畜牧兽医学报  2024, Vol. 55 Issue (1): 207-217. DOI: 10.11843/j.issn.0366-6964.2024.01.020    PDF    
ET-1/eNOS表达差异在牦牛隐睾发生中的作用分析
张颖, 袁莉刚, 陈国娟, 张芳, 杨大鹏     
甘肃农业大学动物医学院, 兰州 730070
摘要:旨在比较内皮素-1(endothelin-1,ET-1)及内皮型一氧化氮合酶(endothelial nitric oxide synthase,eNOS)在牦牛正常睾丸与隐睾组织中的分布,分析其表达差异在牦牛隐睾发生中的作用。本研究采集健康和病理性成年(4岁)雄性牦牛睾丸共20对,分为3组:正常组(10对)、单侧下降组(6对)及隐睾组(4对),应用H.E染色、Masson’s三色染色、Gomori’s染色结合形态计量学统计软件比较正常睾丸与隐睾的组织化学特点;通过免疫组织化学方法、免疫组织荧光技术及实时荧光定量PCR(quantitative real-time PCR,qPCR)检测ET-1和eNOS在正常睾丸与隐睾中的表达量并比较组间差异。结果表明:与正常组相比较,牦牛单侧下降组间质面积/管腔面积之比无显著性差异(P>0.05);隐睾组管腔面积明显减小,胶原纤维和网状纤维含量增多。免疫组化和免疫荧光结果显示,ET-1表达于间质细胞、各级生精细胞,隐睾组上皮未见明显表达,主要表达于间质细胞,正常组ET-1的平均光密度与单侧下降组差异显著(P < 0.05),与隐睾组差异极显著(P < 0.01);eNOS表达于生精小管、间质细胞,正常组eNOS的平均光密度与单侧下降组差异极显著(P < 0.001),与隐睾组差异显著(P < 0.05)。qPCR结果显示,ET-1在正常组中相对表达量显著高于单侧下降组(P < 0.01)和隐睾组(P < 0.01),eNOS在单侧下降组中的相对表达量相比于正常组升高(P < 0.05)。高原低氧环境下,牦牛隐睾睾丸生精小管皱缩,间质细胞减少,局部分泌调节受到抑制,最终导致精子发生阻滞。ET-1和eNOS共同作用于间质细胞,在单侧下降组和隐睾组间质细胞中表达失衡,应是间质细胞及血管分布异常引起。
关键词牦牛    内皮素-1    内皮型一氧化氮合酶    睾丸    隐睾    
Analysis of Differential Expression of ET-1/eNOS in the Development of Cryptorchidism in Yak
ZHANG Ying, YUAN Ligang, CHEN Guojuan, ZHANG Fang, YANG Dapeng     
College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
Abstract: The aim of this study was to compare the distribution of endothelin-1 (ET-1) and endothelial nitric oxide synthase (eNOS) in the normal testes and cryptorchidism of yak, and analyze the role of ET-1/eNOS differences in cryptorchidism of yak. The 20 pairs of healthy and pathological adult (4-year-old) male yak testes were collected and divided into three groups: the normal group (10 pairs), the unilateral descent group (6 pairs), and the cryptorchidism group (4 pairs). The H.E, Masson's and Gomori's staining were used to compare the histochemical characteristics; Immunohistochemical methods, immunofluorescence techniques and quantitative real-time PCR (qPCR) were used to detect the expression levels of ET-1 and eNOS in different groups testes, and morphometric statistical software was used to compare the differences.The results showed that, compared with the normal group, there was no significant difference in the ratio of interstitial to luminal area in the unilateral descent group of yaks (P>0.05); In the cryptorchidism group, the luminal area was significantly reduced, and the content of collagen and reticular fibers were increased. Immunohistochemistry and immunofluorescence results showed: The ET-1 was expressed in leydig cells, spermatogenic cells at different stages, while mainly expressed in leydig cells and no significant expression was observed in the cryptorchidic epithelium, the difference in average optical density of ET-1 between the normal and unilateral descent groups was significant (P < 0.05), also the difference between the normal and cryptorchidism groups was extremely significant (P < 0.01). The eNOS was expressed in seminiferous tubules and leydig cells. Compared with the normal group, the difference in eNOS expression was extremely significant in the unilateral descent group (P < 0.001) and significant in the cryptorchidism group (P < 0.05). qPCR results showed that the relative expression of ET-1 in normal group was significantly higher than that in unilateral descent and cryptorchidism group (P < 0.01), the relative expression of eNOS in unilateral descent group was higher than that in normal group (P < 0.05). Yaks living in a hypoxic environment on the plateau, the seminiferous tubules are atrophied and interstitial cells decreased in the cryptorchidism testes of yak, ultimately leading to the local secretion regulation inhibited and sperm development obstructed. ET-1 and eNOS are co-located in leydig cells, the expression imbalance in interstitial cells in the unilateral descent group and cryptorchidism group should be caused by abnormal distribution in interstitial cells and blood vessels.
Key words: yak    endothelin-1    endothelial nitric oxide synthase    testis    cryptorchidism    

内皮素-1(endothelin-1, ET-1)是从猪主动脉内皮细胞培养液中提取并命名,是血管收缩作用最强的内源性肽类物质,具有广泛的生物学效应[1];ET-1主要通过引起血管平滑肌细胞增殖,使得血管结构和功能改变,从而刺激血管收缩[2]。睾丸具有产生精子和分泌雄激素的功能[3],睾丸支持细胞产生ET-1后,通过旁分泌方式作用于间质细胞,促进睾酮分泌,并可介导睾丸管周肌样细胞(testicular peritubular myoid cells, TPMC)周期性收缩,促进精子运输,维持精子细胞活力及性功能[4-5]。正常情况下,机体内ET-1和NO处于动态平衡状态有利于维持血管的正常舒缩功能;当ET-1表达上调时,NOS-NO cGMP也上调以完全或不完全克服ET-1的血管收缩作用[6]。一氧化氮合酶(NOS)是合成NO的关键酶,由于NO活性高且半衰期短,因此关于NO的研究都集中在NOS;NOS有神经元NOS (nNOS)、内皮NOS (Endothelial nitric oxide synthase, eNOS) 和诱导型NOS (iNOS)。生理条件下eNOS产生的少量NO,有助于维持生物体正常的生理功能,包括调控血管紧张度、维持血压及促进血管平滑肌细胞的增殖和抑制血栓形成等[7-8]。研究表明,eNOS作为钙依赖性一氧化氮合酶在哺乳动物组织中广泛表达,鼠睾丸局部注射NOS抑制剂可导致eNOS合成降低,血管收缩,血流减少,影响生殖功能[9]

牦牛为世代生活在青藏高原高寒、低氧极端生境的大型哺乳动物[10-11],经过长期的自然选择和自身适应,形成了能够适应高海拔、低气压和缺氧环境的代偿性机能,获得了适应高原高寒低氧稳定遗传学特征。ET-1在动物血管生成和低氧适应中发挥着重要作用,其可能通过局部激素调节,影响动物睾丸的微循环[12]。当ET-1水平过高会引起氧化应激反应,抑制睾酮合成及性功能;当ET-1水平不足会导致睾丸管周肌样细胞及生精细胞功能减退,影响生殖功能[4]。低氧会刺激机体产生更多的eNOS和NO,调节血压和氧含量[13-14],当睾丸中生成高浓度NO时,则会抑制间质细胞分泌睾酮,影响精子形成,从而使雄性动物生育能力降低[15]

隐睾症是阴囊内没有睾丸或仅一侧有睾丸,有单双侧、生理性和病理性之分[16]。双侧或单侧隐睾时,导致睾丸处于非正常状态(如:高温、缺血、缺氧等),对生精功能产生不良影响[17]。ETs-NOS的上调或失衡与缺氧诱导的损伤有关,在缺氧情况下,eNOS可在短期内产生对组织缺氧信号转导很重要的NO[18],NO被超氧化物消耗后形成高反应性的氧化物,从而损伤血管内皮并损害其功能[8]。本研究通过H.E染色、Masson ’s三色染色、免疫组织化学染色、双重免疫荧光染色、实时荧光定量PCR等技术分析牦牛睾丸组织中ET-1及eNOS的分布特点,旨在探究ET-1及eNOS在牦牛睾丸中的功能,为正常睾丸生理特征理解和隐睾症治疗靶点探索提供一定的理论基础。

1 材料与方法 1.1 试验材料

1.1.1 试验动物   样品采自青海省西宁市大通回族自治县青海鑫兴源屠宰场,选取健康和病理性成年(4岁)雄性牦牛,采用睾丸摘除手术收集样本(共20对),分为3组:正常组(10对)、单侧下降组(单侧隐睾下降至阴囊的睾丸,6对)及隐睾组(位于腹股沟部的单侧隐睾及双侧隐睾,4对),用4%的多聚甲醛溶液固定形态学组织样本,制作睾丸实质组织切片。

1.1.2 主要药品试剂及仪器   Masson’s(S0071,台山市化工有限公司),苏木精-伊红、ET-1抗体(bs-0954R,北京博奥森生物技术有限公司),eNOS抗体(AF0096,江苏亲科生物研究中心有限公司),免疫组化试剂盒(SP-0023,北京博奥森生物技术有限公司),DAB显色试剂盒(ZLI-9018,北京中杉金桥生物技术有限公司),荧光素Alexa Fluor 488标记链霉亲和素(ab150077)及Alexa Fluor 647标记链霉亲和素(ab150079),DAPI染色液(D-9106);抗荧光淬灭封片液(C02-04003)。

Epon 812包埋机,NIKON ECLIPSE 80i显微摄像系统,LKB 8800型超薄切片机。

1.2 试验方法

1.2.1 组织学样本制备   正常睾丸及隐睾样品在4%多聚甲醛磷酸盐缓冲液固定,流水冲洗24 h,放入50%软化液软化48 h后梯度酒精脱水,石蜡包埋后制作切片(片厚4 μm),用于苏木素-伊红(H.E)常规染色、Masson’s三色染色、Gomori’s染色、ET-1及eNOS免疫组织化学染色。

1.2.2 H.E染色   切片经梯度酒精脱蜡,Mayer苏木精染色后流水返蓝,酒精脱水,醇溶伊红染色10 s,放置于二甲苯内20 min,中性树胶封片。

1.2.3 Masson’s三色染色   切片常规脱蜡至水,Bouin液37 ℃温箱煤染2 h,流水冲洗,天青石蓝染色3 min,Mayer苏木精染色4 min,盐酸乙醇分化液分化后丽春红-品红染色15 min,磷钼酸处理10 min直接滴入苯胺蓝染色液5 min,弱酸处理3 min,梯度酒精脱水,中性树胶封片。

1.2.4 Gomori’s染色   切片常规脱蜡至水,高锰酸钾氧化5 min,草酸漂白2 min,硫酸铁铵煤染5 min,Gordon-Sweets银氨3 min,核固红染色液复染15 min,梯度酒精脱水,封片。

1.2.5 免疫组织化学染色   切片常规脱蜡;高压法进行抗原修复,冷却至室温,PBS振洗;滴加3% H2O2,37 ℃孵育15 min;滴加山羊血清白蛋白,孵育15 min;滴加ET-1和eNOS抗体(稀释度均为1 ∶300),37 ℃孵育2 h,PBS振洗;依次滴加试剂B(二抗)、试剂C(辣根酶标记链霉卵白素工作液)、DAB显色液显色,常规脱水透明、封片。阴性对照用PBS代替一抗染色。

1.2.6 双重免疫荧光染色   切片常规脱蜡,操作步骤均与免疫组织化学相同,将试剂B替换为荧光素Alexa Fluor 488标记链霉亲和素(稀释度1 ∶800)孵育40 min,PBS振洗3次,每次5 min;荧光素Alexa Fluor 647标记链霉亲和素(稀释度1 ∶800)孵育40 min;DAPI染色液孵育10 min后PBS振洗,封片,观察拍照。

1.2.7 实时荧光定量PCR   通过GenBank查找牛源ET-1序列、eNOS序列及β-actin序列,使用Primer 5.0进行引物设计(引物序列见表 1),兰州天启基因生物有限公司合成。以反转录的cDNA作为模板进行RT-PCR检测,qPCR反应总体系为20 μL,其中模板1 μL,2×TransStart Tip Green qPCR SuperMix 10 μL,上、下游引物各1 μL,ddH2O 7 μL。每个样品3个重复。扩增条件:94 ℃预变性30 s;94 ℃变性5 s,60 ℃退火延伸30 s,循环40次。根据Ct值采用2-ΔΔCt分析mRNA的相对表达量。

表 1 引物信息 Table 1 Primers information
1.3 数据统计

在NIKON ECLPISE 80i显微摄像系统中对切片进行拍照,每张切片中随机选取6个不重复视野(400×),用Image J软件统计免疫组织化学平均光密度值以及计算间质面积/管腔面积比值等进行数据分析。所有数据均采用SPSS 21.0统计软件分析, 多组比较使用单因素方差分析(one-way ANOVA),使用Tukey’s HSD (honestly significant difference) 法进行多重比较检验。以 P < 0.05表示具有统计学差异。*表示P < 0.05,**表示P < 0.01,***表示P < 0.001。

2 结果 2.1 牦牛正常组、单侧下降组及隐睾组睾丸的大体形态与组织结构特点

牦牛睾丸呈长卵圆形且表面光滑,血管丰富,附睾附着于睾丸表面,单侧下降组睾丸略小,质地柔软,表面血管不如正常组清晰,隐睾组显著变小,质地坚实,弹性下降(图 1)。H.E染色显示,正常组基膜平整,生精小管发育良好,血管分布于相邻生精小管间质区域内,间质细胞数量多且细胞较大,胞质丰富,核呈圆形或卵圆形居中,核仁明显。生精细胞自基膜向管腔面有序排列为4~7层不等,呈长梭形状管周肌样细胞分布于生精小管固有膜外周(图 2a-A)。单侧下降组生精小管发育不良,生精上皮细胞排列3~4层,生精细胞数量较少且部分脱落于管腔之中,精原细胞有序分布,初级精母细胞散在分布,管腔内可见精子(图 2a-B)。相较于正常组,生精小管的平均直径减小(表 2),隐睾组基膜增厚内陷,管腔面积减小,生精小管皱缩,生精细胞缺失。间质疏松,间质细胞减少,组织结构不清晰(图 2a-C)。

图 1 睾丸样本图片 Fig. 1 Images of testicular samples
a.牦牛正常组、单侧下降组和隐睾组睾丸的组织结构比较及免疫组织化学染色:A. 牦牛正常组睾丸实质,H.E染色;B. 牦牛单侧下降组睾丸实质,H.E染色;C. 牦牛隐睾组睾丸实质,H.E染色;D. 牦牛正常组睾丸实质,Masson ’s三色染色;E. 牦牛单侧下降组睾丸实质,Masson ’s三色染色;F. 牦牛隐睾组睾丸实质,Masson ’s三色染色;G. 牦牛正常组睾丸实质,Gomori ’s染色;H. 牦牛单侧下降组睾丸实质,Gomori ’s染色;I. 牦牛隐睾组睾丸实质,Gomori ’s染色。J、M. 牦牛正常组睾丸实质,免疫组化染色;K、N. 牦牛单侧下降组睾丸实质,免疫组化染色;L、O. 牦牛隐睾组睾丸实质,免疫组化染色;P. 牦牛正常组睾丸,阴性对照; Q. 牦牛单侧下降组睾丸,阴性对照; R. 牦牛隐睾组睾丸, 阴性对照。ST. 生精小管;PC.管周肌样细胞;Ley. 间质细胞;SC.支持细胞;PS.初级精母细胞;S.精原细胞;SZ.精子细胞;CF.胶原纤维;RF.网状纤维;CV. 微血管。b.牦牛正常组、单侧下降组和隐睾组ET-1平均光密度统计。c.牦牛正常组、单侧下降组和隐睾组eNOS平均光密度统计。d.ET-1 mRNA在正常组、单侧下降组及隐睾组睾丸中的相对表达量。e.eNOS mRNA在正常组、单侧下降组及隐睾组睾丸中的相对表达量。*. P < 0.05;**. P < 0.01;***. P < 0.001, 下同 a.The comparison results of the organizational structure and immunohistochemical staining of normal group, unilateral descent group and cryptorchidism testicles in yak: A.The structure of parenchyma in normal yak testis, H.E staining; B. The structure of parenchyma in unilateral descent yak testis, H.E staining; C. The structure of parenchyma in cryptorchidism yak testis, H.E staining; D. The structure of parenchyma in normal yak testis, Masson 's staining; E. The structure of parenchyma in unilateral descent yak testis, Masson 's staining; F. The structure of parenchyma in cryptorchidism yak testis, Masson 's staining; G. The structure of parenchyma in normal yak testis, Gomori 's staining; H. The structure of parenchyma in unilateral descent yak testis, Gomori 's staining; I. The structure of parenchyma in cryptorchidism yak testis, Gomori 's staining.J. The expression of ET-1 in normal yak testis, immunohistochemical staining; K.The expression of ET-1 in unilateral descent yak testis, immunohistochemical staining; L. The expression of ET-1 in cryptorchidism yak testis, immunohistochemical staining; M. The expression of eNOS in normal yak testis, immunohistochemical staining; N.The expression of eNOS in unilateral descent yak testis, immunohistochemical staining; O.The expression of eNOS in cryptorchidism yak testis, immunohistochemical staining; P. Normal yak testis, negative control; Q. Unilateral descent yak testis, negative control; R.Cryptorchidism yak testis, negative control. ST. Seminiferous tubule; PC. Peritubular myoid cells; Ley. Leydig cells; SC. Sertoli cells; PS. Primary spermatocyte; S. Spermatogonia; SZ. Spermatozoa; CF. Collagen fiber; RF. Reticular fiber; CV.Capillary vascular. b.The statistical results of the average optical density of ET-1 in normal group, unilateral descent group, cryptorchidism group. c.The statistical results of the average optical density of eNOS in normal group, unilateral descent group and cryptorchidism group. d.The relative expression of ET-1 mRNA in normal group, unilateral descent group and cryptorchidism group. e.The relative expression of eNOS mRNA in normal group, unilateral descent group and cryptorchidism group. *. P < 0.05; **. P < 0.01; ***. P < 0.001, the same as below 图 2 睾丸组织结构比较及统计结果 Fig. 2 The comparison results of the organizational structure and statistical results
2.2 牦牛正常组、单侧下降组及隐睾组睾丸结缔组织胶原纤维和网状纤维分布特点

Masson’s三色染色结果显示,正常组间质内富含胶原纤维、血管(图 2a-D);单侧下降组间质紧密,胶原纤维与血管丰富,间质面积与管腔面积之比略高于正常组,无显著差异(P>0.05,图 2a-E表 2),隐睾组间质胶原纤维增生,血管减少且管壁皱缩(图 2a-F)。Gomori’s染色正常组与单侧下降组网状纤维丰富(图 2a-G图 2a-H表 2),隐睾组间质组织和生精小管固有膜外周的网状纤维分布明显多于其他两组(图 2a-I表 2)。

表 2 牦牛正常组、单侧下降组与隐睾组生精小管特征指数比较 Table 2 The comparison results of the seminiferous tubule characteristic indexes in normal testicles, unilateral descent testicles and cryptorchidism groups of yak
2.3 ET-1和eNOS免疫组织化学分布特征及检测结果对比分析

ET-1在正常组表达于各级生精细胞,强表达于间质细胞(图 2a-J);单侧下降组生精上皮表达明显,间质细胞强表达(图 2a-K);隐睾组上皮未见明显表达,主要表达于间质细胞(图 2a-L)。eNOS正常组中表达于生精小管和间质细胞(图 2a-M);单侧下降组中,eNOS强表达于间质细胞(图 2a-N);隐睾组中,eNOS在生精小管中未见明显表达,弱表达于间质细胞(图 2a-O)。

免疫组织化学光密度统计表明,ET-1在正常组与单侧下降组差异显著(P < 0.05),单侧下降组和隐睾组无明显差异(P>0.05),正常组与隐睾组差异极显著(P < 0.01,图 2b);与正常组相比较,eNOS在单侧下降组极显著升高(P < 0.001),隐睾组差异显著(P < 0.05,图 2c)。

2.4 双重免疫荧光染色及光密度分析

绿色荧光标记eNOS, 红色荧光标记ET-1。ET-1在正常组上皮表达明显,主要在间质细胞中呈强阳性表达,ET-1在单侧下降组及隐睾组间质细胞中呈强阳性表达(图 3a)。免疫荧光化学光密度分析结果表明(图 3bc),相较于正常组,ET-1在单侧下降组和隐睾组下降,存在极显著差异(P < 0.001),eNOS在单侧下降组较正常组极显著升高(P < 0.001);在隐睾组较正常组显著升高(P < 0.05)。

a.正常组、单侧下降组和隐睾组睾丸组织中的双重免疫荧光染色:A-C. ET-1标记的睾丸间质细胞,呈红色阳性亮点;D-F. eNOS标记的睾丸间质细胞,呈绿色阳性亮点;J-L. 荧光双标合成图。Ley. 间质细胞;CV. 微血管。b.正常组、单侧下降组和隐睾组睾丸组织中的ET-1平均荧光强度统计。c.正常组、单侧下降组和隐睾组睾丸组织中的eNOS平均荧光强度统计 a.Immunofluorescence double staining in normal testicles, unilateral descent testicles and cryptorchidism tissue: A-C.The testis leydig cell labeled with ET-1 showed a red positive bright spot; D-F. The testis leydig cell labeled with eNOS showed a green positive bright spot; J-L. Double-labeled synthetic diagram. Ley. Leydig cell; CV.Capillary vascular. b.The statistical results of the average fluorescence intensity of ET-1 in normal testicles, unilateral descent testicles, cryptorchidism of yak. c.The statistical results of the average fluorescence intensity of eNOS in normal testicles, unilateral descent testicles, cryptorchidism of yak 图 3 睾丸组织的双重免疫荧光染色和平均荧光强度统计 Fig. 3 Double immunofluorescence staining and average fluorescence intensity statistics of testicular tissue
2.5 实时荧光定量PCR结果分析

ET-1和eNOS在睾丸和隐睾中均有表达,ET-1在正常组中的相对表达量显著高于单侧下降组及隐睾组(P < 0.01,图 2d),在单侧下降组中eNOS的相对表达量比正常组显著升高(P < 0.05,图 2e)。

3 讨论

睾丸是雄性哺乳动物的重要生殖器官,具有产生精子和性激素的作用,并激发和维持雄性性征。睾丸组织结构发生改变与其功能异常密切相关,隐睾时睾丸在腹腔中处于非正常状态(如高温、缺血等),出现睾丸纤维化、生精细胞凋亡等情况,会引起睾丸钙化等病理性改变[17];研究显示,牛睾丸间质结缔组织增加会影响精子质量[18-20]。前期研究表明,牦牛隐睾组织有纤维化趋势,实质出现钙化现象,生精小管基膜变厚,血管减少,提示细胞间物质交换能力受阻,组织局部严重缺氧、缺血,最终导致营养不良性钙化[21-22]。本试验中,与正常组相比较,单侧下降组生精上皮细胞层数少且发育不全、排列紊乱,生精小管直径减小,间质面积与管腔面积的比值极显著增大;与正常组相比较,隐睾组的平均间质面积明显增多,胶原和网状纤维含量增加。朱保平等[23-24]的研究表明,单侧隐睾会引起对侧睾丸的生精损害。本试验中,与正常组相比较,单侧下降组生精细胞减少且部分脱落于管腔之中,间质结缔组织及血管的发育不良,提示在牦牛单侧下降的睾丸中精子生成受到影响;隐睾组则基膜增厚内陷,生精小管皱缩,间质细胞减少,生精小管数量及管径的相应变化,间质细胞的局部分泌调节受到影响,最终导致精子发生阻滞。

牦牛睾丸内有大量动静脉枝,为睾丸提供丰富的血液供应以及输送营养物质和激素转运等,是睾丸发挥正常生理功能的必要条件。睾丸间质细胞分布于生精小管间的结缔组织内,具有合成与分泌睾酮的作用[25-26]。ET-1是目前已知最强的内源性血管收缩因子[1, 27]。当睾丸ET-1水平正常时,促进睾酮分泌、管周肌样细胞的周期性收缩和精子运输,维持精子活力及正常性功能;当ET-1水平过高,会激发ROS、NOS等的产生,抑制睾酮合成及性功能,诱发睾丸功能减退;当ET-1水平不足时,直接导致睾丸管周肌样细胞及生精细胞功能减退,反馈性抑制下丘脑-垂体-性腺[4]。本试验中,ET-1在牦牛正常组中生精细胞、间质细胞染色呈强阳性表达;与文献在其他动物中的研究相一致,分析其在睾酮分泌时发挥作用;在单侧下降组中表达于生精细胞、间质细胞,但是ET-1表达量显著低于正常组,提示睾酮的合成与分泌减少,引起雄激素水平降低,影响精子形成以及睾丸的发育;隐睾组仅表达于间质细胞,但与单侧下降组表达量无明显差异,因隐睾组织发育不良,推测ET-1表达量减少主要由间质细胞数量及血管明显减少引起。

研究表明,eNOS介导间质细胞因NO引起的睾丸损伤修复或补偿机制[28]。eNOS定位于人睾丸精母细胞、支持细胞和间质细胞的细胞膜[29];正常人精子头部和体部存在eNOS有利于催化合成生理水平的NO,进而对维持精子活动起着重要作用[30]。本研究中,eNOS主要定位于正常组精原细胞、间质细胞和支持细胞,提示eNOS参与正常睾丸生精上皮、精子细胞的发育。低氧会刺激机体产生更多的eNOS和NO以调节血压和氧含量,而当睾丸中生成高浓度NO时,则会抑制间质细胞分泌睾酮,影响精子的生成[31]。研究表明,eNOS基因在生精上皮表达增强与隐睾生精细胞凋亡有密切关系[32-33]。本研究中,eNOS在成年牦牛单侧下降组及隐睾组生精上皮表达较弱与精子生成密切相关,隐睾组间质细胞eNOS弱表达与NO产生及氧含量调节的关系值得进一步研究。研究表明,大鼠单侧下降睾丸的生精功能受到抑制,且抗氧化能力下降[23]。研究发现,小鼠单侧下降睾丸存在雄激素代偿性生理作用[34];早期研究表明,牦牛隐睾VEGF及其受体可能通过拮抗双侧睾丸生精抑制作用,维持单侧下降睾丸的生精功能[21]。本研究中,eNOS在单侧下降组表达强度高于正常组和隐睾组,可能引起单侧下降睾丸中NO含量升高,血管舒张,以调节低氧引起的精子生成减少,对维持生殖机能有重要意义。

机体内ET-1和NO处于动态平衡有利于维持血管的正常收缩和舒张功能,对维持内皮功能和血管重塑十分重要[35-37]。ET-1具有血管收缩作用,ET-1的过度增加可损伤内皮细胞[18]。eNOS通过催化氧化L-精氨酸生成的NO具有舒张血管的作用[38]。ET-1在成年大鼠睾丸中主要定位于间质细胞,对间质细胞的分泌有促进作用[39]。eNOS在成人睾丸精子发生的各个阶段都定位于间质细胞,提示eNOS会通过调节间质细胞促进或抑制睾酮分泌[31, 40]。本研究中,双重免疫荧光染色结果及光密度分析显示,ET-1和eNOS共定位于牦牛正常睾丸间质细胞及周围间质,提示在正常组中ET-1和eNOS共同作用,且间质细胞可能调节ET-1与eNOS的动态平衡;在单侧下降组间质细胞ET-1和eNOS的表达失衡,ET-1显著降低,eNOS显著升高,应主要与调节高原低氧环境中睾丸血管舒张,雄激素代偿性生理作用密切相关。在隐睾组间质细胞ET-1和eNOS的表达失衡,ET-1显著降低,eNOS显著升高,结合成年隐睾组织损伤严重,应是间质细胞及血管分布异常引起。

4 结论

高原低氧环境下,牦牛隐睾基膜增厚内陷,生精小管皱缩,生精细胞缺失,间质细胞减少,局部分泌调节受到抑制,最终导致精子发生阻滞。ET-1和eNOS共同作用于间质细胞,参与维持低氧环境中牦牛睾丸微循环稳态,在单侧下降组和隐睾组间质细胞中表达失衡,ET-1显著降低,eNOS显著升高,结合成年隐睾组织损伤严重,应是间质细胞及血管分布异常引起。

参考文献
[1]
KURIHARA Y, KURIHARA H, SUZUKI H, et al. Elevated blood pressure and craniofacial abnormalities in mice deficient in endothelin-1[J]. Nature, 1994, 368(6473): 703-710. DOI:10.1038/368703a0
[2]
IGLARZ M, SCHIFFRIN E L. Role of endothelin-1 in hypertension[J]. Curr Hypertens Rep, 2003, 5(2): 144-148. DOI:10.1007/s11906-003-0071-4
[3]
王霞. 藏绵羊睾酮合成相关基因在睾丸和附睾中的表达特征及生物学功能[D]. 兰州: 甘肃农业大学, 2021.
WANG X. The expression characteristics and biological function of Tibetan sheep testosterone synthesis-related genes in testes and epididymides[D]. Lanzhou: Gansu Agricultural University, 2021. (in Chinese)
[4]
刘嘉, 聂超, 曾庆琪. 睾丸退行性病变的发病机制及其治疗靶标[J]. 西南国防医药, 2015, 25(3): 332-334.
LIU J, NIE C, ZENG Q Q. Pathogenesis and therapeutic targets of testicular degenerative diseases[J]. Medical Journal of National Defending Forces in Southwest China, 2015, 25(3): 332-334. DOI:10.3969/j.issn.1004-0188.2015.03.041 (in Chinese)
[5]
王涵, 蒙利洁, 刘文娇, 等. 香猪睾丸间质细胞TAS1R3基因干扰后对自噬相关因子的影响[J]. 畜牧兽医学报, 2023, 54(4): 1525-1534.
WANG H, MENG L J, LIU W J, et al. Effect of TAS1R3 gene interference on autophagy related factors in leydig cells of Xiang pig[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(4): 1525-1534. (in Chinese)
[6]
ANDRIC S A, JANJIC M M, STOJKOV N J, et al. Testosterone-induced modulation of nitric oxide-cGMP signaling pathway and androgenesis in the rat leydig cells[J]. Biol Reprod, 2010, 83(3): 434-442. DOI:10.1095/biolreprod.110.083626
[7]
IGNARRO L J. Nitric oxide as a unique signaling molecule in the vascular system: a historical overview[J]. J Physiol Pharmacol, 2002, 53(4 Pt 1): 503-514.
[8]
KIM S F. The role of nitric oxide in prostaglandin biology; update[J]. Nitric Oxide, 2011, 25(3): 255-264. DOI:10.1016/j.niox.2011.07.002
[9]
LISSBRANT E, LÖFMARK U, COLLIN O, et al. Is nitric oxide involved in the regulation of the rat testicular vasculature?[J]. Biol Reprod, 1997, 56(5): 1221-1227. DOI:10.1095/biolreprod56.5.1221
[10]
张磊, 阿果约达, 谢拉准, 等. 牦牛IGF-Ⅱ干扰载体的构建及其转染对睾丸支持细胞的影响[J]. 畜牧兽医学报, 2020, 51(9): 2138-2146.
ZHANG L, AGUO Y D, XIE L Z, et al. Construction of IGF-Ⅱ shRNA knockdown vector and its effect on sertoli cells in yak[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(9): 2138-2146. (in Chinese)
[11]
王琴, 熊燕, 字向东. 体外成熟液中添加PAF对牦牛卵母细胞发育能力及基因表达的影响[J]. 畜牧兽医学报, 2020, 51(3): 514-523.
WANG Q, XIONG Y, ZI X D. Effects of PAF supplementation during in vitro maturation medium on yak oocyte development competence and gene expression[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(3): 514-523. (in Chinese)
[12]
ERGÜN S, HARNEIT S, PAUST H J, et al. Endothelin and endothelin receptors A and B in the human testis[J]. Anat Embryol (Berl), 1999, 199(3): 207-214. DOI:10.1007/s004290050221
[13]
RAFIKOV R, FONSECA F V, KUMAR S, et al. eNOS activation and NO function: structural motifs responsible for the posttranslational control of endothelial nitric oxide synthase activity[J]. J Endocrinol, 2011, 210(3): 271-284. DOI:10.1530/JOE-11-0083
[14]
ARNET U A, MCMILLAN A, DINERMAN J L, et al. Regulation of endothelial nitric-oxide synthase during hypoxia[J]. J Biol Chem, 1996, 271(25): 15069-15073. DOI:10.1074/jbc.271.25.15069
[15]
相文佩, 水丽君, 温子娜, 等. 少弱精子症患者睾丸组织中NOSTRIN的表达及其与eNOS的相关性研究[J]. 华中科技大学学报(医学版), 2009, 38(2): 247-249.
XIANG W P, SHUI L J, WEN Z N, et al. Expression of NOSTRIN in the testicular tissue from patients with oligoasthenospermia and the relationship between NOSTRIN and eNOS[J]. Acta Medicinae Universitatis Scientiae et Technologiae Huazhong, 2009, 38(2): 247-249. DOI:10.3870/j.issn.1672-0741.2009.02.028 (in Chinese)
[16]
王金海, 徐恩葆. 马、牛、羊隐睾去势术的施行[J]. 养殖技术顾问, 2013(7): 113.
WANG J H, XU E B. Castration of cryptorchidism in horses, cattle and sheep[J]. Modern Animal Husbandry Science & Technology, 2013(7): 113. (in Chinese)
[17]
柴思敏. 哺乳动物睾丸位置的演化和健康"隐睾"的分子进化机制[D]. 南京: 南京师范大学, 2021.
CHAI S M. The evolution of mammalian testis position and the molecular evolutionary mechanism of healthy cryptorchidism[D]. Nanjing: Nanjing Normal University, 2021. (in Chinese)
[18]
IGLARZ M, CLOZEL M. Mechanisms of ET-1-induced endothelial dysfunction[J]. J Cardiovasc Pharmacol, 2007, 50(6): 621-628. DOI:10.1097/FJC.0b013e31813c6cc3
[19]
柳苗苗, 郭亚军, 付德海, 等. 雄性牦牛和藏绵羊生殖器官的组织学观察[J]. 实验室科学, 2022, 25(4): 8-11.
LIU M M, GUO Y J, FU D H, et al. Histological observation on reproductive organs of male yak and Tibetan sheep[J]. Laboratory Science, 2022, 25(4): 8-11. (in Chinese)
[20]
袁莉刚, 张勇, 李聪, 等. 高原地区藏绵羊与小尾寒羊睾丸细胞外基质组织分布特征比较[J]. 解剖学报, 2017, 48(2): 179-186.
YUAN L G, ZHANG Y, LI C, et al. Comparison of distribution characteristics of extracellular matrix components in the testis of the Tibetan sheep and the small-tail Han sheep from Plateau[J]. Acta Anatomica Sinica, 2017, 48(2): 179-186. (in Chinese)
[21]
陈国娟, 袁莉刚, 李聪, 等. 高原牦牛隐睾组织结构特征[J]. 畜牧兽医学报, 2015, 46(12): 2282-2290.
CHEN G J, YUAN L G, LI C, et al. The histologic characteristics of yak cryptorchidism[J]. Acta Veterinaria et Zootechnica Sinica, 2015, 46(12): 2282-2290. DOI:10.11843/j.issn.0366-6964.2015.12.021 (in Chinese)
[22]
陈国娟. 牦牛睾丸局部调节因子增龄性与季节性变化的表达研究[D]. 兰州: 甘肃农业大学, 2016.
CHEN G J. The expression study of the local regulation factor in yak testis associated with age and season[D]. Lanzhou: Gansu Agricultural University, 2016. (in Chinese)
[23]
朱保平. 大鼠单侧隐睾对侧睾丸的损害机制和睾丸保护作用的实验研究[D]. 武汉: 武汉大学, 2004.
ZHU B P. The experimental study of the mechanisms of contralateral testicular impairment induced by unilateral cryptorchid and the prorective effect on testis in rats[D]. Wuhan: Wuhan University, 2004. (in Chinese)
[24]
朱保平, 郑新民, 李世文, 等. 单侧隐睾对侧睾丸损害机制的实验研究[J]. 中华小儿外科杂志, 2003, 24(6): 549-551.
ZHU B P, ZHENG X M, LI S W, et al. The mechanism of contralateral testicular impairment induced by unilateral cryptorchid in rats[J]. Chinese Journal of Pediatric Surgery, 2003, 24(6): 549-551. DOI:10.3760/cma.j.issn.0253-3006.2003.06.022 (in Chinese)
[25]
汤亚茹, 阳美霞, 贾金美, 等. GnIH过表达载体构建及其对小鼠睾丸间质细胞的作用研究[J]. 畜牧兽医学报, 2021, 52(10): 2969-2977.
TANG Y R, YANG M X, JIA J M, et al. Construction of GnIH overexpression vector and its effect on mouse leydig cells[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(10): 2969-2977. DOI:10.11843/j.issn.0366-6964.2021.010.028 (in Chinese)
[26]
冯颖, 杨建成, 石娇, 等. 牛磺酸对大鼠睾丸间质细胞分泌睾酮的影响及作用机理初探[J]. 畜牧兽医学报, 2006, 37(12): 1293-1296.
FENG Y, YANG J C, SHI J, et al. Effects of taurine on testosterone secretion and its mechanism[J]. Acta Veterinaria et Zootechnica Sinica, 2006, 37(12): 1293-1296. DOI:10.3321/j.issn:0366-6964.2006.12.010 (in Chinese)
[27]
吴雪. ANO1参与内皮素-1诱导的血管平滑肌细胞增殖功能的研究[D]. 青岛: 青岛大学, 2023.
WU X. Participation of ANO1 in endothelin-1 induced proliferation of vascular smooth muscle cells[D]. Qingdao: Qingdao University, 2023. (in Chinese)
[28]
WEISSMAN B A, NIU E M, GE R S, et al. Paracrine modulation of androgen synthesis in rat leydig cells by nitric oxide[J]. J Androl, 2005, 26(3): 369-378. DOI:10.2164/jandrol.04178
[29]
田洪艳, 李质馨, 侯瑜. 睾丸一氧化氮合酶的分布及其作用的研究概况[J]. 生殖医学杂志, 2003, 12(4): 246-249.
TIAN H Y, LI Z X, HOU Y. Survey of study on distribution and function of NOS in testis[J]. Journal of Reproductive Medicine, 2003, 12(4): 246-249. (in Chinese)
[30]
LEWIS S E M, DONNELLY E T, STERLING E S L, et al. Regulators of sperm function: nitric oxide synthase and nitrite production in human spermatozoa: evidence that endogenous nitric oxide is beneficial to sperm motility[J]. Mol Hum Reprod, 1996, 2(11): 873-878. DOI:10.1093/molehr/2.11.873
[31]
任亚萍, 孙莉, 邵晓云, 等. eNOS和P450在大鼠性成熟期睾丸的表达及意义[J]. 中华男科学杂志, 2009, 15(10): 911-914.
REN Y P, SUN L, SHAO X Y, et al. Expressions of eNOS and cytochrome P450 in the testis of sexually mature SD rats and their significance[J]. National Journal of Andrology, 2009, 15(10): 911-914. (in Chinese)
[32]
谢远杰, 石金凤, 赵国军, 等. 实验性大鼠隐睾中eNOS的表达与生精细胞凋亡[J]. 华北煤炭医学院学报, 2009, 11(5): 617-618.
XIE Y J, SHI J F, ZHAO G J, et al. The expression of eNOS and apoptosis of spermatogenic cell in the rat experimental cryptorchidism[J]. Journal of North China University of Science and Technology, 2009, 11(5): 617-618. DOI:10.3969/j.issn.1008-6633.2009.05.001 (in Chinese)
[33]
石金凤, 莫中成, 谢远杰, 等. 隐睾下降固定术后生殖细胞的凋亡及eNOS和iNOS的表达[J]. 中国计划生育学杂志, 2010, 18(2): 78-81.
SHI J F, MO Z C, XIE Y J, et al. Apoptosis and expression of endothelium nitric oxide synthase and inducible nitric oxide synthase in spermatogenic cells of rats undergoing orchidopexy[J]. Chinese Journal of Family Planning, 2010, 18(2): 78-81. (in Chinese)
[34]
DUTTA S, JOSHI K R, SENGUPTA P, et al. Unilateral and bilateral cryptorchidism and its effect on the testicular morphology, histology, accessory sex organs, and sperm count in laboratory mice[J]. J Hum Reprod Sci, 2013, 6(2): 106-110. DOI:10.4103/0974-1208.117172
[35]
刘鑫, 刘甜甜, 姚魁武, 等. 芪参益气滴丸调控Sirt1与eNOS互作促进糖尿病心肌缺血损伤修复再生[J]. 中草药, 2023, 54(14): 4564-4572.
LIU X, LIU T T, YAO K W, et al. Qishen Yiqi droplet promotes repair and regeneration of diabetes myocardial ischemia injury by regulating interaction of Sirt1 and eNOS[J]. Chinese Traditional and Herbal Drugs, 2023, 54(14): 4564-4572. (in Chinese)
[36]
李春晓, 刘小瑜, 王鑫, 等. 黄芪甲苷对微血管自律性舒缩活动及大鼠心肌微血管内皮细胞NO、ET-1的影响[J]. 畜牧兽医学报, 2019, 50(4): 879-886.
LI C X, LIU X Y, WANG X, et al. Effect of astragaloside on microvascular vasomotion and nitric oxide, endothelin-1 secretion from rat myocardia microvascular endothelial cells[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50(4): 879-886. (in Chinese)
[37]
韩烨晨, 苏晓菲, 王俊武, 等. 复方中药对肉鸡腹水综合征肺组织NO、ET-1的作用及机制[J]. 畜牧兽医学报, 2015, 46(6): 1055-1062.
HAN Y C, SUN X F, WANG J W, et al. The effect and mechanism of the compound recipe of the traditional Chinese medicine on NO, ET-1 in lung of broiler with ascites syndrome[J]. Acta Veterinaria et Zootechnica Sinica, 2015, 46(6): 1055-1062. (in Chinese)
[38]
孙宇瑶, 钱盟, 赵强. NO/ROS氧化还原平衡在心血管疾病中的作用[J]. 生命的化学, 2023, 43(7): 1036-1048.
SUN Y Y, QIAN M, ZHAO Q. Role of NO/ROS redox balance in cardiovascular diseases[J]. Chemistry of Life, 2023, 43(7): 1036-1048. (in Chinese)
[39]
BELLONI A S, ANDREIS P G, NERI G, et al. In vitro studies of the subtypes of endothelin (ET) receptors present in the rat testis, and of their involvement in the secretory response of Leydig cells to ET-1[J]. J Steroid Biochem Mol Biol, 1996, 57(1-2): 89-93.
[40]
ZINI A, O'BRYAN M K, MAGID M S, et al. Immunohistochemical localization of endothelial nitric oxide synthase in human testis, epididymis, and vas deferens suggests a possible role for nitric oxide in spermatogenesis, sperm maturation, and programmed cell death[J]. Biol Reprod, 1996, 55(5): 935-941.

(编辑   郭云雁)