畜牧兽医学报  2023, Vol. 54 Issue (9): 3735-3744. DOI: 10.11843/j.issn.0366-6964.2023.09.014    PDF    
卵母细胞成熟相关激素和生长因子受体在马扩展型和紧凑型卵丘-卵母细胞复合体表达的研究
神英超, 陶力, 任宏, 王希生, 田书岳, 杜明, 芒来, 格日乐其木格     
内蒙古农业大学动物科学学院 内蒙古自治区马遗传育种与繁殖重点实验室, 呼和浩特 010018
摘要:旨在比较一些与卵细胞成熟相关的激素和生长因子受体在两种卵丘-卵母细胞复合体(Ex-COC和Cp-COC)中的表达以探究两种类型的马卵母细胞成熟和发育能力差异的原因。本研究在屠宰场采集蒙古马离体卵巢带回实验室回收COCs, 并根据卵丘细胞形态区分Ex-和Cp-COCs; 通过qPCR和免疫荧光检测FSHRLHRIGF1R、IGF2R、ESR1、ESR2, BMP15和GDF9受体BMPR1B、BMPR2和ALK5在两种COCs中的表达模式; 将雌二醇、IGF2、GDF9和BMP15分别添加进马IVM培养体系中检测其对马卵母细胞体外成熟率的影响。结果显示, 这些受体基因的表达量在Ex-和Cp-COCs的卵丘细胞和卵母细胞中均有差异, 在Cp-COCs中, 卵丘细胞的大部分受体基因表达量高于卵母细胞; 而在Ex-COCs中, 卵母细胞与卵丘细胞的基因表达水平相似或高于卵丘细胞。相较于Cp-COCs的卵母细胞, 大部分的受体基因在Ex-COCs的卵母细胞中表现出更高表达水平。体外成熟培养试验表明雌二醇和IGF2的添加可能有利于提高马的卵母细胞体外成熟率。马扩展型和紧凑型COCs中FSH、LH、IGF1、IGF2、雌激素、BMP15和GDF9等重要激素或生长因子受体表达水平的差异可以解释其体外成熟和发育能力的差异, 在成熟培养体系中添加IGF2和E2可能会提高马两种类型卵母细胞体外成熟率。
关键词马卵母细胞    促卵泡素(FSH)    胰岛素生长因子1/2(IGF1/2)    雌激素    生长分化因子9(GDF9)    骨形态发生蛋白15(BMP15)    体外成熟    
Differential Expression of Oocyte Development-related Hormone and Growth Factor Receptors in Equine Expanded and Compact Cumulus-oocyte Complexes
SHEN Yingchao, DAVSHILT Toli, REN Hong, WANG Xisheng, TIAN Shuyue, DU Ming, DUGARJAVIIN Manglai, BOU Gerelchimeg     
Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
Abstract: The present study was conducted to compare the expression of some growth factors and hormone receptors associated with oocyte maturation in Ex-COC and Cp-COC to investigate the reasons for the difference in maturation and development capacity in the two types of equine oocytes. Isolated ovaries from Mongolian horses were collected at the slaughterhouse and brought back to the laboratory to recover COCs, Ex- and Cp-COCs were distinguished according to cumulus morphology; the expression pattern of FSHR, LHR, IGF1R, IGF2R, ESR1, ESR2, the BMP15 and GDF9 receptors BMPR1B, BMPR2, and ALK5 were studied by qPCR and immunofluorescence in both COCs. Estradiol, IGF2, GDF9, and BMP15 were added to the equine IVM culture system to examine their effects on the maturation rate of equine oocytes in vitro. The results showed that the expression of these receptor genes was difference in cumulus cells and oocytes between Ex- and Cp-COCs, with most receptor genes being expressed at higher levels in cumulus than in oocytes in Cp-COCs, while in Ex-COCs, the levels in cumulus were similar with oocytes or higher in oocytes. Most of the receptor genes showed higher expression levels in oocytes from Ex-COCs compared to oocytes from Cp-COCs. In vitro maturation culture experiments revel that the addition of estrogen and IGF2 may be beneficial in increasing the rate of maturation of equine oocytes in vitro. Different expression levels of the important hormones or growth factor receptors such as FSH, LH, IGF1, IGF2, estrogen, BMP15, and GDF9 in equine Ex- and Cp-COCs could explain the differences in maturation and developmental capacity in vitro, and the addition of IGF2 and E2 to the maturation culture system may increase the in vitro maturation rate of equine oocytes.
Key words: equine oocyte    FSH    IGF1/2    estrogen    GDF9    BMP15    IVM    

卵母细胞体外成熟(IVM)的效率及质量决定了体外受精技术的成功率。体外收集的马卵丘-卵母细胞复合体(COCs),约有60%为卵丘扩展型,30%为卵丘紧凑型,10%为退化状态[1]。扩展型的COCs被认为是来自闭锁卵泡[2],而马的扩展型卵母细胞体外成熟和发育能力好于紧凑型卵母细胞[3-4]。一些研究人员也从不同角度对马不同类型卵母细胞成熟发育能力存在差异的现象进行了探究,在染色质构象方面,紧凑型卵母细胞的染色质呈弥散状,而扩展型的卵母细胞染色质聚集分布,因此可能拥有更好的核成熟能力[3];在代谢方面,扩展型COCs展现出较低的葡萄糖消耗[5]。此外,深入了解扩展型和紧凑型COCs的发育需求,将有助于提高马卵母细胞的利用效率。

现有的马卵母细胞体外成熟体系效率仍然较低[6]。马卵母细胞在排卵前或排卵期间逐渐成熟,其成熟的最后阶段需要输卵管提供合适的环境[7-8]。在马卵母细胞IVM过程中与马输卵管上皮细胞共培养可以提高其成熟和发育能力[8]。这表明马卵母细胞可能有其独特的成熟机制。而到目前为止,对马卵母细胞成熟和发育的特殊分子机制知之甚少,马IVM体系大多借鉴或模仿其他哺乳动物的体系。因此,本研究选取了一些与卵母细胞发育/成熟相关的激素和生长因子:促卵泡素(FSH)[9]、促黄体素(LH)[10]、胰岛素生长因子1(IGF1)[11]、胰岛素生长因子2(IGF2)[12]、雌二醇(estradiol)[13]、生长分化因子9(GDF9)和骨形态发生蛋白15(BMP15)[14],通过检测其受体基因在马不同类型COCs中的表达,并检测相应的因子或激素对马卵母细胞体外成熟的影响,探讨两种COCs成熟和发育能力存在差异的可能因素,寻找可提高马卵母细胞体外成熟效率的方法。

1 材料与方法 1.1 马卵丘-卵母细胞复合体(COCs)及卵泡壁颗粒细胞的收集

蒙古马卵巢采集于呼和浩特市郊区屠宰场,离体卵巢放入含37 ℃生理盐水的保温杯中,于2 h内运回实验室。

马卵巢运回实验室后,首先去除外部的白膜,用带有18 G针头的50 mL注射器抽取卵泡液,并将卵泡液倒在培养皿中,在体视镜下进行COCs的收集。抽完所有卵泡后,在10 cm培养皿中用手术刀将马卵巢切开,轻刮卵泡壁,并用无菌生理盐水冲洗,所有卵泡冲洗完后,在体视镜下寻找和收集冲洗液中的COCs和壁颗粒细胞。将收集到的COCs和壁颗粒细胞转移至M199操作液(Gibco)中,根据卵丘形态将COCs分为扩展型(Ex)和紧凑型(Cp)[15]

1.2 RNA提取及反转录

将收集到的扩展型COCs和紧凑型COCs分别用0.1%透明质酸酶(Gibco)37 ℃消化2 min,随后用涡旋仪涡旋30~60 s,充分分离卵丘颗粒细胞和卵母细胞。将收集到的壁颗粒细胞及两种类型的卵母细胞和卵丘细胞转移至RLT裂解液中(Qiagen),用RNeasy mini kit(Qiagen)试剂盒提取RNA。使用酶标仪测定提取RNA溶液的OD260 nm/OD280 nm值,确定RNA的质量和浓度,用High Capacity cDNA Reverse Transcription Kit (Thermofisher)试剂盒将RNA反转录为cDNA。

1.3 qPCR

qPCR所用引物使用Primer5软件进行设计,由上海生工公司合成,引物信息见表 1。qPCR体系为:SYBR Premix Ex Taq酶(TaKaRa)5 μL,上、下游引物各0.4 μL,cDNA 0.5 μL,ddH2O 3.7 μL,体系总共为10 μL。使用CFX96实时定量PCR仪(Biored)进行PCR反应。测得的Ct值使用2-ΔΔCt方法进行分析。

表 1 qPCR引物信息 Table 1 The list of qPCR primers
1.4 免疫荧光染色

通过离体卵巢收集到的马COCs和壁颗粒细胞转移至4%多聚甲醛中固定40 min。使用PBS溶液清洗3遍后,转移至透膜液(PBS+0.1%Triton)中透膜20 min,然后转移至封闭液(PBS+3%BSA)中封闭30 min。一抗用封闭液按比例稀释:FSHR Ab (Affinity, 1 ∶100),Estrogen Receptor-alpha Ab (Affinity, 1 ∶100),Estrogen Receptor-beta Ab (Affinity, 1 ∶100),BMPR1 Ab (Affinity, 1 ∶100),BMPR2 Ab (Affinity, 1 ∶100),IGF1R Ab (Affinity, 1 ∶100),ALK5 Ab (Affinity, 1 ∶100),IGF2 Receptor Ab (Abbexa, 1 ∶200)。将细胞转移至100 μL稀释的抗体溶液中,4 ℃过夜。一抗孵育结束后用PBS清洗3次,然后使用稀释的Alexa Flour 488二抗(Thermofisher, 1 ∶1 000)室温孵育1 h。PBS清洗两次,使用DAPI(Solarbio)室温孵育10 min进行核染色,PBS清洗两次,使用防荧光猝灭剂(Thermofisher)进行封片。使用OLYMPUS FV3000 confocal显微镜进行观察和拍照。

1.5 马卵母细胞体外成熟培养

马IVM基础培养基为M199、10% FBS、0.11 mg·mL-1丙酮酸钠、0.05 mg·mL-1 L-谷氨酰胺、0.01 mg·mL-1 FSH、200 ng·mL-1 IGF-1和0.1 IU·mL-1 Penicillin Streptomycin,所用试剂均购自Gibco公司。此外,添加不同激素/因子观察对马卵细胞体外成熟率的影响,包括0.5 mg·mL-1雌二醇(Yuanye)、100 ng·mL-1 BMP15 (Bio-techne)、100 ng·mL-1 GDF9 (Bio-techne)和200 ng·mL-1 IGF-2 (PrimeGene)。IVM试验两种类型COCs共同培养,未做区分。

基础培养基配好后,提前加到培养皿中,用石蜡油封盖。在37 ℃,5% CO2,饱和湿度的培养箱中平衡4 h以上。体外收集马COCs后,在M199操作液中清洗一次,使用口吸管在IVM培养基清洗4次后,放入含有培养基的培养皿中进行培养,30 h后收集培养后的COCs,用0.1%透明质酸酶消化脱去颗粒细胞,通过显微镜观察极体排出情况确定成熟的卵母细胞个数,进一步用DAPI染色确定核成熟状态。

1.6 数据分析

荧光定量PCR数据使用单因素方差分析进行差异显著性分析,采用卡方分析比较各组成熟卵母细胞的成熟率差异。

2 结果 2.1 Ex-COCs和Cp-COCs中不同FSH、LH、IGF1、IGF2、Estrogen、BMP15、GDF9受体基因mRNA表达谱

马扩展型和紧凑型COCs形态如图 1A所示,Ex-COCs有扩散的较为松散的卵丘颗粒细胞,而Cp-COCs的卵丘细胞呈现紧密而收缩的状态。本研究挑选了一些与卵细胞发育相关的激素和生长因子:FSH、LH、IGF1、IGF2、Estrogen、BMP15和GDF9, 通过qPCR试验检测其受体基因在马不同类型COCs中的表达情况。FSHRESR1、ESR2、BMPR1和BMPR2在Cp-COCs的卵丘颗粒细胞(CpC)中的表达显著高于Ex-COCs卵丘颗粒细胞(ExC)(P<0.05), 但Cp-COCs的卵母细胞(CpO)的表达量显著低于Ex-COCs的卵母细胞(ExO) (P<0.05);IGF1R在CpC的表达量显著高于ExC,而在CpO的表达量显著低于ExO(P<0.05);IGF2R在ExO的表达量显著高于CpO(P<0.05),在CpC和ExC之间无显著差异;ALK5在ExC的表达量显著高于CpC(P<0.05), 而在CpO和ExO之间无显著差异(图 1B)。在两种类型的COCs中均未检测到LHR的表达,而在壁颗粒细胞和卵巢组织可检测到其表达(图 1B)。在Cp-COCs中,卵丘颗粒细胞多数的激素\生长因子受体基因表达量高于卵母细胞,而在Ex-COCs中,卵母细胞与卵丘颗粒细胞的激素\生长因子受体表达水平相似,表明Ex-COCs的卵母细胞有更独立的激素\生长因子利用能力和发育能力。

A.左侧为紧凑型卵丘-卵母细胞复合体(Cp-COCs),右侧为扩展型卵丘-卵母细胞复合体(Ex-COCs),标尺为50 μm。B.受体基因qPCR结果:CpO.Cp-COCs卵母细胞;CpC.Cp-COCs卵丘细胞;ExO.Ex-COCs卵母细胞;ExC.Ex-COCs卵丘细胞。不同字母表示差异显著(P<0.05) A. The morphology of Cp-COCs (left) and Ex-COCs (right), bar=50 μm. B. Quantitative RT-PCR analysis of the gene expression in two types of COCs: CpO. Oocyte of compact COCs; CpC. Cumulus of compact COCs; ExO. Oocytes of expanded COCs; ExC.Cumulus of expanded COCs. The different letters indicate the significant difference (P < 0.05) 图 1 相关激素\生长因子受体基因在扩展型(Ex)和紧凑型(Cp)COCs表达量分析 Fig. 1 The mRNA levels of receptor genes of some hormones and growth factors in Ex- and Cp-COCs
2.2 受体蛋白免疫荧光染色

对Ex-COCs和Cp-COCs进行了免疫荧光染色以确定受体蛋白的表达。图 2所示为FSHR、IGF1R、IGF2R、ERα、ERβ、BMPR1B、BMPR2和ALK5在马Ex-COCs和Cp-COCs中的荧光染色图,所有的受体蛋白在两种类型的COC中均有明显的表达。在壁颗粒细胞中,所有的受体蛋白也有明显的表达(图 3)。

Cp.紧密型卵丘-卵母细胞复合体;Ex.扩展型卵丘-卵母细胞复合体。图红框显示IGF1R卵细胞核内有表达;N.C..阴性对照 Cp.Compact COCs; Ex. Expanded COCs. The area framed by red solid line indicates the abundant IGF1R expression in oocyte nucleus; N.C.. Negative controls only with second antibodies 图 2 受体蛋白FSHR、IGF1R、ERα、ERβ、ALK5、IGF2R、BMPR1和BMPR2在马Ex-和Cp-COCs免疫荧光染色结果(标尺为40 μm) Fig. 2 Immunofluorescence results of FSHR, IGF1R, ERα, ERβ, ALK5, IGF2R, BMPR1, BMPR2 in Ex- and Cp-COCs(bar=40 μm)
N.C.. 阴性对照 N.C.. Negative controls only with second antibodies 图 3 受体蛋白FSHR、IGF1R、ERα、ERβ、ALK5、IGF2R、BMPR1、BMPR2在马卵泡壁颗粒细胞免疫荧光染色结果(标尺为40 μm) Fig. 3 Immunofluorescence results of FSHR, IGF1R, ERα, ERβ, ALK5, IGF2R, BMPR1, BMPR2 in mural granulosa cells(bar=40 μm)
2.3 相关激素/因子添加对马卵母细胞体外受精的影响

在国内外众多实验室的马卵母细胞IVM培养基中通常会添加FSH和IGF1,为了进一步确定其他调节剂,包括E2、IGF2、BMP15和GDF9是否能促进马卵母细胞体外成熟,本研究在基础成熟培养体系(basic medium)中添加了这些激素/生长因子,检测其对马卵母细胞成熟率的影响。如表 2所示,IGF2和E2有促进细胞整体成熟的潜力,比基础培养基的成熟率提高约10%,而BMP15和GDF9则没有明显的促进作用。

表 2 不同激素/生长因子对马卵母细胞体外成熟率的影响 Table 2 The effect of hormone or growth factors on maturation of equine oocytes
3 讨论

本研究旨在阐明紧凑型和扩展型马COCs中一些调节哺乳动物卵母细胞发育的重要激素和生长因子表达的差异,从而为探究两种卵母细胞在体外发育能力存在差异的原因,寻找提高马IVM整体效率的方法。

与紧凑型卵母细胞相比,马扩展型的卵母细胞具有更好的减数分裂和发育能力[1, 16]。在本研究结果中,大多数情况下,扩展型的卵丘和卵母细胞中激素和生长因子受体的mRNA水平相当,但对于紧凑型的COCs,多数情况下卵丘细胞表达水平显著高于卵母细胞,这可能说明,与Cp-COCs卵母细胞相比,Ex-COCs卵母细胞在发育过程中可能更依赖于自身。FSH和LH作为体内调节卵泡和卵母细胞发育的主要激素,被广泛用于哺乳动物卵母细胞的体外成熟培养[17-18]。在马的颗粒细胞、卵丘细胞、卵母细胞和黄体组织中均可检测到FSHR的mRNA和蛋白[19-20],研究发现在mRNA水平上,FSHR在马Ex-和Cp-COCs卵丘和卵母细胞中的表达存在差异。然而,在本研究结果中,LHR在两种类型的体外卵泡中收集的卵丘和卵母细胞中均检测不到,Goudet等[21]研究发现,成熟后的马颗粒细胞和卵丘细胞中均有LHR的表达。通常情况下,在许多哺乳动物中,LH和FSH通过影响E2-camp介导减数分裂阻滞来抑制雌激素的表达,从而促进减数分裂的恢复[22],而有研究证明E2促进马卵母细胞成熟[23-24],在本研究中添加E2也将马IVM成熟率提高约10%。母马排卵时E2会有短暂提高,而LH水平短暂降低[25],有趣的是,类似的现象在狨猴也被发现[26]。因此需要更详细的研究来了解E2和LH对马卵母细胞发育和成熟的影响,以及在母马排卵过程中所发挥的作用。

研究表明,IGF1对体外培养的马卵母细胞核成熟率有积极影响[24]。对其他物种的研究发现,在减数分裂恢复期间,类固醇和IGF1之间存在潜在的协同作用[27],并且IGF1通过EGF样配体/EGFR通路促进卵母细胞成熟[28]。此外,在人类中,IGF1可以从形态和正常纺锤体水平上改善卵母细胞的质量,从而有利于受精卵的发育[29]。同样,在本研究中,IGF1R蛋白在卵丘和卵母细胞两种类型的细胞核中高表达,表明IGF1在调节马卵母细胞的发育中起作用。与IGF1相比,IGF2很少用于马的IVM[30],并且从未研究过其对马卵母细胞的影响。然而,本研究结果表明,IGF2在两种COCs中都有明显的表达,并且添加IGF2可以提高马的卵母细胞成熟率。因此IGF1和IGF2在马卵母细胞成熟发育能力方面的调节作用值得进一步探究。

BMP15和GDF9是重要的卵母细胞分泌因子(OSF),调节卵丘颗粒细胞的发育和功能,从而促进和帮助自身的发育[31]。对BMP15和GDF9进行免疫抑制可抑制母马排卵,这可作为一种母马避孕的方法[32],因此,BMP15和GDF9可能对母马卵泡和卵母细胞的发育有一定的影响。本研究发现,GDF9和BMP15的受体(BMPR1B,BMPR2)和ALK5在颗粒细胞、卵囊细胞及卵母细胞中均有表达,但单独添加BMP15或GDF9并不能提高成熟一致率,这与对小鼠的研究结果一致[33]。考虑到在卵母细胞成熟培养基中添加外源性的GDF9和BMP15可提高小鼠[33]和牛[34]的后续胚胎发育和胎儿存活率,而不是成熟率,因此还需要进一步研究GDF9和BMP15对马卵母细胞成熟及后续合子发育的影响。

卵母细胞成熟是多种因素共同作用的复杂过程。由于马卵母细胞的成熟时间点和成熟位置较其他物种特殊,因此其可能在卵母细胞成熟发育机制方面有所不同,需要在这方面进行新的尝试和研究。由于马卵巢不宜获得,而且卵泡较少,因此很难收集到大量的优质卵母细胞用于IVM和IVF的研究,在本试验中,在不丢弃非优质卵母细胞(卵丘不完整或无卵丘细胞包被)的情况下,成熟率可以达到30%~41.2%,达到马卵母细胞体外成熟率的平均水平[1, 35]。由于本试验所采集的均为2~3岁母马的卵母细胞,也可能是造成卵母细胞成熟率不高的原因之一[36-37]。此外,由于用于试验的卵母细胞数量有限,添加IGF2和E2组的成熟率相对于其它组提高了约10%,但无统计学差异,后续的试验需要采集更多的卵母细胞进行检测和分析。马属于单排卵动物,卵巢有排卵窝,且各种促排激素对其卵泡发育和促排效果不显著,因此无论通过离体卵巢收集卵母细胞还是通过体内活体采卵(OPU)抽取卵母细胞,获得的高质量卵细胞均很少,因此两种类型的卵母细胞都需要高效利用。

4 结论

综上所述,马扩展型和紧凑型COCs中FSH、LH、IGF1、IGF2、雌二醇、BMP15和GDF9等重要激素或生长因子受体的表达水平差异可以解释其体外成熟和发育能力差异的原因,在成熟培养体系中添加IGF2和E2等可能会提高马两种类型卵母细胞的体外成熟率。

参考文献
[1]
MORRIS L H A. The development of in vitro embryo production in the horse[J]. Equine Vet J, 2018, 50(6): 712-720. DOI:10.1111/evj.12839
[2]
HINRICHS K, WILLIAMS K A. Relationships among oocyte-cumulus morphology, follicular atresia, initial chromatin configuration, and oocyte meiotic competence in the horse[J]. Biol Reprod, 1997, 57(2): 377-384. DOI:10.1095/biolreprod57.2.377
[3]
HINRICHS K, CHOI Y H, LOVE L B, et al. Chromatin configuration within the germinal vesicle of horse oocytes: changes post mortem and relationship to meiotic and developmental competence[J]. Biol Reprod, 2005, 72(5): 1142-1150. DOI:10.1095/biolreprod.104.036012
[4]
SQUIRES E L. Perspectives on the development and incorporation of assisted reproduction in the equine industry[J]. Reprod Fertil Dev, 2019, 31(12): 1753-1757. DOI:10.1071/RD19365
[5]
GONZÁLEZ-FERNÁNDEZ L, SÁNCHEZ-CALABUIG M J, ALVES M G, et al. Expanded equine cumulus-oocyte complexes exhibit higher meiotic competence and lower glucose consumption than compact cumulus-oocyte complexes[J]. Reprod Fertil Dev, 2018, 30(2): 297-306. DOI:10.1071/RD16441
[6]
神英超, 任宏, 纳日嘎, 等. 马卵母细胞体外成熟的研究进展[J]. 畜牧兽医学报, 2020, 51(5): 914-922.
SHEN Y C, REN H, NARIGA, et al. Research progress of in vitro maturation in horse oocytes[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(5): 914-922. (in Chinese)
[7]
LEEMANS B, GADELLA B M, STOUT T A E, et al. Why doesn't conventional IVF work in the horse? The equine oviduct as a microenvironment for capacitation/fertilization[J]. Reproduction, 2016, 152(6): R233-R245. DOI:10.1530/REP-16-0420
[8]
GOUDET G. Fertilisation in the horse and paracrine signalling in the oviduct[J]. Reprod Fertil Dev, 2011, 23(8): 941-951. DOI:10.1071/RD10285
[9]
BURATINI J, DELLAQUA T T, DE LIMA P F, et al. Oocyte secreted factors control genes regulating FSH signaling and the maturation cascade in cumulus cells: the oocyte is not in a hurry[J]. J Assist Reprod Genet, 2023. DOI:10.1007/S10815-023-02822-Y
[10]
YUAN F F, HAO X Q, CUI Y Y, et al. SphK-produced S1P in somatic cells is indispensable for LH-EGFR signaling-induced mouse oocyte maturation[J]. Cell Death Dis, 2022, 13(11): 963. DOI:10.1038/s41419-022-05415-2
[11]
KORDOWITZKI P, KRAJNIK K, SKOWRONSKA A, et al. Pleiotropic effects of IGF1 on the oocyte[J]. Cells, 2022, 11(10): 1610. DOI:10.3390/cells11101610
[12]
WAN Y L, MUHAMMAD T, HUANG T, et al. IGF2 reduces meiotic defects in oocytes from obese mice and improves embryonic developmental competency[J]. Reprod Biol Endocrinol, 2022, 20(1): 101. DOI:10.1186/s12958-022-00972-9
[13]
ZHANG H, LU S H, XU R, et al. Mechanisms of estradiol-induced EGF-like factor expression and oocyte maturation via G protein-coupled estrogen receptor[J]. Endocrinology, 2020, 161(12): bqaa190. DOI:10.1210/endocr/bqaa190
[14]
ELGEBALY M M, HAZAA A B M, AMER H A, et al. L-Cysteine improves bovine oocyte developmental competence in vitro via activation of oocyte-derived growth factors BMP-15 and GDF-9[J]. Reprod Domest Anim, 2022, 57(7): 734-742. DOI:10.1111/rda.14113
[15]
LODDE V, COLLEONI S, TESSARO I, et al. A prematuration approach to equine IVM: considering cumulus morphology, seasonality, follicle of origin, gap junction coupling and large-scale chromatin configuration in the germinal vesicle[J]. Reprod Fertil Dev, 2019, 31(12): 1793-1804. DOI:10.1071/RD19230
[16]
MERLO B, MARI G, IACONO E. In vitro developmental competence of horse embryos derived from oocytes with a different corona radiata cumulus-oocyte morphology[J]. Anim Reprod Sci, 2018, 198: 233-237. DOI:10.1016/j.anireprosci.2018.09.023
[17]
MATTIOLI M, BACCI M L, GALEATI G, et al. Effects of LH and FSH on the maturation of pig oocytes in vitro[J]. Theriogenology, 1991, 36(1): 95-105. DOI:10.1016/0093-691X(91)90438-J
[18]
POPOVIC-TODOROVIC B, SANTOS-RIBEIRO S, DRAKOPOULOS P, et al. Predicting suboptimal oocyte yield following GnRH agonist trigger by measuring serum LH at the start of ovarian stimulation[J]. Hum Reprod, 2019, 34(10): 2027-2035. DOI:10.1093/humrep/dez132
[19]
SCARLET D, ERTL R, AURICH C, et al. The orthology clause in the next generation sequencing era: novel reference genes identified by RNA-seq in humans improve normalization of neonatal equine ovary RT-qPCR Data[J]. PLoS One, 2015, 10(11): e0142122. DOI:10.1371/journal.pone.0142122
[20]
DELL'AQUILA M E, CAILLAUD M, MARITATO F, et al. Cumulus expansion, nuclear maturation and connexin 43, cyclooxygenase-2 and FSH receptor mRNA expression in equine cumulus-oocyte complexes cultured in vitro in the presence of FSH and precursors for hyaluronic acid synthesis[J]. Reprod Biol Endocrinol, 2004, 2: 44. DOI:10.1186/1477-7827-2-44
[21]
GOUDET G, BELIN F, BÉZARD J, et al. Intrafollicular content of luteinizing hormone receptor, α-inhibin, and aromatase in relation to follicular growth, estrous cycle stage, and oocyte competence for in vitro maturation in the mare[J]. Biol Reprod, 1999, 60(5): 1120-1127. DOI:10.1095/biolreprod60.5.1120
[22]
LIU W, XIN Q L, WANG X, et al. Estrogen receptors in granulosa cells govern meiotic resumption of pre-ovulatory oocytes in mammals[J]. Cell Death Dis, 2017, 8(3): e2662. DOI:10.1038/cddis.2017.82
[23]
PEREIRA G R, LORENZO P L, CARNEIRO G F, et al. Influence of equine growth hormone, insulin-like growth factor-Ⅰ and its interaction with gonadotropins on in vitro maturation and cytoskeleton morphology in equine oocytes[J]. Animal, 2013, 7(9): 1493-1499. DOI:10.1017/S175173111300116X
[24]
CARNEIRO G, LORENZO P, PIMENTEL C, et al. Influence of insulin-like growth factor-Ⅰ and its interaction with gonadotropins, estradiol, and fetal calf serum on in vitro maturation and parthenogenic development in equine oocytes[J]. Biol Reprod, 2001, 65(3): 899-905. DOI:10.1095/biolreprod65.3.899
[25]
GINTHER O J, ALMAMUN M, SHAHIDUZZAMAN A K M, et al. Disruption of the periovulatory LH surge by a transient increase in circulating 17β-estradiol at the time of ovulation in mares[J]. Anim Reprod Sci, 2010, 117(1-2): 178-182. DOI:10.1016/j.anireprosci.2009.04.003
[26]
TKACHENKO O Y, DELIMITREVA S, HEISTERMANN M, et al. Critical estradiol dose optimization for oocyte in vitro maturation in the common marmoset[J]. Theriogenology, 2015, 83(8): 1254-1263. DOI:10.1016/j.theriogenology.2015.01.012
[27]
DAS D, PAL S, MAITRA S. Releasing prophase arrest in zebrafish oocyte: synergism between maturational steroid and Igf1[J]. Reproduction, 2016, 151(1): 59-72. DOI:10.1530/REP-15-0389
[28]
XIE L, TANG Q Y, YANG L, et al. Insulin-like growth factor Ⅰ promotes oocyte maturation through increasing the expression and phosphorylation of epidermal growth factor receptor in the zebrafish ovary[J]. Mol Cell Endocrinol, 2016, 419: 198-207. DOI:10.1016/j.mce.2015.10.018
[29]
YU Y, YAN J, LI M, et al. Effects of combined epidermal growth factor, brain-derived neurotrophic factor and insulin-like growth factor-1 on human oocyte maturation and early fertilized and cloned embryo development[J]. Hum Reprod, 2012, 27(7): 2146-2159. DOI:10.1093/humrep/des099
[30]
HENSEN K, POOK M, SIKUT A, et al. Utilising FGF2, IGF2 and FSH in serum-free protocol for long-term in vitro cultivation of primary human granulosa cells[J]. Mol Cell Endocrinol, 2020, 510: 110816. DOI:10.1016/j.mce.2020.110816
[31]
SUDIMAN J, SUTTON-MCDOWALL M L, RITTER L J, et al. Bone morphogenetic protein 15 in the pro-mature complex form enhances bovine oocyte developmental competence[J]. PLoS One, 2014, 9(7): e103563. DOI:10.1371/journal.pone.0103563
[32]
DAVIS K A, KLOHONATZ K M, MORA D S O, et al. Effects of immunization against bone morphogenetic protein-15 and growth differentiation factor-9 on ovarian function in mares[J]. Anim Reprod Sci, 2018, 192: 69-77. DOI:10.1016/j.anireprosci.2018.02.015
[33]
YEO C X, GILCHRIST R B, THOMPSON J G, et al. Exogenous growth differentiation factor 9 in oocyte maturation media enhances subsequent embryo development and fetal viability in mice[J]. Hum Reprod, 2008, 23(1): 67-73.
[34]
VELÁSQUEZ A, MELLISHO E, CASTRO F O, et al. Effect of BMP15 and/or AMH during in vitro maturation of oocytes from involuntarily culled dairy cows[J]. Mol Reprod Dev, 2019, 86(2): 209-223. DOI:10.1002/mrd.23096
[35]
GALLI C, COLLEONI S, DUCHI R, et al. Developmental competence of equine oocytes and embryos obtained by in vitro procedures ranging from in vitro maturation and ICSI to embryo culture, cryopreservation and somatic cell nuclear transfer[J]. Anim Reprod Sci, 2007, 98(1-2): 39-55. DOI:10.1016/j.anireprosci.2006.10.011
[36]
PAWLAK P, WARZYCH E, HRYCIUK M, et al. Transcript abundance, glutathione and apoptosis levels differ between porcine oocytes collected from prepubertal and cyclic gilts[J]. Theriogenology, 2015, 84(1): 86-93. DOI:10.1016/j.theriogenology.2015.02.016
[37]
FANG Y, ZHANG X S, ZHANG J L, et al. Global DNA methylation and related mRNA profiles in sheep oocytes and early embryos derived from pre-pubertal and adult donors[J]. Anim Reprod Sci, 2016, 164: 144-151. DOI:10.1016/j.anireprosci.2015.11.022

(编辑   郭云雁)