畜牧兽医学报  2023, Vol. 54 Issue (7): 2751-2760. DOI: 10.11843/j.issn.0366-6964.2023.07.009    PDF    
胃肠道菌群与黏膜免疫在围产期奶牛健康中的作用
赵婉莉, 曹棋棋, 杨悦, 邓昭举, 徐闯     
中国农业大学动物医学院,北京 100193
摘要:胃肠道菌群的变化在动物健康和疾病中扮演重要角色,越来越多的研究证据将机体的免疫系统与胃肠道菌群联系了起来。其主要机制可能是菌群紊乱导致菌群-免疫互作失调,营养代谢与能量调控失衡,免疫系统受损,最后诱发疾病。围产期奶牛面临维持机体正常生理代谢的严峻挑战,奶牛在围产期容易感染多种疾病,给牧场带来了严重的经济损失。最近的研究表明,围产期奶牛瘤胃菌群紊乱是导致生产性疾病发生的重要诱因,胃肠道菌群与宿主黏膜免疫系统之间的互作在维持胃肠道动态平衡和抑制炎症中起着关键作用。本文综述了围产期奶牛胃肠道菌群变化特征及胃肠道黏膜免疫系统组成,并讨论了菌群与黏膜免疫互作机制在维持奶牛健康中发挥的重要作用,最后介绍了菌群紊乱与免疫失衡介导的奶牛生产性疾病,旨在为探索围产期奶牛饲养管理及疾病防控提供新思路。
关键词围产期奶牛    胃肠道菌群    黏膜免疫    菌群失调    
The Interaction between Gastrointestinal Microbiota and Mucosal Immunity in Health of Perinatal Dairy Cows
ZHAO Wanli, CAO Qiqi, YANG Yue, DENG Zhaoju, XU Chuang     
College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
Abstract: The changes of gastrointestinal flora play an important role in animal health and disease, and more and more research evidence has linked the immune system with gastrointestinal flora. The main mechanism may be that the disturbance of flora leads to the imbalance of flora-immune interaction, the imbalance of nutritional metabolism and energy regulation, the damage of immune system, and finally induces disease. Perinatal dairy cows face the severe challenge of maintaining normal physiological metabolism. Dairy cows are easy to be infected with a variety of diseases during the perinatal period, which brings serious economic losses to the pasture. Recent studies have shown that the disturbance of rumen flora in perinatal dairy cows is an important cause of productive diseases, and the dynamic interaction between gastrointestinal flora and host mucosal immune system plays a key role in maintaining gastrointestinal dynamic balance and inhibiting inflammation. In this paper, the changes of gastrointestinal microflora and the composition of gastrointestinal mucosal immune system in perinatal dairy cows were reviewed, and the important role of the interaction mechanism of microflora and mucosal immunity in maintaining the health of dairy cows was discussed. Finally, the productive diseases of dairy cows mediated by flora disorder and immune imbalance were introduced in order to provide new ideas for perinatal cow feeding and management and disease prevention and control.
Key words: perinatal dairy cows    gastrointestinal microbiota    mucosal immunity    dysbacteriosis    

不同于单胃动物,反刍动物有一套独特的进化优势,使它们能够消化和利用单胃动物无法消化的植物纤维,这些优势来自于瘤胃中栖息着的大量微生物。奶牛围产期主要指奶牛产前3周至产后3周,这一时期奶牛会经历从怀孕到分娩和泌乳的过程,动物正常营养代谢和能量平衡的维持面临严峻挑战[1]。为适应产后泌乳需要,围产期奶牛从产前的高纤维饮食转变为产后的高精料饮食,这种转变往往导致瘤胃菌群的剧烈变化[2]

寄生在胃肠道上的微生物和宿主之间存在的共生关系本质上主要是互惠互利的。宿主-微生物群的相互作用主要发生在黏膜表面,这创造了一个生态位,促进了细菌的定居和建立,也发展了对病原微生物识别和反应的机制。同时,微生物群产生的代谢产物在宿主生理中起着重要作用,它与宿主的免疫系统保持动态平衡[3]。越来越多的研究证明,胃肠道菌群通过参与竞争有限营养物质、防御病原体和调节免疫系统发育等机制在非肠组织炎症疾病中发挥着重要作用[4]。黏膜免疫作为机体抵抗病原体的第一道屏障,在宿主免疫系统中扮演重要角色。因此,清楚地了解围产期奶牛胃肠道菌群与黏膜免疫在健康和疾病中的相互作用,对于围产期奶牛饲养管理及疾病防控具有重要意义。

1 奶牛胃肠道菌群 1.1 围产期奶牛胃肠道菌群特征

瘤胃约占奶牛胃肠道总体积的80%,是胃肠道中85%以上短链脂肪酸(SCFAs)产生的部位,也是奶牛胃肠道菌群研究最多的部位。瘤胃生态系统的进化按如下精确顺序发生:瘤胃乳头生长[5],发酵碳水化合物和蛋白质的增加[6],提升酶活性[7]和调节微生物定植[8]。瘤胃中栖息着大量的微生物,包括细菌、原生动物、真菌、古生菌和噬菌体等,它们能降解植物纤维,并产生可用于维持宿主动物生长的代谢物[9]。瘤胃微生物群落主要分布在瘤胃液、瘤胃内容物及瘤胃壁,相互协同作用,在这个复杂多样的生态系统中,细菌种群构成了主导群落[10]。存在于瘤胃液内的细菌称为液相细菌,属严格厌氧菌。瘤胃壁上皮附着的细菌又称瘤胃壁黏附菌。瘤胃内容物细菌附着在固态饲料颗粒上,称为固相细菌,包含着大量纤维降解菌,是降解纤维素的最重要的组成成分[11]。成熟反刍动物瘤胃微生物区系结构较稳定,围产期奶牛瘤胃活跃的菌群由20个细菌门组成,按照功能不同又可划分为纤维素与半纤维素降解菌、淀粉降解菌,产甲烷菌、乳酸产生菌,糖类、脂肪、蛋白分解菌等[11]。其中丰度最高的几个细菌门主要是厚壁菌门(Firmicutes)、拟杆菌门(Bacteroidetes)、变形菌门(Proteobacteria)[12]。最大优势科主要是厚壁菌门的瘤胃球菌科(Ruminococcaceae)、拟杆菌门的普雷沃菌科(Prevotellaceae)、变形菌门的琥珀酸弧菌科(Succinivibrionaceae)[13]

1.2 围产期奶牛胃肠道菌群组成变化

奶牛瘤胃菌群丰度与稳定性对瘤胃健康至关重要。围产期瘤胃菌群种类及丰度在不同阶段会发生相应变化。随着奶牛从干奶期过渡到泌乳期,从饲喂高纤维饲料转变到高精料,瘤胃菌群丰度和多样性随之下降[14-15]。对干奶期及泌乳早期瘤胃菌群进行分析,发现随着精料增加,产前软壁菌门、绿弯菌门和疣微菌门所占比例较高,产后放线菌门所占比例较高[16]。而作为瘤胃液中丰度最高的2个菌门,厚壁菌门与拟杆菌门细菌丰度及种类在围产期变化尤为明显,最显著的变化是拟杆菌门比例的增加和厚壁菌门的减少,与产前相比,产后拟杆菌与厚壁菌的比值几乎翻了一番(从6 ∶1到12 ∶1)[2]。其中产前厚壁菌门的瘤胃球菌属与丁酸弧菌属在瘤胃生态系统中富集,产后拟杆菌门中的拟杆菌属和普雷沃菌的丰度却显著增加[16]。这也与产后日粮更换密切相关。瘤胃球菌、产琥珀酸丝状杆菌作为瘤胃内主要的纤维降解菌,在纤维的降解过程中最为重要,在产前高纤维日粮饲喂条件中富集。当产后转变高精料日粮饲喂时,需要大量的淀粉降解菌,这时诸如普雷沃菌、牛链球菌等的丰度将会显著增加。厚壁菌门/拟杆菌门比值降低可以看作肠道菌群紊乱的生物标志,与某些疾病的发生、宿主的新陈代谢及生理健康密切相关[17]。产后瘤胃菌群的另一个值得注意的特征是链球菌属和乳杆菌属的过度表达,作为瘤胃内重要的淀粉利用者及乳酸产生者,该类细菌随着产后高精料饲喂逐渐占据优势[18],它们会产生大量的乳酸,乳酸代谢的主要产物是短链脂肪酸(SCFAs),指碳数少于6的脂肪酸,主要包括醋酸盐、丙酸和丁酸。而围产期奶牛丙酸的主要产生菌埃氏巨球型菌(Megasphaera elsdenii)和反刍兽月形单胞菌(Selenomonas ruminantium)的数量有所减少,乳酸因无法被及时代谢而导致机体内乳酸积聚,伴随乳酸吸收入血,同时丙酸作为糖异生的重要底物,会导致围产期奶牛挥发性脂肪酸(VFA)和葡萄糖浓度降低,易诱发奶牛生产性疾病[19]

2 胃肠道黏膜免疫系统

黏膜免疫系统为90%以上的潜在病原体提供第一道免疫防御屏障,是体内最大的免疫器官。它不仅需要保持对入侵抗原的耐受性,同时还要防止对共生细菌的有害炎症反应,专门负责监测和协调诱导抑制免疫反应。微生物区系和胃肠道上皮表面之间的密切串扰对黏膜免疫系统构成了巨大的挑战。胃肠道黏膜免疫系统由物理屏障(如黏液、上皮)、化学屏障(如抗菌肽、分泌型IgA)和免疫屏障(如上皮内淋巴细胞、巨噬细胞、树突状细胞、T和B细胞以及自然杀伤细胞)组成,它们共同识别和作用于病原体[20]

2.1 黏液屏障

上皮细胞表面的黏液层是机体物理屏障的第一道防线。黏液屏障主要由黏液和黏蛋白、抗菌肽和分泌型IgA(sIgA)组成。黏膜中的杯状细胞分泌黏液和黏蛋白,构成屏障的主要部分[21]。肠道中黏液的产生似乎受到共生菌的刺激。在无菌小鼠和常规饲养的小鼠之间的比较表明,缺乏肠道细菌会导致黏液产生减少,但在无菌小鼠的结肠黏膜表面注射脂多糖和肽聚糖可刺激黏液产生,表明细菌或细菌产物促进了肠道黏液的产生[22]。此外,无菌小鼠的上皮细胞生成率低于常规饲养的小鼠[23]。这表明肠道微生物群对于维持肠道上皮细胞的增殖和确保损伤后黏膜屏障的恢复具有重要意义。肠上皮细胞与纤毛上皮细胞产生广谱抗菌肽(比如防御素、抗菌肽、S100蛋白、肽聚糖识别蛋白1),这些肽类对革兰阳性和革兰阴性菌、真菌、病毒、原生动物都有活性[24-25]。分泌型IgA是由黏膜固有层中的浆细胞分泌二聚体IgA并转运到黏膜上皮细胞表面而产生的,可与共生微生物区系的脂多糖、DNA和鞭毛抗原结合,防止它们跨上皮移位,在肠道免疫中发挥重要作用,它帮助免疫系统调节有益细菌和致病细菌之间的关系。如果这种免疫球蛋白从胃肠道中去除,细菌可能会无法控制地大量增加,同时免疫系统会上调促炎细胞因子的表达[26]。sIgA是小牛体内产生的主要免疫球蛋白,大量分泌于肠道黏膜上皮[27]。当sIgA到达肠腔时,它与细菌结合,然后sIgA-细菌复合体通过蠕动的方式在肠道内移动,最终随粪便排出[28]。从小牛粪便中回收的共生菌中50%~70%包被sIgA[29]。缺少IgA可导致细菌扩张,引发炎症反应,IgA恢复产生时伴随机体正常菌群组成的恢复,同时消除局部和全身炎症[30-31]

2.2 免疫屏障

上皮细胞是胃肠道黏膜免疫系统的第二道物理屏障,直接参与胃肠道的免疫监视。上皮细胞不仅参与微生物的直接防御,还通过产生细胞因子和趋化因子向黏膜免疫系统发送信号,在胃肠道微生物区系的刺激下,可以调节宿主免疫反应,维持肠道微生物和宿主免疫系统的良好平衡[32]。单层上皮细胞通过称为紧密连接的细胞间连接复合体相互粘连,紧密连接结构由封闭蛋白(occludin)、水闸蛋白(claudin)、间隙连接蛋白(junctional adhesion molecule)等多种蛋白质构成,可选择性地促进营养物质、离子和水的细胞旁运输,但阻止微生物和微生物衍生的肽的扩散[33]。黏膜表面与黏膜细菌(如乳杆菌和双歧杆菌)或细菌代谢产物之间的相互作用通过上调紧密连接蛋白表达来促进肠道屏障的完整性[34-35]。紧密连接蛋白还受到饮食成分的调节,哺乳期犊牛补饲开食料会增加肠道黏膜屏障的通透性,这与紧密连接中的封闭蛋白与水闸蛋白的表达下调有关[36]。当紧密连接破裂时,这会使上皮细胞发生渗漏,肠道细菌及其产物可能会逃离肠道,发生炎症反应并导致组织损伤,与之相关的炎症综合征称为“肠道渗漏”。

多种特殊免疫细胞群,如巨噬细胞、树突状细胞、先天淋巴细胞和调节性T细胞(Treg),可与肠道上皮细胞或肠道微生物区系双向通讯[37]。如树突状细胞可以打开肠道上皮之间的紧密连接,直接进入肠腔,吞噬沙门菌和大肠杆菌[38]。上皮细胞对微生物代谢产物产生反应,如短链脂肪酸(丁酸)和许多正常的共生微生物成分(脆弱类杆菌荚膜多糖),它们可以通过促进杯状细胞产生黏液和增加上皮细胞分泌抗菌肽来影响黏液屏障[39-40]。这些代谢产物和共生微生物成分刺激上皮细胞产生转化因子β(TGF-β),这对产生抗炎细胞因子IL-10的Treg的发育是必不可少的。这些微生物代谢产物还直接刺激自然杀伤样细胞3型先天淋巴细胞产生IL-22,从而诱导肠上皮细胞产生更多防御素[41]。对反刍动物进行的研究发现,G蛋白偶联受体41(Gpr41)作为短链脂肪酸(SCFAs)的受体在反刍动物的日粮和免疫反应之间提供了潜在的分子联系,SCFAs增强了Gpr41介导的多形核白细胞募集和上皮屏障功能相关的基因的表达,从而介导了瘤胃上皮细胞的保护性免疫[42]。丁酸还可以调节小肠上皮细胞的的生长和分化,是诱导血乳屏障紧密连接蛋白表达的重要营养物质[43]。此外,上皮细胞和抗原递呈细胞(APCs)也表达各种模式识别受体(PRRs)识别抗原,Toll样受体(TLRs)是PRRs家族重要的一员,能够识别存在于微生物中的病原体相关分子模式(PAMPs),并触发促炎或抗炎途径[44]。哺乳期犊牛饲喂开食料会增加TLR2和TLR6的表达,这表明日粮能够改变小牛肠道的通透性,微生物及其代谢产物与黏膜屏障接触,导致PRRs表达增强[45]。还发现除了TLR1和TLR3外,新生牛犊TLRs表达水平高于日龄较大的奶牛,同时两组间TLR10都在回肠区域高表达[46]。无菌动物的结肠中TLRs的表达低于常规饲养的动物,表明微生物与TLRs之间的相互作用在维持肠道内稳态和天然免疫反应方面发挥了一定作用[47]。与先天免疫细胞不同,先天免疫细胞是促炎细胞,也是第一反应细胞,上皮细胞主要是抗炎反应。在犊牛出生的第一周内,促炎细胞因子IL-8和抗炎细胞因子IL-10在小肠中的表达上调[48]。乳杆菌和双歧杆菌定植在新生儿肠道中可以刺激未成熟的树突状细胞分泌IL-10,可以减轻对共生细菌的促炎反应[49]。在出生头几周的奶牛中,双歧杆菌是小牛肠道的优势菌种,这可能表明乳杆菌和双歧杆菌在小牛肠道的定植促进了免疫反应的调节,避免炎症反应加剧[50]

固有层(LP)位于肠上皮细胞的下层,由B细胞和T细胞组成。黏液屏障与免疫屏障紧密互作,阻止主要的抗炎反应。微生物及其代谢产物通过刺激B细胞产生SIgA影响LP的免疫反应,同时维持产生Treg的抗炎环境,增加Treg数量(Treg是维持机体抗炎和免疫调节的重要因素)[39]。T细胞对肠道管腔发出的信号迅速作出反应,并启动抗炎反应。类杆菌属可以刺激调节性T细胞,促进上皮修复,增强对微生物的耐受性,并开始抑制对自身和细菌抗原的免疫反应。肠道微生物群促进初始CD8+T细胞向CD4+T细胞分化,刺激CD4+T细胞分泌IL-17和IL-22,参与调节肠道炎症。

3 胃肠道菌群免疫互作失调介导奶牛疾病发生

菌群失调不仅仅是微生物群的丧失,它还会削弱黏膜屏障。机体中SIgA和AMPs的数量下降,使黏液层变薄,病原体与黏膜相互作用易导致疾病发生。同时帮助刺激黏膜产生抗炎作用的共生菌群不再可用,紧密连接变弱,肠漏发生,并发生促炎反应,进一步削弱肠道上皮,奶牛生产性疾病发病率升高[51]。胃肠道微生物区系的失调在宿主的代谢和免疫能力中起着重要作用[52]。了解胃肠微生物群的动态平衡在健康和疾病中的潜在作用,对于确定奶牛生产性疾病的生物标记物和探索新的治疗方法非常重要。

3.1 瘤胃酸中毒

发生在反刍动物身上的大多数消化系统疾病,如急性和亚急性瘤胃酸中毒(SARA),与瘤胃微生物的组成和功能紊乱有关[53]。瘤胃微生物对奶牛摄入的碳水化合物进行发酵,产生乳酸和大量挥发性脂肪酸(VFA)。VFA主要包括乙酸、丙酸、丁酸、戊酸和异戊酸等,是淀粉等碳水化合物在瘤胃内发酵的终产物,也是反刍动物维持正常生命活动及生产所需的主要能量来源[54]。健康奶牛体内VFA部分被瘤胃壁吸收,部分被分泌的唾液中和,使瘤胃pH保持在一定范围内。而当奶牛摄入过量碳水化合物丰富的饲料时,VFA积聚继而导致瘤胃pH长时间间歇性下降,诱发奶牛SARA。瘤胃微生物群的改变可能在瘤胃酸中毒中发挥作用。在高谷物饲料饲养的奶牛中发现,瘤胃纤维分解细菌的数量减少,产琥珀酸丝状杆菌和溶纤维丁酸弧菌的比例下降,变形杆菌、牛链球菌、瘤胃单胞菌和普雷沃菌的比例增加,其中链球菌和乳杆菌的生长比其他细菌的生长速度更快[55]。在SARA中发现的最常见的细菌分类群是乳杆菌、链球菌、琥珀酸杆菌和梭状芽胞杆菌[56]。瘤胃中革兰阳性产乳酸菌,如链球菌与乳杆菌大量增殖,可能导致乳酸积聚,pH降低,诱发SARA。还有研究发现,pH的急剧下降造成胃肠道黏膜上皮受损(溃疡和黏膜炎症),同时伴有大量革兰阴性菌死亡,向瘤胃中释放过量的脂多糖(LPS)[57]。LPS是革兰阴性菌细胞壁的主要成分之一,也是一种非常重要的致炎因子。由于瘤胃内生存着大量的革兰阴性菌,细菌的死亡或者过度生长都会释放LPS,因此瘤胃被认为是LPS的主要储存场所[58]。过多的LPS将会破坏胃肠屏障,进入血液循环,引发肝功能障碍和其他器官(如肺部、子宫、乳腺等)相关疾病,也可能导致死亡[59-60]

3.2 酮病

奶牛酮病与瘤胃菌群组成及瘤胃发酵所产生的不同VFA含量及比例密切相关。牛奶中β-羟基丁酸和丙酮浓度,可能是筛选对酮病易感性较低的奶牛的有用指标,普雷沃菌科和瘤胃球菌科细菌数量与酮病发生呈现显著负相关性,唯一呈现正相关性的微生物是古生菌中的甲烷短杆菌属[52]。另有研究发现,围产期奶牛和酮病奶牛组的乳酸浓度高于对照组,而VFA浓度低于对照组[61]。在反刍动物中,大约90%的葡萄糖是由糖异生作用提供的,其中50%~60%来自丙酸[62]。丙酸是糖异生最重要的底物,主要是被转移到肝通过糖异生作用生成葡萄糖,通过这种方式,动物很快就能获得血糖。在奶牛体内,70%以上的乳酸是由埃氏巨球型菌通过丙烯酸酯途径发酵的,丙酸是最终产物。反刍兽月形单胞菌利用琥珀酸-丙酸途径将乳酸转化为丙酸。拟杆菌门主要通过琥珀酸途径或丙烯酸酯途径产生丙酸。另外,瘤胃球菌也可以通过丙二醇途径产生丙酸[63]。然而随着产后产乳酸菌数量增加,但丙酸生成菌,包括反刍兽月形单胞菌和埃氏巨球型菌的数量显著减少,瘤胃中生成的过量乳酸不能及时分解,导致生糖先质及能量供应不足,造成酮病发病率升高。研究指出围产期和酮病奶牛的血糖浓度低于非围产期奶牛,这是能量负平衡的一个重要指标[61]。低血糖的主要原因可能与瘤胃中埃氏巨球型菌和反刍兽月形单胞菌的不足有关,导致丙酸的生成减少,这可能促进能量负平衡或酮病的发展。同时也有研究发现,酮病奶牛体内的反刍兽月形单胞菌和埃氏巨球型菌低于健康组奶牛[61]。因此,作者推测,可以通过调节微生物发酵,特别是增加瘤胃中埃氏巨球型菌和反刍月单胞菌的数量来减轻或避免能量负平衡和酮病的发生。

3.3 乳房炎

奶牛乳房炎始终是制约全球乳品行业发展最重要的疾病之一。因乳房炎造成的牛奶产量及乳品质下降、奶牛繁殖力减退、死淘率升高及治疗成本增加等一系列损失更是对奶牛养殖业的惨重打击。胃肠道微生物区系和宿主免疫系统动态平衡的任何破坏被称为“胃肠道生物失调”,这与动物的乳房炎密切相关[64-65]

奶牛瘤胃菌群紊乱释放的脂多糖(LPS)可能与乳房炎的发生有关。高精料诱导的奶牛瘤胃菌群紊乱会促使条件致病菌过度生长和繁殖,破坏瘤胃、肠道和血乳屏障的保护性。瘤胃内的病原体和有毒代谢物LPS,穿过破损的肠道上皮屏障侵入血液循环,进入乳腺,开始定植,导致乳房生态失调和组织损伤,并破坏免疫反应,最终导致乳腺炎[66-67]。有研究指出乳房炎奶牛乳静脉和乳动脉血液中LPS含量显著升高[68]。目前有研究证明,肠道相关的淋巴组织中的单核吞噬细胞(具有向树突状细胞分化的能力)可以捕获肠道菌群,通过内源性细胞途径(肠-乳途径)将微生物成分运到乳腺[55, 69]。在通过对奶牛饲喂高精料诱导的SARA这一典型的奶牛瘤胃菌群紊乱动物模型中发现,寡养单胞菌在SARA奶牛瘤胃液、乳汁和粪便中富集,然后通过给小鼠灌服麦芽寡养单胞菌(寡养单胞菌中唯一的菌种),发现小鼠乳腺组织出现病理性损伤[70]。表明奶牛SARA导致瘤胃内寡养单胞菌大量升高是其诱发乳腺炎的内源性途径之一。

肠道菌群对金黄色葡萄球菌性乳房炎的保护作用可能是通过调节血乳屏障的通透性来实现的,而这种调控作用的关键可能与SCFAs有关[71]。醋酸盐、丁酸盐和丙酸是存在于宿主肠道和牛奶中的重要短链脂肪酸,具有跨越细菌细胞膜扩散的能力,并发挥积极的免疫调节和抗炎作用[72-73]。丙酸可以通过调节血液屏障来预防脂多糖诱导的乳房炎[74]。丁酸是诱导血乳屏障紧密连接蛋白表达重要的营养物质[43]。SCFAs通过与Treg的G蛋白偶联受体(GPR)结合,调节适应性免疫系统中T淋巴细胞的功能[75],并促进T淋巴细胞分化为Treg或效应性T淋巴细胞[76]。醋酸盐通过HDAC和mTOR调节T淋巴细胞的增殖,并上调IL-10的产生[76]。此外,丁酸盐减少淋巴细胞中趋化因子受体-2(CXCR-2)的表达,并调节T细胞向炎症部位的募集[77]。短链脂肪酸还可以刺激B细胞的分化,促进抗入侵病原菌的IgA产生[78]。这些研究表明,SCFAs介导的免疫调节在调节免疫平衡和防止组织损伤方面发挥着重要作用。一方面,短链脂肪酸通过支持肠上皮细胞来保护黏膜屏障的完整性;另一方面,短链脂肪酸通过抑制促炎细胞因子的分泌和促进抗炎细胞因子的释放,显著调节先天和获得性免疫反应。

3.4 蹄叶炎

蹄叶炎是发生在足部或者是蹄类动物四肢的皮肤层区域的弥漫性无败性炎症,是引起奶牛跛行主要的疾病。奶牛蹄叶炎是由于全身性代谢损伤引起的,是一种营养代谢性疾病,亚急性瘤胃酸中毒是主要的致病因素[79]。在亚急性瘤胃酸中毒的情况下,全身pH降低,瘤胃菌群紊乱,导致脂多糖大量释放,破坏胃肠屏障,过多的脂多糖进入血液循环,同时,瘤胃内产生的大量组胺会抑制上皮细胞的自我修复,导致瘤胃壁通透性升高而造成损伤,使更多的有害物质进入循环系统[80]。在此过程中,血管活性物质激活,蹄部血流增加,内毒素和组胺释放,造成血管收缩和舒张,导致蹄部血管微循环血压升高,血管壁损伤渗出,导致水肿出血,形成血栓。最终,在机械性和代谢性共同作用下致使蹄叶炎的发生。

3.5 子宫内膜炎

奶牛子宫内膜炎是病原菌侵入子宫内引起子宫内膜层发生的炎症,多发于分娩后[81]。子宫内膜上皮细胞的模式识别受体(PRRs)特异性识别病原菌的分子结构,体内免疫反应被激活,当子宫内免疫屏障无法完全消灭病原菌时,病原菌定植于子宫腔中并大量繁殖,释放外毒素,引起子宫内膜的炎症反应。由于奶牛生殖系统的特殊结构,产后外源性细菌感染被认为是奶牛子宫内膜炎的主要原因。但近些年来,菌群失调被认为是患病奶牛的重要内源性诱因。产后奶牛由于产犊泌乳及日粮改变带来的生产应激,造成胃肠菌群结构失衡,引起大量的LPS释放和黏膜屏障受损。来自消化道的LPS进入子宫,激活TLR4信号通路,引起子宫内膜炎[82]。同时致病菌还可通过血液从肠道迁移到子宫,引起奶牛子宫炎[70]

3.6 炎性肝损伤

外源性和内源性LPS均可诱导炎性肝损伤[83]。瘤胃菌群紊乱疾病模型(即患有SARA的奶牛)的门静脉和肝静脉中可以观察到高浓度的LPS,随后,超过肝代谢能力的过量LPS会引起肝的氧化应激和细胞损伤,并导致炎症的发生[84-85]。瘤胃酸中毒也会致使瘤胃上皮受损,导致坏死梭杆菌和化脓性放线菌穿透瘤胃壁,进入门脉循环,最终进入门脉毛细血管系统,造成肝脓肿及肝损伤[57]

4 小结与展望

胃肠道微生物在机体健康和疾病中的作用已经成为许多研究的焦点。围产期对奶牛来说是一个严峻的挑战,葡萄糖供应不足、体内脂肪动员可能会导致能量负平衡、酮病或脂肪肝等生产性疾病。同时为适应奶牛大量泌乳的需要,产后饲喂高精料日粮也会造成瘤胃菌群紊乱,拟杆菌门比例显著增加而厚壁菌门比例减少,乳酸生成菌(链球菌属和乳杆菌属)的过度表达和丙酸生成菌(埃氏巨球型菌和反刍兽月形单胞菌)的不足,都会造成机体内挥发性脂肪酸与葡萄糖浓度降低,而乳酸浓度升高。微生物区系和胃肠道上皮表面之间的紧密互作对黏膜免疫系统构成了巨大的挑战。围产期奶牛体内挥发性脂肪酸与葡萄糖浓度的不足,削弱了黏膜屏障的完整性,刺激机体炎症反应的发生。乳酸的积聚又引起瘤胃内pH下降,损伤胃肠道上皮屏障,同时又造成革兰阴性菌死亡,释放大量脂多糖。病原体及有害细菌产物(脂多糖),穿过受损的黏膜屏障,通过血液循环途径定植在乳腺、肝、肺等器官,造成全身性的炎症反应,造成围产期奶牛生产性疾病高发。

胃肠道菌群与黏膜免疫的互作在维持奶牛健康中发挥着重要作用。目前关于奶牛方面的相关文章还比较少,未来的研究需要进一步明确围产期奶牛菌群变化特征及其与黏膜免疫的互作机制,探究通过添加益生菌或其他营养调控的方式来改善奶牛瘤胃及肠道内环境是否有助于维持奶牛机体健康水平。

参考文献
[1]
FILIPE J, INGLESI A, AMADORI M, et al. Preliminary evidence of endotoxin tolerance in dairy cows during the transition period[J]. Genes (Basel), 2021, 12(11): 1801. DOI:10.3390/genes12111801
[2]
PITTA D W, KUMAR S, VECCHIARELLI B, et al. Temporal dynamics in the ruminal microbiome of dairy cows during the transition period[J]. J Anim Sci, 2014, 92(9): 4014-4022. DOI:10.2527/jas.2014-7621
[3]
SHI N, LI N, DUAN X W, et al. Interaction between the gut microbiome and mucosal immune system[J]. Mil Med Res, 2017, 4: 14.
[4]
KAMADA N, SEO S U, CHEN G Y, et al. Role of the gut microbiota in immunity and inflammatory disease[J]. Nat Rev Immunol, 2013, 13(5): 321-335. DOI:10.1038/nri3430
[5]
REYNOLDS C K, DVRST B, LUPOLI B, et al. Visceral tissue mass and rumen volume in dairy cows during the transition from late gestation to early lactation[J]. J Dairy Sci, 2004, 87(4): 961-971. DOI:10.3168/jds.S0022-0302(04)73240-3
[6]
FAUBLADIER C, JULLIAND V, DANEL J, et al. Bacterial carbohydrate-degrading capacity in foal faeces: changes from birth to pre-weaning and the impact of maternal supplementation with fermented feed products[J]. Br J Nutr, 2013, 110(6): 1040-1052. DOI:10.1017/S0007114512006162
[7]
REY M, ENJALBERT F, COMBES S, et al. Establishment of ruminal bacterial community in dairy calves from birth to weaning is sequential[J]. J Appl Microbiol, 2014, 116(2): 245-257. DOI:10.1111/jam.12405
[8]
FOUTS D E, SZPAKOWSKI S, PURUSHE J, et al. Next generation sequencing to define prokaryotic and fungal diversity in the bovine rumen[J]. PLoS One, 2012, 7(11): e48289. DOI:10.1371/journal.pone.0048289
[9]
ROMAGNOLI E M, KMIT M C P, CHIARAMONTE J B, et al. Ecological aspects on rumen microbiome[M]//DE AZEVEDO J L, QUECINE M C. Diversity and Benefits of Microorganisms from the Tropics. Cham: Springer, 2017: 367-389.
[10]
MCCANN J C, WILEY L M, FORBES T D, et al. Relationship between the rumen microbiome and residual feed intake-efficiency of Brahman bulls stocked on bermudagrass pastures[J]. PLoS One, 2014, 9(3): e91864. DOI:10.1371/journal.pone.0091864
[11]
杨艳, 瞿明仁, 欧阳克蕙, 等. 反刍动物瘤胃微生物区系研究进展[J]. 江西农业学报, 2020, 32(10): 110-115.
YANG Y, QU M R, OUYANG K H, et al. Research progress in rumen microflora of ruminants[J]. Acta Agriculturae Jiangxi, 2020, 32(10): 110-115. DOI:10.19386/j.cnki.jxnyxb.2020.10.21 (in Chinese)
[12]
ZHU Z G, KRISTENSEN L, DIFFORD G F, et al. Changes in rumen bacterial and archaeal communities over the transition period in primiparous Holstein dairy cows[J]. J Dairy Sci, 2018, 101(11): 9847-9862. DOI:10.3168/jds.2017-14366
[13]
ZHU Z G, NOEL S J, DIFFORD G F, et al. Community structure of the metabolically active rumen bacterial and archaeal communities of dairy cows over the transition period[J]. PLoS One, 2017, 12(11): e0187858. DOI:10.1371/journal.pone.0187858
[14]
LIMA F S, OIKONOMOU G, LIMA S F, et al. Prepartum and postpartum rumen fluid microbiomes: characterization and correlation with production traits in dairy cows[J]. Appl Environ Microbiol, 2015, 81(4): 1327-1337. DOI:10.1128/AEM.03138-14
[15]
DIEHO K, VAN DEN BOGERT B, HENDERSON G, et al. Changes in rumen microbiota composition and in situ degradation kinetics during the dry period and early lactation as affected by rate of increase of concentrate allowance[J]. J Dairy Sci, 2017, 100(4): 2695-2710. DOI:10.3168/jds.2016-11982
[16]
DERAKHSHANI H, TUN H M, CARDOSO F C, et al. Linking peripartal dynamics of ruminal microbiota to dietary changes and production parameters[J]. Front Microbiol, 2017, 7: 2143.
[17]
JASIRWAN C O M, MURADI A, HASAN I, et al. Correlation of gut Firmicutes/Bacteroidetes ratio with fibrosis and steatosis stratified by body mass index in patients with non-alcoholic fatty liver disease[J]. Biosci Microbiota Food Health, 2021, 40(1): 50-58. DOI:10.12938/bmfh.2020-046
[18]
DING G Z, CHANG Y, ZHAO L P, et al. Effect of Saccharomyces cerevisiae on alfalfa nutrient degradation characteristics and rumen microbial populations of steers fed diets with different concentrate-to-forage ratios[J]. J Anim Sci Biotechnol, 2014, 5(1): 24. DOI:10.1186/2049-1891-5-24
[19]
项开合, 胡晓宇, 李爽, 等. 奶牛围产期瘤胃菌群变化及影响因素研究进展[J]. 动物医学进展, 2022, 43(8): 93-97.
XIANG K H, HU X Y, LI S, et al. Progress on changes of rumen microbiota and its influencing factors in dairy cows during perinatal period[J]. Progress in Veterinary Medicine, 2022, 43(8): 93-97. DOI:10.16437/j.cnki.1007-5038.2022.08.023 (in Chinese)
[20]
SANSONETTI P J. War and peace at mucosal surfaces[J]. Nat Rev Immunol, 2004, 4(12): 953-964. DOI:10.1038/nri1499
[21]
PELASEYED T, BERGSTRÖM J H, GUSTAFSSON J K, et al. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system[J]. Immunol Rev, 2014, 260(1): 8-20. DOI:10.1111/imr.12182
[22]
ENSS M L, GROSSE-SIESTRUP H, SCHMIDT-WITTIG U, et al. Changes in colonic mucins of germfree rats in response to the introduction of a "normal" rat microbial flora. Rat colonic mucin[J]. J Exp Anim Sci, 1992, 35(3): 110-119.
[23]
NOWACKI M R. Cell proliferation in colonic crypts of germ-free and conventional mice——preliminary report[J]. Folia Histochem Cytobiol, 1993, 31(2): 77-81.
[24]
ZASLOFF M. Antimicrobial peptides in health and disease[J]. N Engl J Med, 2002, 347(15): 1199-1200. DOI:10.1056/NEJMe020106
[25]
SPERANDIO B, FISCHER N, SANSONETTI P J. Mucosal physical and chemical innate barriers: Lessons from microbial evasion strategies[J]. Semin Immunol, 2015, 27(2): 111-118. DOI:10.1016/j.smim.2015.03.011
[26]
NAKAJIMA A, VOGELZANG A, MARUYA M, et al. IgA regulates the composition and metabolic function of gut microbiota by promoting symbiosis between bacteria[J]. J Exp Med, 2018, 215(8): 2019-2034. DOI:10.1084/jem.20180427
[27]
MACPHERSON A J, HUNZIKER L, MCCOY K, et al. IgA responses in the intestinal mucosa against pathogenic and non-pathogenic microorganisms[J]. Microbes Infect, 2001, 3(12): 1021-1035. DOI:10.1016/S1286-4579(01)01460-5
[28]
VAN DER WAAIJ L A, LIMBURG P C, MESANDER G, et al. In vivo IgA coating of anaerobic bacteria in human faeces[J]. Gut, 1996, 38(3): 348-354. DOI:10.1136/gut.38.3.348
[29]
TSURUTA T, INOUE R, TSUKAHARA T, et al. Commensal bacteria coated by secretory immunoglobulin A and immunoglobulin G in the gastrointestinal tract of pigs and calves[J]. Anim Sci J, 2012, 83(12): 799-804. DOI:10.1111/j.1740-0929.2012.01026.x
[30]
CUNNINGHAM-RUNDLES C. Physiology of IgA and IgA deficiency[J]. J Clin Immunol, 2001, 21(5): 303-309. DOI:10.1023/A:1012241117984
[31]
SHROFF K E, MESLIN K, CEBRA J J. Commensal enteric bacteria engender a self-limiting humoral mucosal immune response while permanently colonizing the gut[J]. Infect Immun, 1995, 63(10): 3904-3913. DOI:10.1128/iai.63.10.3904-3913.1995
[32]
KUHN K A, PEDRAZA I, DEMORUELLE M K. Mucosal immune responses to microbiota in the development of autoimmune disease[J]. Rheum Dis Clin North Am, 2014, 40(4): 711-725. DOI:10.1016/j.rdc.2014.07.013
[33]
RAJASEKARAN S A, BEYENBACH K W, RAJASEKARAN A K. Interactions of tight junctions with membrane channels and transporters[J]. Biochim Biophys Acta Biomembr, 2008, 1778(3): 757-769. DOI:10.1016/j.bbamem.2007.11.007
[34]
MIYAUCHI E, O'CALLAGHAN J, BUTTÓ L F, et al. Mechanism of protection of transepithelial barrier function by Lactobacillus salivarius: strain dependence and attenuation by bacteriocin production[J]. Am J Physiol Gastrointest Liver Physiol, 2012, 303(9): G1029-G1041. DOI:10.1152/ajpgi.00003.2012
[35]
SULTANA R, MCBAIN A J, O'NEILL C A. Strain-dependent augmentation of tight-junction barrier function in human primary epidermal keratinocytes by Lactobacillus and Bifidobacterium lysates[J]. Appl Environ Microbiol, 2013, 79(16): 4887-4894. DOI:10.1128/AEM.00982-13
[36]
ARAUJO G, YUNTA C, TERRÉ M, et al. Intestinal permeability and incidence of diarrhea in newborn calves[J]. J Dairy Sci, 2015, 98(10): 7309-7317. DOI:10.3168/jds.2015-9666
[37]
KURASHIMA Y, KIYONO H. Mucosal ecological network of epithelium and immune cells for gut homeostasis and tissue healing[J]. Annu Rev Immunol, 2017, 35: 119-147. DOI:10.1146/annurev-immunol-051116-052424
[38]
RESCIGNO M, URBANO M, VALZASINA B, et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria[J]. Nat Immunol, 2001, 2(4): 361-367. DOI:10.1038/86373
[39]
BELKAID Y, HAND T W. Role of the microbiota in immunity and inflammation[J]. Cell, 2014, 157(1): 121-141. DOI:10.1016/j.cell.2014.03.011
[40]
TROY E B, KASPER D L. Beneficial effects of Bacteroides fragilis polysaccharides on the immune system[J]. Front Biosci (Landmark Ed), 2010, 15(1): 25-34. DOI:10.2741/3603
[41]
KIM D, YOO S A, KIM W U. Gut microbiota in autoimmunity: potential for clinical applications[J]. Arch Pharm Res, 2016, 39(11): 1565-1576. DOI:10.1007/s12272-016-0796-7
[42]
ZHAN K, GONG X X, CHEN Y Y, et al. Short-chain fatty acids regulate the immune responses via G protein-coupled receptor 41 in bovine rumen epithelial cells[J]. Front Immunol, 2019, 10: 2042. DOI:10.3389/fimmu.2019.02042
[43]
WANG J J, WEI Z K, ZHANG X, et al. Butyrate protects against disruption of the blood-milk barrier and moderates inflammatory responses in a model of mastitis induced by lipopolysaccharide[J]. Br J Pharmacol, 2017, 174(21): 3811-3822. DOI:10.1111/bph.13976
[44]
BELKAID Y. Regulatory T cells and infection: a dangerous necessity[J]. Nat Rev Immunol, 2007, 7(11): 875-888. DOI:10.1038/nri2189
[45]
MALMUTHUGE N, LI M J, GOONEWARDENE L A, et al. Effect of calf starter feeding on gut microbial diversity and expression of genes involved in host immune responses and tight junctions in dairy calves during weaning transition[J]. J Dairy Sci, 2013, 96(5): 3189-3200. DOI:10.3168/jds.2012-6200
[46]
MALMUTHUGE N, LI M J, FRIES P, et al. Regional and age dependent changes in gene expression of Toll-like receptors and key antimicrobial defence molecules throughout the gastrointestinal tract of dairy calves[J]. Vet Immunol Immunopathol, 2012, 146(1): 18-26. DOI:10.1016/j.vetimm.2012.01.010
[47]
RAKOFF-NAHOUM S, PAGLINO J, ESLAMI-VARZANEH F, et al. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis[J]. Cell, 2004, 118(2): 229-241. DOI:10.1016/j.cell.2004.07.002
[48]
LIANG G X, MALMUTHUGE N, BAO H, et al. Transcriptome analysis reveals regional and temporal differences in mucosal immune system development in the small intestine of neonatal calves[J]. BMC Genomics, 2016, 17(1): 602. DOI:10.1186/s12864-016-2957-y
[49]
SMITS H H, ENGERING A, VAN DER KLEIJ D, et al. Selective probiotic bacteria induce IL-10-producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin[J]. J Allergy Clin Immunol, 2005, 115(6): 1260-1267. DOI:10.1016/j.jaci.2005.03.036
[50]
MALMUTHUGE N, GRIEBEL P J, GUAN L L. The gut microbiome and its potential role in the development and function of newborn calf gastrointestinal tract[J]. Front Vet Sci, 2015, 2: 36.
[51]
OKUMURA R, TAKEDA K. Roles of intestinal epithelial cells in the maintenance of gut homeostasis[J]. Exp Mol Med, 2017, 49(5): e338. DOI:10.1038/emm.2017.20
[52]
GEBREYESUS G, DIFFORD G F, BUITENHUIS B, et al. Predictive ability of host genetics and rumen microbiome for subclinical ketosis[J]. J Dairy Sci, 2020, 103(5): 4557-4569. DOI:10.3168/jds.2019-17824
[53]
KHAFIPOUR E, LI S, TUN H M, et al. Effects of grain feeding on microbiota in the digestive tract of cattle[J]. Anim Front, 2016, 6(2): 13-19. DOI:10.2527/af.2016-0018
[54]
MASLOWSKI K M, VIEIRA A T, NG A, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43[J]. Nature, 2009, 461(7268): 1282-1286. DOI:10.1038/nature08530
[55]
FERNANDO S C, PURVIS Ⅱ H T, NAJAR F Z, et al. Rumen microbial population dynamics during adaptation to a high-grain diet[J]. Appl Environ Microbiol, 2010, 76(22): 7482-7490. DOI:10.1128/AEM.00388-10
[56]
MCCANN J C, LUAN S Y, CARDOSO F C, et al. Induction of subacute ruminal acidosis affects the ruminal microbiome and epithelium[J]. Front Microbiol, 2016, 7: 701. DOI:10.3389/fmicb.2016.00701
[57]
KLEEN J L, HOOIJER G A, REHAGE J, et al. Subacute ruminal acidosis (SARA): a review[J]. J Vet Med A Physiol Pathol Clin Med, 2003, 50(8): 406-414. DOI:10.1046/j.1439-0442.2003.00569.x
[58]
MOREIRA A P B, TEXEIRA T F S, FERREIRA A B, et al. Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia[J]. Br J Nutr, 2012, 108(5): 801-809. DOI:10.1017/S0007114512001213
[59]
KRAUSE K M, OETZEL G R. Inducing subacute ruminal acidosis in lactating dairy cows[J]. J Dairy Sci, 2005, 88(10): 3633-3639. DOI:10.3168/jds.S0022-0302(05)73048-4
[60]
PLAIZIER J C, KRAUSE D O, GOZHO G N, et al. Subacute ruminal acidosis in dairy cows: the physiological causes, incidence and consequences[J]. Vet J, 2008, 176(1): 21-31. DOI:10.1016/j.tvjl.2007.12.016
[61]
WANG X X, LI X B, ZHAO C X, et al. Correlation between composition of the bacterial community and concentration of volatile fatty acids in the rumen during the transition period and ketosis in dairy cows[J]. Appl Environ Microbiol, 2012, 78(7): 2386-2392. DOI:10.1128/AEM.07545-11
[62]
REYNOLDS C K, HUNTINGTON G B, TYRRELL H F, et al. Net metabolism of volatile fatty acids, D-β-hydroxybutyrate, nonesterified fatty acids, and blood gasses by portal-drained viscera and liver of lactating Holstein cows[J]. J Dairy Sci, 1988, 71(9): 2395-2405. DOI:10.3168/jds.S0022-0302(88)79824-0
[63]
NISBET D J, MARTIN S A. Effect of a Saccharomyces cerevisiae culture on lactate utilization by the ruminal bacterium Selenomonas ruminantium[J]. J Anim Sci, 1991, 69(11): 4628-4633. DOI:10.2527/1991.69114628x
[64]
MA C, ZHAO J, XI X, et al. Bovine mastitis may be associated with the deprivation of gut Lactobacillus[J]. Benef Microbes, 2016, 7(1): 95-102. DOI:10.3920/BM2015.0048
[65]
CHOPYK D M, GRAKOUI A. Contribution of the intestinal microbiome and gut barrier to hepatic disorders[J]. Gastroenterology, 2020, 159(3): 849-863. DOI:10.1053/j.gastro.2020.04.077
[66]
WANG Y, NAN X M, ZHAO Y G, et al. Rumen microbiome structure and metabolites activity in dairy cows with clinical and subclinical mastitis[J]. J Anim Sci Biotechnol, 2021, 12(1): 36. DOI:10.1186/s40104-020-00543-1
[67]
HU X Y, LI S, MU R Y, et al. The rumen microbiota contributes to the development of mastitis in dairy cows[J]. Microbiol Spectr, 2022, 10(1): e0251221. DOI:10.1128/spectrum.02512-21
[68]
ZHANG K, CHANG G J, XU T L, et al. Lipopolysaccharide derived from the digestive tract activates inflammatory gene expression and inhibits casein synthesis in the mammary glands of lactating dairy cows[J]. Oncotarget, 2016, 7(9): 9652-9665. DOI:10.18632/oncotarget.7371
[69]
汪悦, 南雪梅, 蒋林树, 等. 奶牛胃肠道菌群与奶牛乳房炎关联性及其对乳房炎调控潜力的研究进展[J]. 畜牧兽医学报, 2021, 52(8): 2083-2092.
WANG Y, NAN X M, JIANG L S, et al. Research progress on the correlation between gastrointestinal microbiota and bovine mastitis in dairy cows and its regulatory potential for mastitis[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(8): 2083-2092. (in Chinese)
[70]
JEON S J, LIMA F S, VIEIRA-NETO A, et al. Shift of uterine microbiota associated with antibiotic treatment and cure of metritis in dairy cows[J]. Vet Microbiol, 2018, 214: 132-139. DOI:10.1016/j.vetmic.2017.12.022
[71]
HU X Y, GUO J, ZHAO C J, et al. The gut microbiota contributes to the development of Staphylococcus aureus-induced mastitis in mice[J]. ISME J, 2020, 14(7): 1897-1910. DOI:10.1038/s41396-020-0651-1
[72]
WEI Z K, XIAO C, GUO C M, et al. Sodium acetate inhibits Staphylococcus aureus internalization into bovine mammary epithelial cells by inhibiting NF-κB activation[J]. Microb Pathog, 2017, 107: 116-121. DOI:10.1016/j.micpath.2017.03.030
[73]
RATAJCZAK W, RYŁ A, MIZERSKI A, et al. Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs)[J]. Acta Biochim Pol, 2019, 66(1): 1-12.
[74]
WANG J J, WEI Z K, ZHANG X, et al. Propionate protects against lipopolysaccharide-induced mastitis in mice by restoring blood-milk barrier disruption and suppressing inflammatory response[J]. Front Immunol, 2017, 8: 1108. DOI:10.3389/fimmu.2017.01108
[75]
CORRÊA-OLIVEIRA R, FACHI J L, VIEIRA A, et al. Regulation of immune cell function by short-chain fatty acids[J]. Clin Trans Immunol, 2016, 5(4): e73. DOI:10.1038/cti.2016.17
[76]
RANJBAR R, VAHDATI S N, TAVAKOLI S, et al. Immunomodulatory roles of microbiota-derived short-chain fatty acids in bacterial infections[J]. Biomed Pharmacother, 2021, 141: 111817. DOI:10.1016/j.biopha.2021.111817
[77]
TAN J, MCKENZIE C, POTAMITIS M, et al. The role of short-chain fatty acids in health and disease[J]. Adv Immunol, 2014, 121: 91-119.
[78]
KIM C H. Control of lymphocyte functions by gut microbiota-derived short-chain fatty acids[J]. Cell Mol Immunol, 2021, 18(5): 1161-1171. DOI:10.1038/s41423-020-00625-0
[79]
GOZHO G N, KRAUSE D O, PLAIZIER J C. Ruminal lipopolysaccharide concentration and inflammatory response during grain-induced subacute ruminal acidosis in dairy cows[J]. J Dairy Sci, 2007, 90(2): 856-866. DOI:10.3168/jds.S0022-0302(07)71569-2
[80]
GUO J, MU R Y, LI S, et al. Characterization of the bacterial community of rumen in dairy cows with laminitis[J]. Genes (Basel), 2021, 12(12): 1996. DOI:10.3390/genes12121996
[81]
宋朋杰, 武小虎, 张世栋, 等. 微生态制剂防治奶牛子宫内膜炎研究进展[J]. 中国兽医学报, 2020, 40(1): 210-215, 224.
SONG P J, WU X H, ZHANG S D, et al. Research progress of microecological preparation for the prevention and treatment of endometritis in dairy cows[J]. Chinese Journal of Veterinary Science, 2020, 40(1): 210-215, 224. (in Chinese)
[82]
BILAL M S, ABAKER J A, UL AABDIN Z, et al. Lipopolysaccharide derived from the digestive tract triggers an inflammatory response in the uterus of mid-lactating dairy cows during SARA[J]. BMC Vet Res, 2016, 12(1): 284.
[83]
HAMESCH K, BORKHAM-KAMPHORST E, STRNAD P, et al. Lipopolysaccharide-induced inflammatory liver injury in mice[J]. Lab Anim, 2015, 49(1 Suppl): 37-46.
[84]
ABAKER J A, XU T L, JIN D, et al. Lipopolysaccharide derived from the digestive tract provokes oxidative stress in the liver of dairy cows fed a high-grain diet[J]. J Dairy Sci, 2017, 100(1): 666-678.
[85]
GUO J F, CHANG G J, ZHANG K, et al. Rumen-derived lipopolysaccharide provoked inflammatory injury in the liver of dairy cows fed a high-concentrate diet[J]. Oncotarget, 2017, 8(29): 46769-46780.

(编辑   白永平)