畜牧兽医学报  2023, Vol. 54 Issue (9): 3623-3630. DOI: 10.11843/j.issn.0366-6964.2023.09.004    PDF    
奶水牛发情标记物的研究进展
余洲1,2, 杨柏高1, 张航1, 徐茜1, 张培培1, 冯肖艺1, 曹建华1, 牛一凡1, 杜卫华1, 郝海生1, 朱化彬1, 阿布力孜·吾斯曼2, 赵学明1     
1. 中国农业科学院北京畜牧兽医研究所, 北京 100193;
2. 新疆农业大学动物科学学院, 乌鲁木齐 830052
摘要:水牛是我国产奶畜种之一, 其适应能力强, 耐高温高湿、耐粗饲, 其奶营养丰富, 经济价值高, 被誉为"奶中之王"。然而, 奶水牛性成熟晚、发情症状不明显, 且其发情易受环境因素影响, 导致其繁殖效率低下, 从而在生产中造成人力浪费和经济损失。因此, 掌握有效的奶水牛发情鉴定技术进而确定最佳配种时间对奶水牛生产具有重要意义。本文参考国内外相关报道, 简要总结了奶水牛各发情阶段的人工和自动化鉴定方法及其优缺点, 回顾了通过血液、尿液、唾液、宫颈阴道液(cervical-vaginal fluid, CVF)以及粪便等物质鉴定奶水牛发情的相关研究, 探讨了利用组学技术开发新的奶水牛发情鉴定方法的可能性, 旨在为开发奶水牛发情鉴定新方法提供一定参考。
关键词奶水牛    发情鉴定    血液    唾液    繁殖性能    
Research Progress of Estrus Markers in Dairy Buffalo
YU Zhou1,2, YANG Baigao1, ZHANG Hang1, XU Xi1, ZHANG Peipei1, FENG Xiaoyi1, CAO Jianhua1, NIU Yifan1, DU Weihua1, HAO Haisheng1, ZHU Huabin1, ABULIZI ·Wusiman2, ZHAO Xueming1     
1. Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
2. College of Animal Sciences, Xinjiang Agricultural University, Urumqi 830052, China
Abstract: Buffalo is one of the dairy livestock breeds in China, which has strong adaptability to high temperature, humidity, and rough feeding, and the buffalo milk has high nutrition and economic value, so it is known as the "king of milk". However, dairy buffaloes have late sexual maturity, unperceived estrus symptoms, and are susceptible to environmental factors, thus resulting in low reproductive efficiency, which in turn causes waste of workforce and economic losses. Therefore, it is important for dairy buffalo production to know effective estrus identification method and thus determine optimal breeding time. In this paper, we summarized the advantages and disadvantages of manual and automated methods for the identification of various estrus stages in dairy buffaloes, reviewed relevant studies on the identification of estrus in dairy buffaloes by blood, urine, saliva, cervical-vaginal fluid (CVF) and feces, and discussed the possibility of developing new methods for estrus identification in dairy buffaloes with omics technology by referring to relevant reports, aiming to provide reference for the development of new methods for estrus identification in dairy buffaloes.
Key words: dairy buffalo    estrus identification    blood    salivary    reproductive performance    

随着我国经济实力不断提升,人均可支配收入随之增加,人们对于绿色、自然、健康的食品也有了更高的需求。水牛奶中钙、磷、铁含量高,微量元素均衡,营养全面,被誉为“奶中之王”,水牛奶产品在世界奶类市场占比中逐年升高,拥有巨大消费市场[1]。水牛具有耐高温高湿、耐粗饲以及抗病能力强等优良特性,其奶产品质优且经济价值高,因此,水牛被联合国粮食及农业组织认定为最具开发潜力和开发价值的家畜[2]。我国本土水牛为役用的沼泽型水牛,国外主要为奶用的河流型水牛,为了提高我国水牛的生产性能,于1957年和1974年从印度和巴基斯坦引进了摩拉水牛和尼里-拉菲水牛,并与我国本土水牛进行杂交,经过长时间的改良工作,已使得我国杂交水牛的乳、肉生产性能得到了大幅提高[3]

然而,在现代化规模养殖中,水牛发情不明显的问题日益突出。研究表明,在夏季水牛发情鉴定过程中,安静发情的水牛占到了总数的29%,这极大降低了水牛的发情鉴定效率[4]。此外,由于高精度发情检测手段的缺乏,50%的水牛发情无法及时检出,从而导致无法及时实施配种计划[5]。在生产实践中,约有20%的配种母牛因授精时间不当而无法成功受孕,这极大地降低了牛群的整体生产力,并对水牛产业造成了沉重的经济负担[6]。据报道,在生产中,因奶水牛发情问题导致的日均损失可达每头6美元[7]。因此,精准的发情鉴定对于奶水牛生产愈发重要。利用发情鉴定可以准确的鉴别水牛的发情时期,提前计划配种时间,择优劣汰,从而提高水牛的繁殖性能,使生产的经济效益最大化。

牛的发情阶段分为:发情前期、发情期、发情后期和发情间期。目前,根据发情周期已开发出多种发情鉴定方法,包括人工观察法、人工涂蜡法和自动化监测法等。人工自然观察法较为简单,母牛发情前期会出现频繁走动、长时间处于站立状态、与其余牛只贴靠等行为,发情中期接受爬跨,或出现举尾躬腰体态,到发情后期时,母牛拒绝爬跨;此法简单直接但易漏检、误检,当母牛的发情期集中于晚上时不易发现,且当母牛总数较多时费时费力[8-9]。人工涂蜡法是通过对发情母牛的尾椎使用蜡笔标记,经过爬跨的母牛后背的涂料会变浅,从而确定母牛是否发情,但是当牛被毛被舔舐或下雨天气时该方法失效[8]。自动化监测法有常见的计步器和其他智能检测设备,计步器检测法的准确率在75%~90%之间,但无法区别假发情与安静发情[10]。其他智检设备包括智能耳标[11]、项圈[12]、电子鼻[13]和背景差分技术[14]等,能对采食、反刍和趴窝等综合行为进行发情检测,可以克服一些传统视觉发情检测方法的局限性,但设备和服务的高投入影响其大规模应用[15]。以上方法尚不能满足奶水牛规模化生产发情鉴定的需求,亟待开发操作简单、成本更低、精度更高的发情监测手段。

最近的研究表明,血液[16]、尿液[17]、唾液[18]和宫颈阴道液(cervical-vaginal fluid, CVF)[19]等各种体液及粪便中生物分子表达差异成为母畜发情诊断的重要靶标[20]。通过体液及粪便进行发情鉴定具有准确、及时、简单、成本低等优点,符合生产实际的现状,并且使用该方法可以提高经济效益[21-22]。本文针对奶水牛该领域的研究进行了总结和回顾,旨在为开发奶水牛发情鉴定新方法提供技术参考。

1 血液鉴定发情 1.1 促黄体生成素

发情周期内各生殖激素浓度的变化一直是发情鉴定的研究热点。促黄体生成素(luteinizing hormone, LH)为糖蛋白激素中的一种,其不仅促进卵泡成熟至排出,还促进卵泡排出后的一系列颗粒细胞黄体化以及保持黄体孕酮分泌,刺激卵泡膜细胞分泌雄激素[23]。在一项研究中,通过检测水牛发情周期中的血清LH浓度,发现在发情当天浓度最高[24]。Niswender等[25]报道,发情当天的绵羊血清LH含量高于卵泡期和黄体期。而在一项对巴美肉羊的研究中,发现血清LH呈脉冲式分泌,在发情期时含量最高[26]

1.2 促卵泡素

促卵泡素(follicle-stimulating hormone, FSH),与LH一样是糖蛋白类激素,主要由腺垂体分泌[23]。FSH对雌性动物个体生长发育、卵泡内膜细胞分化、颗粒细胞增生和卵泡液分泌起促进作用,并在LH协作下可刺激卵泡的成熟与排出[23]。在一项研究中,通过检测水牛发情周期血清FSH浓度,发现在发情当天浓度最高[24]。Akbar等[27]报道,发情当天的牛血清FSH水平高于卵泡期和黄体期。而在一项对巴美肉羊的研究中,发现血清FSH也呈脉冲式分泌,在发情期时含量最高[26]

1.3 孕酮

孕酮主要由卵巢内的黄体分泌,随着牛发情周期规律性变化。据报道,水牛血清孕酮浓度在发情当天达到最低值[28]。Smith等[29]研究发现,奶牛的血浆孕酮浓度在发情时浓度最低,低浓度会从发情前4 d一直持续到发情后4 d。另一项研究显示,通过检测血清孕酮水平,可有效鉴别同期发情处理母牛的假性发情,提高克隆胚胎移植妊娠率[30]。因此,可以通过检测水牛血清孕酮浓度来鉴定其是否发情。

1.4 miRNAs

miRNAs是一种内源性小RNA,它们通过与mRNA非编码区结合位点的碱基互补配对方式,从而调控靶基因的降解或抑制转录后翻译过程,以实现对基因表达的调节[31]。miRNAs在发情周期的牛卵巢组织中有周期性表达,它们在发情周期的不同阶段具有特定的作用[32-33]。在一项研究中,研究者将miRNAs测序和实时荧光定量PCR相结合,确定了在牛发情周期期间血浆中水平发生变化的miRNAs子集,发现在发情期let-7f、miR-125b、miR-99a-5p和miR-145的水平显著升高[34]。Ioannidis和Donadeu等[16]针对奶牛的血浆进行了相关研究,表明与奶牛发情周期的其他阶段相比,发情期miR-99a-5p、let-7f、miR-145和miR-125b的水平显著增加。另一项研究表明,血清miR-126-3p水平在排卵期和黄体期均高于卵泡期,且与雌二醇(estradiol, E2)值呈正相关[35]

2 尿液鉴定发情

哺乳动物能通过尿液、唾液、粪便和一些特殊的气味腺体向外部环境排泄化学信号,这些信号的浓度可能会随着动物的阶段和状态而变化,在交流的各种来源中,尿液是参与信号-受体系统的主要来源之一[36-37]

2.1 挥发性化合物

根据相关研究证明,在有蹄类动物中,尿液和CVF中含有发情期指示信息素,这些信息素首先引起性嗅反应,随后会导致行为的增加[38]。信息素释放的时机通常对物种同期生殖行为至关重要,在亚洲母象发情期时(排卵之前)会释放一种尿性信息素,这些信息素会使公象因为化学反应而出现性嗅反射[39]。Rajanarayanan和Archunan[17]在母水牛尿液中鉴定出了14种不同的挥发性化合物,其中1-氯辛烷、4-甲基苯酚和9-十八碳烯酸仅在发情期出现。因此,可从奶水牛尿液成分开发发情鉴定标记物。

2.2 miRNAs

在一项研究中评估了各种miRNAs,发现发情期水牛尿液中的miR-99a-5p和BTA-miR-125b水平低于发情前期和发情间期[40]。Ioannidis和Donadeu等[16]发现,miR-99a-5p和BTA-miR-125b在奶牛的卵泡期卵巢中表达较高,在发情期血浆水平较高。

2.3 LH

一些研究证明,用于检测血液LH的抗体在检测其他物种的纯净尿液LH时,同样会出现LH显著增加的现象[41]。在水牛尿液中检测到的LH浓度高于血清的LH,且据分析,发情期尿液中的LH与基础值相比显著增加了一倍,但发情前和发情后的尿液中LH并没有显著增加[42]

3 CVF鉴定发情

CVF是来自阴道、宫颈内膜、子宫蜕膜和羊膜分泌物的复杂混合物,具有发出生育信号、帮助授精、怀孕以及分娩等功能,采集相对安全、容易,可能作为妊娠的生物标志物的来源[43]

3.1 粘液形态

水牛的发情迹象并不明显,尤其是CVF的分泌[17]。水牛发情期和发情间期的CVF相比,发情期的粘液量多、稀薄、清澈,而在发情间期,粘液稀少但浓稠[44]。然而,在发情期的整个过程中,外阴肿胀和CVF结晶的情况则十分明显[45]。此外,牛的CVF在不同发情时期表现出的不同结晶模式(图 1)也可以作为发情鉴定的手段,这个结晶模式取决于雌激素和孕酮的浓度[46]

a. 发情期晶体紧密且连续的叶状排列;b. 发情间期结晶不连续 a. Compact and continuous leafy arrangement of crystal during the estrus phase; b. Discontinuous crystallization during diestrus 图 1 发情期水牛CVF结晶(风干,150×)[19] Fig. 1 CVF crystallization of estrus buffalo (air dried, 150×)[19]
3.2 蛋白质组

有研究表明,在水牛整个发情周期的CVF中共鉴定出240种蛋白质,而在发情期只鉴定出176种蛋白质,再次对两个时期的特定蛋白质进行研究,发现127种蛋白质是发情期特有的,如水牛发情期CVF中的组蛋白H2B,其结果表明发情期CVF比发情间期CVF含有更多的特定蛋白。水牛发情期时,CVF中HSPA1A蛋白的丰度高于发情间期,且HSP-70在发情期会出现高表达[19]。这些CVF的蛋白鉴定可以作为鉴定发情阶段的一种有效方式。

4 粪便鉴定发情

粪便是代谢产物从动物体内排出的主要媒介之一,具有潜在的传达动物内部生理信息的功能,因此成为许多物种获取化学信号的重要来源之一[47]。据研究表明,无论是小型还是大型哺乳动物,在发情期间,它们的粪便中都会释放特定的化合物[48]

牛在发情周期期间其粪便中的挥发性化合物发生显著变化,在整个发情周期中,检测到27种化合物,其中4-甲基苯酚和反式马鞭草酚只存在于发情期,牛粪便中的这两种化合物可以作为体现发情状态的标志[47]。而在另一项试验中,通过对发情前期、发情期和发情后期牛的粪便进行分析检测到10种不同的挥发性化合物,发现乙酸、丙酸等是发情期特有的,丁酸、羧酸和戊酸等是发情前期特有的,而丁烷等化合物仅存在于发情后期[49]

5 唾液鉴定发情

唾液主要由腮腺、舌下腺和下颌腺3对唾液腺和口腔粘膜下大量的小唾液腺分泌物产生,主要包括水、一些非蛋白质有机物,以及一些蛋白质或多肽物质,它由淀粉酶、白蛋白、分泌型免疫球蛋白A和富含酪蛋白的蛋白质组成[50]。唾液是动物体内重要和必需的体液,其富含类固醇激素、DNA、高分子敏感性RNA以及氧化应激标志物等成分,人体内的大多数代谢物、激素、抗体和其他物质都可以通过血液的被动扩散或主动运输进入唾液[51]。唾液相对于其他的体液来说,具有易采集、易处理、成本低、样品量充足、动物应激小等优点,在发情前期诊断有着非常重要的意义。利用PCR、代谢组、蛋白质组学、色谱-质谱分析及生物学分析等先进技术手段,对家畜不同发情时期的唾液样本进行分析,寻找家畜在不同发情时期的特异性发情标记物作为分子靶向,可以降低成本且极大的提高家畜发情鉴定效率[20]

5.1 内源性性激素

在女性的唾液和血液中,E2的含量与卵泡大小和数量成正比,并与卵泡的数量显著相关。因此,可以通过检测唾液中E2的含量来反映血浆游离激素水平[52]。在水牛中,血液和唾液的生殖激素水平在发情周期中基本趋于一致,唾液中E2、FSH和LH在发情当天都达到了最高水平[24, 53]

5.2 蛋白质组

Singh等[54]报道,与其他3个发情阶段相比,水牛唾液中发情期时ENO3和SDF4的表达增加;SERPINB1在发情前期和发情期的表达显著,而在发情后期和发情间期的表达几乎可以忽略不计。一项研究证明,HSPA1A在水牛唾液的发情期出现特异性表达[55]。另一项研究报道,SERPINAI、HSP-70和ANXAI在发情当天表达量增加[53]。此外,据一项水牛唾液直接转录分析显示,发情水牛的HSP-70和TLR4转录水平更高[52]。一项关于猪不同发情阶段唾液的研究发现,在发情期P00335、P28491、F1SHL9、F1SDR7的表达显著上调,在发情后期显著下调,且它们与雌激素含量密切相关[50]

5.3 miRNAs

水牛唾液中miR-16、miR-191、和miR-233含量与发情周期相关,可以作为水牛发情标记物。据报道,它们在发情期及第9~10天唾液中的含量低于发情周期的其他天数,在研究样本中发现发情间期和随后连续发情阶段的唾液miR-16、miR-191和miR-223水平高于发情期,表明这3种miRNAs在水牛发情周期的不同阶段的唾液中动态存在[56]

5.4 结晶形态

与CVF一样,唾液也会在不同的发情时期出现不同的结晶模式,虽然反刍动物唾液结晶模式与生殖状态有关的信息比较有限,但仍有一些关于牛的研究表明,结晶模式与生殖状态之间存在显著的关联[57-59]。在泽布奶牛中(图 2)发现,发情周期的第20天,所有的奶牛唾液中都观察到了明显的蕨类结晶模式[60]

a. 树枝状;b. 蕨类;c. 冷杉类;d. 树枝和冷杉类;e. 冷杉和蕨类;f. 树枝和蕨类 a. Branch like; b. Fern like; c. Fir like; d. Branch and fir like; e. Fir and fern like; f. Branch and fern like 图 2 在奶牛唾液中观察到的主要结晶模式(风干,200×)[60] Fig. 2 Major crystallization patterns observed in saliva of cows (air dried, 200×)[60]
6 小结

奶水牛是重要的农耕役畜,其优质的奶产品使其在生产上具有广大的效益前景。然而,奶水牛发情并不明显,现有发情鉴定技术手段不能满足生产需求。开发新的奶水牛发情鉴定手段,不仅可以提高水牛的繁殖效率,还可以提高经济效益。随着组学技术的发展和应用,可以深入挖掘发情周期的分子变化,挖掘发情标志物为发情鉴定方法研究提供更多可能性,开发出更为简便、高效、准确的发情检测试剂盒。

参考文献
[1]
简保权, 秦学敏, 龚芳. 世界水牛奶业发展现状和典型模式分析[J]. 世界农业, 2015(3): 115-118.
JIAN B Q, QIN X M, GONG F. Analysis on the present situation and typical model of buffalo dairy industry in the world[J]. World Agriculture, 2015(3): 115-118. DOI:10.13856/j.cn11-1097/s.2015.03.023 (in Chinese)
[2]
黄加祥, 黄锋, 覃广胜, 等. 中国奶水牛产业发展综述——国家概况及科技创新[J]. 中国奶牛, 2019(11): 1-8.
HUANG J X, HUANG F, QIN G S, et al. A summary of the development of dairy buffalo industry in China-national general situation and scientific and technological innovation[J]. China Dairy Cattle, 2019(11): 1-8. DOI:10.19305/j.cnki.11-3009/s.2019.11.001 (in Chinese)
[3]
杨炳壮. 全球水牛业发展现状与我国奶水牛业的发展趋势[J]. 广西农学报, 2011, 26(1): 40-48.
YANG B Z. Global buffalo industry situation and development trend of dairy buffalo in Guangxi[J]. Journal of Guangxi Agriculture, 2011, 26(1): 40-48. DOI:10.3969/j.issn.1003-4374.2011.01.013 (in Chinese)
[4]
SINGHA S, PANDEY M, JAISWAL L, et al. Salivary cell-free HSD17B1 and HSPA1A transcripts as potential biomarkers for estrus identification in buffaloes (Bubalus bubalis)[J]. Anim Biotechnol, 2022, Aug 1: 1-11.
[5]
SINGH P, GOLLA N, SINGH P, et al. Salivary miR-16, miR-191 and miR-223:intuitive indicators of dominant ovarian follicles in buffaloes[J]. Mol Genet Genomics, 2017, 292(5): 935-953. DOI:10.1007/s00438-017-1323-3
[6]
SHARMA H C, DHAMI A J, SHARMA S K, et al. Assessment of estrus detection and insemination efficiency of AI workers in buffaloes through plasma progesterone profile under field conditions[J]. Indian J Anim Sci, 2011, 78(7): 706-709.
[7]
KUMAR P R, SHUKLA S N, SHRIVASTAVA O P, et al. Incidence of postpartum anestrus among buffaloes in and around Jabalpur[J]. Vet World, 2013, 6(10): 716-719. DOI:10.14202/vetworld.2013.716-719
[8]
张春梅, 席丽, 李志强, 等. 奶牛的发情鉴定方法比较[J]. 当代畜禽养殖业, 2019(1): 4-7.
ZHANG C M, XI L, LI Z Q, et al. Comparison of estrus identification methods of dairy cows[J]. Modern Livestock and Poultry Breeding Industry, 2019(1): 4-7. DOI:10.14070/j.cnki.15-1150.2019.01.003 (in Chinese)
[9]
秦博文. 浅谈奶牛的发情鉴定与人工授精操作[J]. 农业开发与装备, 2019(5): 238-239.
QIN B W. Discussion on estrus Identification and artificial insemination of dairy cows[J]. Agricultural Development & Equipments, 2019(5): 238-239. DOI:10.3969/j.issn.1673-9205.2019.05.170 (in Chinese)
[10]
蒋晓新, 刘炜, 魏星远, 等. 运用计步器鉴定泌乳盛期荷斯坦奶牛的发情效果研究[J]. 安徽农业科学, 2013, 41(15): 6728-6729, 6732.
JIANG X X, LIU W, WEI X Y, et al. Study on the effects of identifying the estrus of Holstein cows during peak lactation by using pedometer[J]. Journal of Anhui Agricultural Sciences, 2013, 41(15): 6728-6729, 6732. DOI:10.3969/j.issn.0517-6611.2013.15.058 (in Chinese)
[11]
SCHWEINZER V, GUSTERER E, KANZ P, et al. Comparison of behavioral patterns of dairy cows with natural estrus and induced ovulation detected by an ear-tag based accelerometer[J]. Theriogenology, 2020, 157: 33-41. DOI:10.1016/j.theriogenology.2020.05.050
[12]
TIPPENHAUER C M, PLENIO J L, MADUREIRA A M L, et al. Factors associated with estrous expression and subsequent fertility in lactating dairy cows using automated activity monitoring[J]. J Dairy Sci, 2021, 104(5): 6267-6282. DOI:10.3168/jds.2020-19578
[13]
ALI A S, JACINTO J G P, MŸNCHEMYER W, et al. Estrus detection in a dairy herd using an electronic nose by direct sampling on the Perineal region[J]. Vet Sci, 2022, 9(12): 688. DOI:10.3390/vetsci9120688
[14]
HIGAKI S, HORIHATA K, SUZUKI C, et al. Estrus detection using background image subtraction technique in tie-stalled cows[J]. Animals (Basel), 2021, 11(6): 1795.
[15]
ADENUGA A H, JACK C, OLAGUNJU K O, et al. Economic viability of adoption of automated oestrus detection technologies on dairy farms: a review[J]. Animals (Basel), 2020, 10(7): 1241.
[16]
IOANNIDIS J, DONADEU F X. Circulating microRNA profiles during the bovine oestrous Cycle[J]. PLoS One, 2016, 11(6): e0158160. DOI:10.1371/journal.pone.0158160
[17]
RAJANARAYANAN S, ARCHUNAN G. Identification of urinary sex pheromones in female buffaloes and their influence on bull reproductive behaviour[J]. Res Vet Sci, 2011, 91(2): 301-305. DOI:10.1016/j.rvsc.2010.12.005
[18]
ALAGENDRAN S, SAIBABA G, MUTHUKUMAR S, et al. Characterization of salivary protein during ovulatory phase of menstrual cycle through MALDI-TOF/MS[J]. Ind J Dental Res, 2013, 24(2): 157-163. DOI:10.4103/0970-9290.116669
[19]
MUTHUKUMAR S, RAJKUMAR R, KARTHIKEYAN K, et al. Buffalo cervico-vaginal fluid proteomics with special reference to estrous cycle: heat shock protein (HSP)-70 appears to be an estrus indicator[J]. Biol Reprod, 2014, 90(5): 97.
[20]
辛海云, 孟繁明, 胡斌, 等. 唾液在家畜发情鉴定中的应用进展[J]. 畜牧与兽医, 2020, 52(7): 136-139.
XIN H Y, MENG F M, HU B, et al. Application of saliva in animal estrus detection[J]. Animal Husbandry & Veterinary Medicine, 2020, 52(7): 136-139. (in Chinese)
[21]
武尧, 刘振宇, 谷亚宁, 等. 基于机器视觉的母猪体重估测[J]. 电子技术与软件工程, 2020(1): 100-101.
WU Y, LIU Z Y, GU Y N, et al. Sow weight estimation based on machine vision[J]. Electronic Technology & Software Engineering, 2020(1): 100-101. (in Chinese)
[22]
李颀, 王志鹏, 窦轩, 等. 基于无线传感器网络的产前母猪行为监测系统[J]. 家畜生态学报, 2017, 38(3): 75-79.
LI Q, WANG Z P, DOU X, et al. Monitoring system of sows' behavior before farrowing based on wireless sensor networks[J]. Acta Ecologae Animalis Domastici, 2017, 38(3): 75-79. (in Chinese)
[23]
狄冉, 郭晓飞, 刘秋月, 等. 生殖激素对绵羊繁殖性能影响的研究进展[J]. 家畜生态学报, 2015, 36(9): 1-6.
DI R, GUO X F, LIU Q Y, et al. Research progress in effect of reproductive hormones on ovine reproductive performance[J]. Journal of Domestic Animal Ecology, 2015, 36(9): 1-6. DOI:10.3969/j.issn.1673-1182.2015.09.001 (in Chinese)
[24]
贾银海. 基于唾液蛋白组学开发鉴定水牛发情方法的研究[D]. 南宁: 广西大学, 2018.
JIA Y H. Research on the estrus identification method of the development based on the salivary proteomics in the buffalo[D]. Nanning: Guangxi University, 2018. (in Chinese)
[25]
NISWENDER G D, LER L E JR, MIDGLEY A R JR, et al. Radioimmunoassay for bovine and ovine luteinizing hormone[J]. Endocrinology, 1969, 84(5): 1166-1173. DOI:10.1210/endo-84-5-1166
[26]
祁云霞, 何小龙, 刘晓芳, 等. 巴美肉羊发情期血清FSH和LH浓度变化规律及其与产羔数关系分析[J]. 黑龙江畜牧兽医, 2014(4): 17-20.
QI Y X, HE X L, LIU X F, et al. The analysis of the concentration change patterns of serum follicle -stimulating hormone and luteinizing hormone and their relationships with litter size during the estrous period of Bamei mutton sheep[J]. Heilongjiang Animal Science and Veterinary Medicine, 2014(4): 17-20. (in Chinese)
[27]
AKBAR A M, REICHERT L E, DUNN T G, et al. Serum levels of follicle-stimulating hormone during the bovine estrous cycle[J]. J Anim Sci, 1974, 39(2): 360-365.
[28]
谢炳坤. 广西黄牛和水牛发情周期血清生殖激素变化规律的研究[D]. 南宁: 广西大学, 2005.
XIE B K. Studies on changes of serum concentrations of reproductive hormones during the estrous cycle in cattle and buffaloes in Guangxi[D]. Nanning: Guangxi University, 2005. (in Chinese)
[29]
SMITH J F, FAIRCLOUGH R J, PAYNE E, et al. Plasma hormone levels in the cow.I.Changes in progesterone and oestrogen during the normal oestrous cycle[J]. New Zeal J Agric Res, 1975, 18(2): 123-129.
[30]
贾晓, 邱瑾, 舒娟, 等. 血清孕酮水平检测在克隆胚胎移植受体牛的筛选及妊娠诊断中的应用[J]. 中国生物工程杂志, 2020, 40(7): 1-8.
JIA X, QIU J, SHU J, et al. Serum progesterone level detection for the screening of recipient cattle for cloned embryo transfer and their pregnancy diagnosis[J]. China Biotechnology, 2020, 40(7): 1-8. (in Chinese)
[31]
LU Q Y, CHEN Z, JI D J, et al. Progress on the regulation of ruminant milk fat by noncoding RNAs and ceRNAs[J]. Front Genet, 2021, 12: 733925.
[32]
SONTAKKE S D, MOHAMMED B T, MCNEILLY A S. Characterization of microRNAs differentially expressed during bovine follicle development[J]. Reproduction, 2014, 148(3): 271-283.
[33]
JEROME A, THIRUMARAN S M K, KALA S N. Identification of microRNAs in corpus luteum of pregnancy in buffalo (Bubalus bubalis) by deep sequencing[J]. Iran J Vet Res, 2017, 18(4): 287-290.
[34]
MIURA K, MIURA S, YAMASAKI K, et al. Identification of pregnancy-associated microRNAs in maternal plasma[J]. Clin Chem, 2010, 56(11): 1767-1771.
[35]
LI P, WEI J Z, LI X S, et al. 17β-estradiol enhances vascular endothelial Ets-1/miR-126-3p expression: the possible mechanism for attenuation of atherosclerosis[J]. J Clin Endocr Metab, 2017, 102(2): 594-603.
[36]
ACHIRAMAN S, ARCHUNAN G, SANKARGANESH D, et al. Biochemical analysis of female mice urine with reference to endocrine function: a key tool for estrus detection[J]. Zool Sci, 2011, 28(8): 600-605.
[37]
BÍMOVÁ B, ALBRECHT T, MACHOLÁN M, et al. Signalling components of the house mouse mate recognition system[J]. Behav Process, 2009, 80(1): 20-27.
[38]
RAJANARAYANAN S, ARCHUNAN G. Occurrence of flehmen in male buffaloes (Bubalus bubalis) with special reference to estrus[J]. Theriogenology, 2004, 61(5): 861-866.
[39]
RASMUSSEN L E, SCHMIDT M J, HENNEOUS R, et al. Asian bull elephants: Flehmen-like responses to extractable components in female elephant estrous urine[J]. Science, 1982, 217(4555): 159-162.
[40]
HEBBAR A, CHANDEL R, RANI P, et al. Urinary cell-free miR-99a-5p as a potential biomarker for estrus detection in buffalo[J]. Front Vet Sci, 2021, 8: 643910.
[41]
FRENCH J A, BREWER K J, SCHAFFNER C M, et al. Urinary steroid and gonadotropin excretion across the reproductive cycle in female Wied's black tufted-ear marmosets (Callithrix kuhli)[J]. Am J Primatol, 1996, 40(3): 231-245.
[42]
SELVAM R M, ONTERU S K, NAYAN V, et al. Exploration of luteinizing hormone in Murrah buffalo (Bubalus bubalis) urine: Extended surge window opens door for estrus prediction[J]. Gen Comp Endocr, 2017, 251: 121-126.
[43]
PARRY S, LEITE R, ESPLIN M S, et al. Cervicovaginal fluid proteomic analysis to identify potential biomarkers for preterm birth[J]. Am J Obstet Gynecol, 2020, 222(5): 493.
[44]
HAIDER B A, BARAS A S, MCCALL M N, et al. A critical evaluation of microRNA biomarkers in non-neoplastic disease[J]. PLoS One, 2014, 9(2): e89565.
[45]
DEO S, ROY D J. Investigations on repeat breeding cows and buffaloes--studies on physical properties of cervical mucus[J]. Ind Vet J, 1971, 48(5): 479-484.
[46]
KUMARESAN A, PRABHAKARAN P P, BUJARBARUAH K M, et al. Reproductive performance of crossbred dairy cows reared under traditional low input production system in the eastern Himalayas[J]. Trop Anim Health Prod, 2009, 41(1): 71-78.
[47]
MUROYA S, OGASAWARA H, HOJITO M. Grazing affects exosomal circulating microRNAs in cattle[J]. PLoS One, 2015, 10(8): e0136475.
[48]
FARRELL D, SHAUGHNESSY R G, BRITTON L, et al. The identification of circulating miRNA in bovine serum and their potential as novel biomarkers of early Mycobacterium avium subsp paratuberculosis infection[J]. PLoS One, 2015, 10(7): e0134310.
[49]
SANKAR R, ARCHUNAN G. Identification of putative pheromones in bovine (Bos taurus) faeces in relation to estrus detection[J]. Anim Reprod Sci, 2008, 103(1-2): 149-153.
[50]
LI C L, SONG C L, QI K L, et al. Identification of estrus in sows based on salivary proteomics[J]. Animals, 2022, 12(13): 1656.
[51]
KHURSHID Z, ZAFAR M S, KHAN R S, et al. Role of salivary biomarkers in oral cancer detection[J]. Adv Clin Chem, 2018, 86: 23-70.
[52]
ONTERU S K, BADDELA V S, RAVINDER R, et al. Direct saliva transcript analysis as a novel non-invasive method for oestrus marker detection in buffaloes[J]. Biomarkers, 2016, 21(2): 99-101.
[53]
贾银海, 莫志辉, 潘能庆, 等. 广西水牛唾液和血清生殖激素在发情周期的变化规律及相关性分析[J]. 中国牛业科学, 2018, 44(4): 17-20.
JIA Y H, MO Z H, PAN N Q, et al. The variations and correlation analysis of saliva and serum reproductive hormones during estrus cycle in Guangxi buffaloes[J]. China Cattle Science, 2018, 44(4): 17-20. (in Chinese)
[54]
SINGH L K, PANDEY M, BAITHALU R K, et al. Comparative proteome profiling of saliva between estrus and non-estrus stages by employing Label-free Quantitation (LFQ) and Tandem Mass Tag (TMT)-LC-MS/MS analysis: An approach for estrus biomarker identification in Bubalus bubalis[J]. Front Genet, 2022, 13: 867909.
[55]
SHASHIKUMAR N G, BAITHALU R K, BATHLA S, et al. Global proteomic analysis of water buffalo (Bubalus bubalis) saliva at different stages of estrous cycle using high throughput mass spectrometry[J]. Theriogenology, 2018, 110: 52-60.
[56]
SINGH P, GOLLA N, SINGH P, et al. Salivary miR-16, miR-191 and miR-223:intuitive indicators of dominant ovarian follicles in buffaloes[J]. Mol Genet Genomics, 2017, 292(5): 935-953.
[57]
SKALOVA I, FEDOROVA T, BRANDLOVA K. Saliva crystallization in cattle: new possibility for early pregnancy diagnosis?[J]. Agric Trop Subtrop, 2013, 46(3): 102-104.
[58]
RAVINDER R, KAIPA O, BADDELA V S, et al. Saliva ferning, an unorthodox estrus detection method in water buffaloes (Bubalus bubalis)[J]. Theriogenology, 2016, 1147-1155.
[59]
PARDO-CARMONA B, MOYANO M R, FERNÁNDEZ-PALACIOS R, et al. Saliva crystallisation as a means of determining optimal mating time in bitches[J]. J Small Anim Pract, 2010, 51(8): 437-442.
[60]
CHAVAN N B, KUMARESAN A, CHHILLAR S, et al. Salivary crystallization pattern: a possible unconventional tool for timing of insemination and early pregnancy diagnosis in zebu cows[J]. J Dairy Res, 2023, 90(1): 21-25.

(编辑   郭云雁)