方法和AOCS改进法测定饲粮及排泄物AIA的含量列于表 2。AOCS标准方法测定玉米饲粮、花生粕饲粮和玉米蛋白粉B饲粮的AIA含量在3个批次间均存在显著差异(P<0.05),批次间CV分别为11.66%、4.53%和5.60%。AOCS改进法分别测定玉米饲粮、花生粕饲粮和玉米蛋白粉B饲粮的AIA含量在3个批次间的测值无显著差异,批次间CV分别为3.55%、0.23%和0.34%。AOCS标准方法在3个批次间测定花生粕饲粮对应排泄物的AIA含量存在显著差异(P<0.01),批次间CV为5.52%;而测定玉米饲粮对应排泄物和玉米蛋白粉B饲粮对应排泄物的AIA含量在3个批次间测值无显著差异,批次间CV分别为1.37%和0.76%。AOCS改进法测定花生粕饲粮对应排泄物的AIA在3个批次间测值无显著性差异,批次间CV为1.11%;而测定玉米饲粮对应排泄物和玉米蛋白粉B饲粮对应排泄物的AIA含量在3个批次间存在显著差异(P<0.01),批次间CV分别为1.52%和2.68%。

表 2 AOCS标准方法和AOCS改进法测定饲粮1及排泄物2中AIA的重复性(干物质基础) Table 2 Repeatability of AIA determined by AOCS standard and AOCS modified methods for diets and feces (dry matter basis) 
2.2 AOCS标准方法和AOCS改进法测定饲粮及排泄物中AIA含量的可加性

AOCS标准方法和AOCS改进法测定6个混合饲粮AIA含量的实测值与计算值列于表 3。配对T检验结果表明,AOCS标准方法和AOCS改进法测定饲粮AIA的实测值与计算值均存在显著差异(P<0.01),AOCS标准方法测定6个混合饲粮AIA的实测值与计算值的差值在0.037%~0.071%,而AOCS改进法测定6个混合饲粮AIA的实测值与计算值的差值仅为0.004%~0.017%。饲粮AIA的实测值对计算值的拟合模型中(表 4),AOCS标准方法拟合模型的截距与0存在显著差异(截距=0.087,P截距<0.05),斜率与1无显著性差异(斜率=0.854,P斜率=0.212),模型决定系数R2=0.95;AOCS改进法拟合模型的截距与0无差异(截距=0.010,P截距=0.413),斜率与1无差异(斜率=0.999,P斜率=0.986),模型决定系数R2=0.99。总体上,AOCS标准方法测定6个混合饲粮AIA的实测值为计算值的120.1%,AOCS改进法测定6个混合饲粮AIA的实测值为计算值的96.0%。

表 3 AOCS标准方法和AOCS改进法测定饲粮及排泄物中AIA实测值与计算值的差异 Table 3 Difference between determined and calculated AIA values in diets or feces by AOCS standard and AOCS modified methods  
表 4 AOCS标准方法、AOCS改进法测定饲粮及排泄物中AIA的实测值对计算值的回归 Table 4 Regression of determined on calculated AIA values in diets and excreta determined by AOCS standard or AOCS modified method

AOCS标准方法和AOCS改进法测定6个混合排泄物AIA含量的实测值与计算值列于表 3。配对T检验表明,AOCS标准方法测定排泄物AIA的实测值与计算值无差异(P>0.05),AOCS改进法测定饲粮AIA的实测值显著高于计算值(P<0.05)。AOCS标准方法测定6个混合排泄物AIA实测值与计算值的差值在0.015%~0.072%,而AOCS改进法测定6个混合排泄物AIA实测值与计算值的差值仅为0.002%~0.029%。排泄物AIA的实测值对计算值的拟合模型中(表 4),AOCS标准方法拟合模型的截距与0无显著性差异(截距=0.061,P截距=0.692),斜率与1无显著性差异(斜率=0.912,P斜率=0.564),模型决定系数R2=0.91;AOCS改进法拟合模型的截距与0无显著性差异(截距=0.002,P截距=0.814),斜率与1无显著性差异(斜率=1.011,P斜率=0.968),模型决定系数R2=0.99。总体上,AOCS标准方法测定6个混合排泄物AIA的实测值为计算值的97.2%,AOCS改进法测定6个混合排泄物AIA的实测值为计算值的101.3%。

2.3 以AIA计算饲粮AME与全收粪法测定饲粮AME的比较

配对T检验显示,通过AOCS改进法与AOCS标准方法测定AIA计算13个饲粮的AME与全收粪法AME之间均没有显著差异(P>0.05),且AOCS改进法测定AIA计算饲粮AME与全收粪法测值的差在0.021~0.251 MJ·kg-1 DM之间(表 5),小于AOCS标准方法测定AIA计算饲粮AME与全收粪法测值的差(0.025~1.799 MJ·kg-1 DM)。从变异系数看,AOCS改进法测定AIA计算饲粮AME的平均CV为1.25%,与全收粪法(CV=1.12%)相似,但均远低于AOCS标准方法测定AIA计算饲粮AME的CV(2.61%)。将全收粪法测定的13个饲粮AME分别对AOCS标准方法和AOCS改进法测定AIA计算的AME值进行线性回归分析发现(图 1),全收粪法AME对AOCS标准方法测定AIA计算的AME的回归模型中,截距与0存在显著性差异(截距=7.792 MJ·kg-1 DM,P截距<0.01),斜率与1存在显著差异(斜率=0.458,P斜率<0.01),决定系数R2=0.55;全收粪法AME对AOCS改进法测定AIA计算的AME的回归模型中,截距与0存在显著性差异(截距=1.798 MJ·kg-1 DM,P截距<0.05),斜率与1存在显著性差异(斜率=0.874,P斜率<0.05),决定系数R2=0.97。总体上,AOCS改进法测定AIA计算饲粮的AME更加接近全收粪法的测值。

表 5 AOCS标准方法、AOCS改进法测定饲粮AIA计算AME与全收粪法AME测值的差值 Table 5 Difference between dietary AME calculated by AIA with AOCS standard or AOCS modified method and determined with total collection method
a. ▲表示全收粪法测定13个饲粮的AMETC对AOCS标准方法测定AIA计算饲粮AMEAIA的回归模型。AMETC=0.458×AMEAIA + 7.792 (P =0.004;R2=0.55;RMSE=0.405 MJ·kg-1 DM;P斜率=0.001,[H0:斜率=1,Hα:斜率≠1]; P截距=0.001, [H0:截距=0,Hα:截距≠0])。b. ■表示全收粪法测定13个饲粮的AMETC对AOCS改进法测定AIA计算饲粮AMEAIA的回归模型。AMETC=0.874×AMEAIA+1.798 (P<0.001;R2=0.97;RMSE=0.102 MJ·kg-1 DM;P斜率=0.018,[H0:斜率=1,Hα:斜率≠1];P截距=0.018,[H0:截距=0,Hα:截距≠0]) a. The solid line (▲) is the regression model for determined AME (AMETC) of 13 diets using total collection method against AME (AMEAIA) from AIA by AOCS standard method. AMETC=0.458×AMEAIA+7.792 (P=0.004; R2=0.55; RMSE=0.405 MJ·kg-1 DM; Pslope=0.001, [H0: slope=1, Hα: slope≠1]; Pintercept=0.001, [H0: intercept=0, Hα: intercept≠0]). b. The solid line (■) is the regression model for determined AME (AMETC) of 13 diets using total collection method against AME (AMEAIA) from AIA by AOCS modified method. AMETC=0.874×AMEAIA+1.798 (Pregression < 0.001; R2=0.97; RMSE=0.102 MJ·kg-1 DM; Pslope=0.018, [H0: slope=1, Hα: slope≠1]; Pintercept=0.018, [H0: intercept=0, Hα: intercept≠0]). 图 1 13个饲粮全收粪法AME对通过AIA计算AME的回归模型 Fig. 1 Regression models of determined AME by total collection method on calculated AME by AIA in 13 diets
3 讨论

AIA测定的主要原理是将样品进行灼烧去除有机物,再用浓盐酸在高温条件下将可溶性矿物质溶解,用无灰滤纸过滤得到剩余残渣,从而定量样品中AIA[7-9]。该方法测定步骤繁琐且周期长,导致在测定样品(尤其是AIA含量低的样品)时存在重复性差等问题[14],大大降低了AIA作为指示剂表征畜禽采食量与排泄量关系的准确性。研究发现,现有的方法测定AIA含量大于0.6%的样品时测值较为稳定[3]。本研究根据AIA的测定原理优化了AOCS标准方法的测定步骤,通过改变上样量和过滤介质简化测定步骤、提高测定精度。此外,AOCS标准方法采用无灰滤纸过滤,须再次转移至马弗炉灰化,而AOCS改进方法采用砂芯坩埚过滤残渣后可直接置于恒温烘箱进行恒重,大幅度提高了测定效率。本课题组前期研究发现,优化后的方法可以准确且稳定地测定AIA含量为0.03%的样品。根据饲粮及排泄物样品中AIA的平均含量,本研究推荐AOCS改进方法测定AIA时饲粮的上样量为20 g,排泄物的上样量为5 g。

在两种方法测定结果的比较上,一方面通过方差分析比较了两种方法在不同批次下对同一个样品测值的重复性[15];另一方面通过配对T检验比较了两种方法测定同一个样品AIA实测值与计算值的差异,检验了方法的可加性。从计算值和实测值的差异及变化的一致性,有利于全面地反映检测方法的可加性[16]。本研究中,AOCS改进法(2.13%~5.83%)分3个批次测定玉米饲粮、花生粕饲粮和玉米蛋白粉B饲粮的AIA总变异系数(TCV)远低于AOCS标准方法(4.69%~15.37%),这表明改进后的方法提高了测定饲粮中AIA的稳定性。而AOCS改进法测定玉米饲粮对应排泄物和玉米蛋白粉B饲粮对应排泄物的AIA含量在3个批次间存在差异,这主要是由于AOCS改进法测定排泄物样品AIA的批次内CV低导致批次间AIA数据出现统计学差异。但AOCS改进法(1.71%~2.83%)分3个批次测定排泄物样品的AIA的TCV低于AOCS标准方法(1.50%~5.79%)。由此可见,改进后的AIA测定方法提高了测值的稳定性和可重复性。AOCS改进法测定混合饲粮AIA的计算值与实测值的差值(0.004%~0.017%)远远小于AOCS标准方法(0.037%~0.071%),在排泄物样品中也呈现了这个规律(AOCS改进法:0.002%~0.029%;AOCS标准方法:0.015%~0.072%)。这表明,改进后的方法大幅度提高了测定样品中AIA的可加性,尤其是AIA含量极低的饲粮样品。通过对两种方法测定AIA评价饲粮AME与全收粪法AME测值进行差异显著性比较,可以更加直观地比较两种方法测定AIA的准确性[17]。本研究中,13个饲粮的全收粪法AME测值与AOCS改进法测定AIA计算的AME更为接近,二者的差值(0.021~0.251 MJ·kg-1 DM)低于全收粪法AME测值与AOCS标准方法测定AIA计算的AME的差值(0.025~1.799 MJ·kg-1 DM)。然而,全收粪法测定13个饲粮AME时,每个饲粮6个重复(每个重复4只鸡)测定值的极差在0.228~0.648 MJ·kg-1 DM[11]。这表明AOCS改进法测定AIA计算饲粮的AME在全收粪法测定的变异范围内,也在Sibbald[18]得出全收粪法测定饲粮AME的允许误差在2%的范围内。由此可见,相对于AOCS标准方法,AOCS改进法测定AIA评价饲粮AME的准确性更高。回归分析也得到同样的结果,全收粪法测定13个饲粮的AME对AOCS改进法测定AIA评价AME的回归参数(R2=0.97,斜率=0.872)优于全收粪法测定13个饲粮的AME对AOCS标准方法测定AIA评价AME的回归参数(R2=0.55,斜率=0.456)。综上所述,AOCS改进法测定AIA评价肉鸡对饲粮AME的准确性优于AOCS标准方法。

4 结论

相较于AOCS标准方法,AOCS改进方法测定样品AIA具有更好的重复性和可加性,其测定AIA评价饲粮AME与全收粪法测值更加接近(差值在0.260 MJ·kg-1 DM以内),为养殖现场高效、精准地测定饲粮养分的消化率提供技术参考。

参考文献
[1]
SCOTT T A, HALL J W. Using acid insoluble ash marker ratios (diet: digesta) to predict digestibility of wheat and barley metabolizable energy and nitrogen retention in broiler chicks[J]. Poult Sci, 1998, 77(5): 674-679. DOI:10.1093/ps/77.5.674
[2]
DAVID L S, ABDOLLAHI M R, RAVINDRAN G, et al. Studies on the measurement of ileal calcium digestibility of calcium sources in broiler chickens[J]. Poult Sci, 2019, 98(11): 5582-5589. DOI:10.3382/ps/pez314
[3]
PRAWIRODIGDO S, GANNON N J, LEURY B J, et al. Acid-insoluble ash is a better indigestible marker than chromic oxide to measure apparent total tract digestibility in pigs[J]. Anim Nutr, 2021, 7(1): 64-71. DOI:10.1016/j.aninu.2020.07.003
[4]
SONG D, LI A K, WANG Y W, et al. Effects of synbiotic on growth, digestibility, immune and antioxidant performance in broilers[J]. Animal, 2022, 16(4): 100497. DOI:10.1016/j.animal.2022.100497
[5]
DIAS K M M, OLIVEIRA C H, CALDERANO A A, et al. Research note: nitrogen-corrected apparent metabolizable energy and standardized ileal amino acid digestibility determination of high-protein DDG and corn bran with solubles for broilers[J]. Poult Sci, 2023, 102(7): 102757. DOI:10.1016/j.psj.2023.102757
[6]
GREENHALGH S, MACELLINE S P, CHRYSTAL P V, et al. An evaluation of elevated branched-chain amino acid inclusions on the performance of broiler chickens offered reduced-crude protein, wheat-based diets from 7 to 28 days post-hatch[J]. Anim Feed Sci Technol, 2022, 286: 115255. DOI:10.1016/j.anifeedsci.2022.115255
[7]
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 23742—2009饲料中盐酸不溶灰分的测定[S]. 北京: 中国标准出版社, 2009.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 23742—2009 Animal feeding stuffs-Determination of ash insoluble in hydrochloric acid[S]. Beijing: Standards Press of China, 2009. (in Chinese)
[8]
AOCS. Acid-insoluble ash (Ba 5b-68)[S]. American Oil Chemists Society, 2009.
[9]
SALES J, JANSSENS G P J. Acid-insoluble ash as a marker in digestibility studies: a review[J]. J Anim Feed Sci, 2003, 12(3): 383-401. DOI:10.22358/jafs/67718/2003
[10]
王钰明, 赵峰, 陈寿飞, 等. 猪生长阶段与饲粮类型对酸不溶灰分法测定养分消化率的影响[J]. 动物营养学报, 2015, 27(3): 811-819.
WANG Y M, ZHAO F, CHEN S F, et al. Effects of growing phase and diet type on determination of nutrient digestibility by acid insoluble ash technique for pigs[J]. Chinese Journal of Animal Nutrition, 2015, 27(3): 811-819. (in Chinese)
[11]
SONG M Q, WANG Y M, LIU Y Y, et al. The age-related metabolizable energy of cereal grains, oilseed meals, corn gluten meals, and feather meals for broilers[J]. J Anim Sci, 2023, 101: skad051. DOI:10.1093/jas/skad051
[12]
LATIFI M, MORAVEJ H, GHAZIANI F, et al. Determination of prediction equations for apparent metabolizable energy corrected for nitrogen of corn gluten meal and canola meal in broilers[J]. Poult Sci, 2023, 102(5): 102587. DOI:10.1016/j.psj.2023.102587
[13]
蒋红卫, 夏结来. 基于样本变异系数的组间与组内变异统计量[C]//2006年中国卫生统计学术交流大会论文集. 武汉: 中国卫生信息学会, 2006: 1-7.
JIANG H W, XIA J L. Inter-group and intra-group variation statistics based on coefficient of variation of samples[C]//Proceedings of the 2006 China Health Statistics Academic Exchange Conference. Wuhan: Chinese Health Information Association, 2006: 1-7. (in Chinese)
[14]
LIU K S. New and improved methods for measuring acid insoluble ash[J]. Anim Feed Sci Technol, 2022, 288: 115282. DOI:10.1016/j.anifeedsci.2022.115282
[15]
杜中原, 苏艳芳, 陈凯旋, 等. 2种氧弹热量计测定样品总能的差异及其对能量消化率的影响[J]. 动物营养学报, 2021, 33(2): 1128-1136.
DU Z Y, SU Y F, CHEN K X, et al. Difference in two types of oxygen bomb calorimeter to determine gross energy and its effects on energy digestibility of samples[J]. Chinese Journal of Animal Nutrition, 2021, 33(2): 1128-1136. (in Chinese)
[16]
廖睿, 赵峰, 张虎, 等. 仿生消化法测定猪饲料原料还原糖释放量的重复性和可加性研究[J]. 动物营养学报, 2017, 29(1): 168-176.
LIAO R, ZHAO F, ZHANG H, et al. A study on the repeatability and additivity of the released amount of reducing sugar of feed ingredients determined with simulated digestion method for pigs[J]. Chinese Journal of Animal Nutrition, 2017, 29(1): 168-176. (in Chinese)
[17]
YU Y, ZHAO F, CHEN J, et al. Sensitivity of in vitro digestible energy determined with computer-controlled simulated digestion system and its accuracy to predict dietary metabolizable energy for roosters[J]. Poult Sci, 2021, 100(1): 206-214. DOI:10.1016/j.psj.2020.09.070
[18]
SIBBALD I R. A bioassay for true metabolizable energy in feedingstuffs[J]. Poult Sci, 1976, 55(1): 303-308. DOI:10.3382/ps.0550303

(编辑   范子娟)