畜牧兽医学报  2023, Vol. 54 Issue (7): 2692-2700. DOI: 10.11843/j.issn.0366-6964.2023.07.003    PDF    
热应激影响奶牛胚胎发育作用机制的研究进展
张航, 杨柏高, 徐茜, 冯肖艺, 杜卫华, 郝海生, 朱化彬, 张培培, 赵学明     
中国农业科学院北京畜牧兽医研究所, 北京 100193
摘要:奶牛热应激是高温环境引起的奶牛生理上的非特异性反应,会严重影响奶牛自身生理状态,损害胚胎发育,进而造成巨大经济损失。因此,如何提高热应激条件下奶牛胚胎发育能力,对于促进奶牛养殖业健康发展意义重大。本文就热应激对奶牛内分泌、卵母细胞及胚胎的负面影响,以及物理降温、激素治疗、添加IGF1、基因编辑技术修饰HSPA1L和PRLR基因等解决措施进行综述,为促进热应激奶牛胚胎发育提供一定参考。
关键词奶牛    热应激    卵母细胞    胚胎    
Research Progress on the Mechanism of Heat Stress Affecting the Development of Dairy Cow Embryos
ZHANG Hang, YANG Baigao, XU Xi, FENG Xiaoyi, DU Weihua, HAO Haisheng, ZHU Huabin, ZHANG Peipei, ZHAO Xueming     
Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Abstract: Heat stress of dairy cows is a non-specific physiological reaction caused by high tempera-ture environment, which can seriously affect the physiological state and embryonic development of dairy cows, and then cause huge economic losses. Therefore, how to improve the development ability of dairy cow embryos under heat stress is of great significance to promote the healthy development of dairy cattle breeding industry. In this paper, the negative effects of heat stress on endocrine, oocytes and embryos of dairy cows, as well as the solution measures such as physical cooling, hormone therapy, addition of IGF1, modification of HSPA1L and PRLR genes by gene editing technology were reviewed, so as to provide some reference for improving the develop-ment ability of dairy cow embryos under heat stress.
Key words: dairy cow    heat stress    oocyte    embryo    

奶业是关系国计民生的重要基础性产业。近年来,随着经济的不断发展,我国牛奶产量及城乡居民奶类消费逐年提升[1]。据统计,2021年我国牛奶产量达3 683万吨,比上年增长7.1%[2],与此同时,2021年我国人均奶类消费达42.3 kg,较上年增长10.2%[2],由此可见,牛奶已逐渐成为国民生活中不可替代的食品之一。2018年,国务院办公厅发布《关于推进奶业振兴保障乳制品质量安全的意见》,并在文件中明确指出“奶业是健康中国、强壮民族不可或缺的产业”。2022年,为进一步提升我国奶业竞争力,保障奶类供给安全,农业农村部发布《“十四五”奶业竞争力提升行动方案》,再次表明了奶业振兴意义之重大。

然而,夏季高温高湿环境极易诱发奶牛热应激,进而对奶业发展造成严重威胁。研究表明,当温度湿度指数(temperature-humidity index,THI)≥72时,奶牛自身无法实现充分散热,便会出现热应激,奶牛的生产及繁殖性能随之受到严重影响[3]。Thornton等[4]的研究指出,如果世界一直处于高碳排放发展模式(SSP5-8.5),全球变暖将进一步加剧奶牛热应激风险,到21世纪末期(2085年),由产奶量减少带来的经济损失将高达91.4亿美元,占2005年全球牛奶生产价值的4.7%。2080年,仅美国奶业的损失便将高达22亿美元[5]。若以热带牲畜单位(tropical livestock units,TLU)计算,本世纪末期中国每TLU产奶量相较2005年将减少5.4%,而巴西将减少13.1%[4]。此外,热应激还导致奶牛繁殖力大幅下降。与冬季相比,奶牛在夏季的受孕率要低20%~30%[6]。统计资料显示,2000—2017年连续18年,以色列夏季奶牛受孕率约为27.7%,显著低于冬季的42.6%[7]。Gernand等[8]的研究还指出,当THI=80时,奶牛受孕率由约35%(THI<65)显著降低至约16%。不仅如此,随着气候变暖问题不断恶化,热应激对奶牛的危害还将进一步增加[9]。据推测,到2050年及2070年,我国THI指数还将出现大幅上涨[10],由此可见,热应激对我国奶业发展的威胁不容小觑。

本文主要就热应激对奶牛内分泌、卵母细胞和胚胎发育的作用机制以及通过物理降温、激素调节内分泌、优化卵母细胞培养体系、基因编辑等缓解奶牛热应激影响的解决措施进行阐述,以期为缓解奶牛热应激导致繁殖性能下降的产业问题提供思考。

1 热应激影响奶牛胚胎发育的机制 1.1 热应激对内分泌的影响

热应激能够直接对奶牛的内分泌系统造成影响,进而干扰奶牛排卵及妊娠等正常繁殖行为,影响奶牛繁殖性能。

当发生急性热应激时,奶牛体内应激激素(如皮质醇)水平升高,从而对下丘脑-垂体-卵巢轴(HPO轴)造成影响,使促性腺激素释放激素(gonadotropin-releasing hormone,GnRH)和促性腺激素(gonadotropins,Gn)分泌减少并抑制卵巢活动,如:促黄体生成素(luteotropic hormone,LH)的分泌受热应激影响而被抑制[11]。排卵前LH分泌出现延迟,增加了排卵失败和卵巢囊肿的风险。低水平的LH还可能影响黄体的形成,这被认为是降低胚胎存活率的重要原因之一[11]

当发生慢性热应激时,奶牛孕酮(progesterone,P4)水平出现大幅下降,严重影响奶牛繁殖机能。慢性热应激会导致奶牛卵泡发育异常,阻碍黄体形成并引起黄体功能受损,进而影响P4分泌[12]。P4由卵巢黄体分泌,主要影响胚胎的发育生长及干扰素Tau的生成,进而影响胚胎着床[13]。Nanas等[14]认为,高水平的P4是保障早期胚胎正常发育的最关键因素之一,P4水平下降将导致胚胎死亡率大大增加。此外,慢性热应激还会引起奶牛分泌皮质醇浓度减少,血液中葡萄糖水平降低,进而使机体抵御热应激的能力减弱,导致妊娠率降低[15]

1.2 热应激对卵母细胞的影响

热应激对卵母细胞的影响主要体现在奶牛排卵以及卵母细胞的发育、成熟过程中,进而损害卵母细胞发育成胚胎的能力。Stamperna等[16]的研究表明,热应激导致荷斯坦奶牛卵母细胞发育成囊胚的比例由30.3%降低至21.5%,利木赞牛由25.8%降低至14.2%。

奶牛的正常排卵依赖于精密的激素调节系统,而热应激会导致奶牛体内激素水平改变,进而损害奶牛正常排卵。由于热应激引起奶牛内分泌紊乱,引发奶牛卵泡发育异常,优势卵泡的大小及优势度降低,甚至生长出额外的大卵泡,导致热应激奶牛产下双胞胎的可能性升高,卵母细胞的发育质量也会受到卵泡异常的影响而出现下降[17]。即便到了温度相对较低的夏季末、秋季甚至初冬季节,奶牛卵泡液中雌二醇含量依旧维持在较低水平,这将导致LH分泌受到抑制,奶牛发情及排卵异常,进而引起持续性卵泡及囊肿形成,而这也表明热应激对奶牛卵巢卵泡的影响存在长时间的负面作用[11]

当卵母细胞发育过程中遭受热应激时,卵母细胞染色质凝聚出现异常,早期胚胎染色质重塑同样受到严重影响。研究表明,夏季奶牛卵母细胞染色质致密程度大大降低,其发育至胚胎的能力随之减弱。与此同时,牛卵丘细胞中DNA碎片化程度增加,凋亡比例大幅提高,进而影响卵母细胞胞质成熟,并进一步损害卵母细胞染色质凝聚[18]。Camargo等[19]指出,当卵母细胞体外成熟过程中遭受热应激时,四细胞期胚胎中H3K9me3和HP1出现异常积聚,进而影响胚胎染色质重塑,并导致胚胎基因组激活及基因表达异常,胚胎发育严重受损。

热应激还会增加卵母细胞遭受氧化应激损伤的风险。谷胱甘肽是一种高效的抗氧化剂,能有效清除活性氧(reactive oxygen species,ROS)保护细胞免受氧化损伤,而热应激引起卵母细胞内谷胱甘肽水平降低,导致卵母细胞更易遭受氧化应激影响[20]。牛卵母细胞膜脂肪酸含量丰富,膜脂肪酸的含量及组成成分对牛卵母细胞后期发育至关重要。而在夏季高温条件下,牛卵母细胞和颗粒细胞中饱和脂肪酸的比例升高,且高于单不饱和脂肪酸和多不饱和脂肪酸,这主要是由于温度升高引起牛卵母细胞ROS水平增加,加剧卵母细胞遭受氧化应激损伤[21]

此外,热应激引起牛卵母细胞微管蛋白和微丝受损。微管蛋白和微丝作为细胞骨架参与细胞核和细胞器的运输,而细胞骨架改变将引起卵母细胞成熟异常,卵母细胞的成熟时间或将因此提前,进而增加受精失败及胚胎发育异常的风险[22]。同时,线粒体的运输也要依赖细胞骨架,夏季奶牛卵母细胞细胞骨架损伤导致线粒体分布异常概率增加,这也被认为是影响卵母细胞发育的重要原因[22]

1.3 热应激对胚胎的影响

热应激能引起母体体内温度升高并导致母体生理状态改变,进而影响奶牛胚胎发育,导致奶牛受孕率降低。Cordeiro等[23]的研究指出,当THI由73.1升高至75.7时,胚胎移植奶牛受孕率由56.3%降低至33.3%。Abdel等[24]指出,当THI≥73时,性控胚胎移植奶牛受孕率由52.50%降低至35.71%。

早期胚胎对高温十分敏感。在受精当天至胚胎发育到2细胞期之间,若奶牛处于热应激环境中,则随后胚胎囊胚率便会出现明显下降[22]。Stamperna等[25]的研究表明,热应激会导致牛早期胚胎基因表达紊乱。他们的研究指出,GSTP1、BAX1、PTGS2、DNMT3、TLR4、PLAC8、AKR1B1、HSF1和HSPA1A的表达存在协同性,对胚胎的正常发育至关重要,而热应激导致这些基因表达的协调性丧失。与此同时,热应激还导致胚胎中氧化应激相关基因(如:COX1、AKR7A2、CBR1、GGHGSTA4等)表达增加,胚胎发育质量相关基因(如:AQP3、ATP1A1等)表达减少,进一步反映热应激对胚胎发育造成损伤[26]

胚胎发育至4细胞期时便开始获得热耐受能力,一直到囊胚阶段,胚胎的耐热能力会不断增强,此时热应激对胚胎发育的影响相对有限[21]。研究表明,当胚胎分裂至8~16细胞期时,胚胎基因组激活,转录活性增加,此时热应激相关蛋白及内源性抗氧化酶基因转录激活,胚胎耐热性大幅增加[25]。在此阶段,胚胎即便遭遇热应激,依旧具有继续发育的能力。不过,热应激一定程度上还是会对该阶段胚胎造成损伤,但在胚胎体外培养过程中使用抗氧化剂处理可以有效缓解这一情况[14]

除了温度升高直接影响胚胎发育外,热应激还会改变奶牛体内激素浓度,引起输卵管及子宫环境变化,进而影响胚胎发育[27]。妊娠后期时,热应激能引起奶牛母体体温升高,进而诱发胎儿宫内生长迟缓(intrauterine growth retardation,IUGR),导致胎儿早产或胎儿过小[28]。此外,由于热应激引起奶牛采食量减少,奶牛营养不足,供给胚胎的营养也会减少。奶牛机体散热增加导致流经子宫血液减少,进而引起胚胎发育所需的养分、氧气及水分相对不足,胚胎发育受阻。热应激引起的奶牛内分泌紊乱也增加了胎儿流产的可能[29]

2 改善热应激奶牛胚胎发育的措施 2.1 改进奶牛饲养管理

2.1.1 物理降温   物理降温是缓解奶牛热应激的主要策略。传统降温方式包括直接法和间接法。其中,直接法通过强制蒸发动物体表水分以达到降温目的,而间接法则通过遮荫、洒水等方式降低环境温度,从而间接帮助奶牛散热[30]。以色列夏季温度高、湿度达50%~90%,因此当地奶牛养殖常采用直接法帮助奶牛降温,即:用水喷洒奶牛30秒,通风4.5 min,每次循环进行30~45 min,每日5~7次,用此方法,奶牛体温降至39 ℃以下,受孕率从17%显著提高至57%,热应激现象得到有效缓解[31]。此外,添加遮荫设备,减少阳光直射,也是帮助奶牛降温的有效手段。有研究指出,太阳能电池板既能提供遮荫,还能生产电能,其遮荫效果也大大优于传统遮阳布,在缓解奶牛热应激的同时提高了农民收入,促进了畜牧业的可持续发展[32]。研究表明,奶牛在太阳能电池板遮荫条件下,体表温度降低6 ℃[33],而为每头奶牛提供3 m2的遮荫便能有效阻隔光照[32]。随着太阳能电池板价格的不断降低,这种新型的遮阳方式或将具有广阔的前景[32]

2.1.2 激素缓解内分泌紊乱   激素治疗是调节奶牛内分泌的重要途径,能有效缓解热应激引起的奶牛内分泌紊乱。热应激通过破坏奶牛激素水平,引发卵泡发育异常并损害卵母细胞及胚胎的发育,造成奶牛繁殖力大幅下降[30]。通过反复注射GnRH和前列腺素F2α(prostaglandin F2α,PGF2α)能够诱导卵泡生成,去除受损卵泡,进而减少热应激对卵泡功能的负面影响[34]。此外,高温会抑制黄体功能,导致P4分泌减少,进而影响胚胎着床甚至造成胚胎死亡[35],而补充P4则被认为是有效的应对策略[30]。研究表明,联用GnRH-PGF2α和P4能进一步提高热应激奶牛的繁殖力[34]

然而,无论是物理降温还是激素治疗,都只能有限地挽救热应激奶牛的繁殖力[34]。因此,开发更多抗热应激方式与这两种方法联合使用,或将进一步促进热应激条件下奶牛胚胎发育。

2.2 添加IGF1改进体外胚胎生产体系

胰岛素样生长因子1(insulin-like growth factors 1,IGF1)具有促进细胞增殖[36-37]、抗凋亡等作用[38],能有效保护细胞免受各类应激伤害。研究表明,添加IGF1可以促进体外胚胎发育并提高胚胎在发育过程中对热应激的抵抗力[39],是改善体外生产胚胎耐热性的有效手段。

2.2.1 IGF1提高卵母细胞抗热应激能力   IGF1能从多方面缓解热应激对繁殖带来的负面影响,包括促进热应激条件下卵母细胞成熟、胚胎发育及提高热应激胚胎移植后的妊娠率等。Ascari等[40]的研究显示,添加IGF1能够提高热应激卵母细胞线粒体膜电位,减少囊胚内细胞团的细胞凋亡。他们指出,高温等应激条件会刺激卵母细胞线粒体膜通透性转换孔开放,引起线粒体膜电位及线粒体活性降低,进而导致囊胚质量下降,而IGF1有效改善了这一情况。Rodrigues等[41]认为,热应激会导致卵母细胞线粒体异常,引起线粒体途径的细胞凋亡,而IGF1能通过PI3K/Akt途径改善线粒体功能,提高线粒体膜电位,进而提高热应激条件下牛卵母细胞存活率。

此外,Rodrigues等[41]的研究还表明热应激主要损伤卵母细胞细胞质,引起细胞骨架损伤,干扰细胞发育。当卵母细胞处于热应激条件下时,胞内钙离子浓度升高,促进凝溶胶蛋白活化。该蛋白活化后能结合G-肌动蛋白单体及微丝,引起微丝断裂或解体,纺锤体形态异常,进而干扰卵母细胞减数分裂。他们认为,添加IGF1能激活p70S6激酶,从而增加微丝稳定性,减小热应激对细胞骨架造成的损伤。

Lima等[42]还指出,IGF1对热应激卵母细胞发育能力的改善效果很大程度上依赖于IGF1的浓度。当IGF1添加浓度过高时,反而会抑制IGF1R蛋白的表达,对卵母细胞及胚胎的发育造成负面影响。而添加生理浓度的IGF1(12.5 ng·mL-1)能更有效地抵御热应激带来的负面影响。

2.2.2 IGF1提高胚胎抗热应激能力   添加IGF1能有效改善热应激状态下奶牛胚胎的发育情况,显著提高夏季奶牛妊娠率及产仔率[43]。Jousan和Hansen[39]的研究发现,添加IGF1能有效减少热应激胚胎凋亡并促进热应激胚胎发育至囊胚阶段。添加IGF1还会减少胚胎中HSp70 mRNA。细胞在遭受应激条件刺激时会促进HSp70表达升高以阻止细胞凋亡,而HSp70 mRNA的减少证明IGF1能有效减少细胞应激带来的负面影响[44]

IGF1能通过调控基因表达进而提高胚胎的热应激耐受力。Bonilla等[45]指出,添加IGF1会引起胚胎中涉及凋亡、抗氧化等功能的基因出现差异表达,其中包括IL6ST在内的5个抗凋亡基因上调,DPYSL4等5个促凋亡基因下调,GSTM2等两个抗氧化基因上调,而IGF1提高胚胎的抗热应激能力或许和这些基因的差异表达有关。

IGF1还通过PI3K/Akt信号通路及MAPK信号通路提高胚胎对热应激的抵抗力。Jousan等[46]的研究指出,当胚胎发生热应激时,IGF1激活PI3K/Akt信号通路发挥抗凋亡作用。Akt能够抑制Bad、caspase-9等促凋亡蛋白的表达,同时促进Bcl-2、Bcl-x等抗凋亡蛋白水平升高,进而提高热应激条件下胚胎的存活率。此外,IGF1通过激活MAPK信号通路促进胚胎细胞增殖,进而促进热应激条件下胚胎的发育。

2.2.3 IGF1联用其他药物   IGF1与其他药物联用或许能发挥更强大的抗热应激效果。热应激会从多方面损伤卵母细胞及胚胎的发育能力,包括诱导凋亡、损伤线粒体功能、促进氧化应激等[47]。而IGF1提高胚胎抗热应激能力主要依赖于PI3K/Akt和MAPK信号通路对胚胎凋亡的抑制作用及对胚胎发育的促进作用[46]。因此,在体外胚胎生产过程中,选择高效的线粒体保护药物或抗氧化剂与IGF1联用,或能进一步促进IGF1对胚胎抗热应激能力的提升效果。

辅酶Q10(coenzyme Q10,CoQ10)是线粒体呼吸链上的关键成分,具有增强线粒体功能、抗氧化等效果。Gendelman和Roth[48]的研究表明,添加CoQ10能显著提高秋季牛卵母细胞发育到囊胚的能力,并改善卵母细胞线粒体分布。CoQ10通过提高线粒体质量、抑制氧化应激进而促进卵母细胞发育的能力已在牛[49]、猪[50]、小鼠[51-52]等多个物种上得到证明。

褪黑素(melatonin,MT)是一种高效的抗氧化剂,能有效减少热应激期间ROS对卵母细胞发育造成的氧化损伤。研究表明,添加褪黑素有效减少了热应激条件下卵母细胞ROS的产生[53],促进线粒体功能相关基因转录[54],并提高热应激条件下卵母细胞发育成囊胚的能力[55]。还有研究指出,褪黑素能调节卵母细胞及胚胎发育过程中表观遗传修饰[56],并促进卵母细胞发育相关基因(GDF9、MARF1和DNMT1a等)[57]、胚胎抗凋亡基因(BCL2L1等)表达,抑制促凋亡基因(p53、Bax等)表达[58],进而提高卵母细胞及胚胎的发育能力。

因此,在奶牛体外胚胎生产过程中,添加IGF1的同时联用CoQ10、褪黑素等药物,或许能更加有效的提高胚胎对热应激的抵抗能力。

2.3 基因编辑

2.3.1 HSPA1L基因   HSPA1L是热休克蛋白70(heat shock protein 70,HSP70)的编码基因之一。研究表明,当HSPA1L启动子区发生胞嘧啶缺失突变时,细胞内HSPA1A/L转录产物及HSP70表达量升高,进而增强细胞对热应激的耐受力。因此,利用基因编辑技术对牛胚胎HSPA1L基因进行修饰或是高效解决奶牛热应激问题的有力手段。

HSP70是大多生物细胞中含量最高的一类热休克蛋白,易受高热、高氧等多种应激条件诱导表达[59],能有效提高细胞对各类应激的耐受能力[60]。HSP70的作用包括:作为分子伴侣正确折叠、组装蛋白质,促进变性蛋白降解,抑制细胞凋亡等[60],能有效帮助细胞缓解热应激造成的损伤。Stamperna等[61]的研究表明,在牛卵母细胞体外成熟过程中添加HSP70能够促进胚胎发育过程中信号转导,增强胚胎抗氧化能力,抑制胚胎凋亡发生,进而增强胚胎在发育过程中对热应激的耐受力。他们随后的研究还指出,在牛早期胚胎体外发育过程中添加HSP70能够有效缓解高温对胚胎发育的负面影响,显著提高热应激条件下的囊胚产量(15.9%→21.4%)[25]

奶牛中HSPA1L和HSPA1A均为HSP70的编码基因,二者编码序列几乎完全相同,常规检测方法无法区分二者的转录产物[62]。研究表明,当HSPA1L启动子区第895位碱基处出现胞嘧啶缺失时,荷斯坦奶牛淋巴细胞对热应激的耐受力增加,HSPA1A/L转录表达显著升高,HSP70蛋白表达水平升高[63]。Ortega等[64]指出,HSPA1L缺失突变能提高奶牛早期胚胎发育过程中对热应激的耐受力。胚胎发育早期对高温敏感,二细胞期胚胎受到热应激刺激时便通过转录HSPA1A/L抵抗热应激,而HSPA1L缺失突变能使该转录水平进一步提高[64],HSP70蛋白表达增加[63],进而帮助胚胎有效应对热应激造成的负面影响。他们的研究结果表明,在应激条件下(高氧、高温)培养牛胚胎,存活囊胚中HSPA1L缺失突变的频率更高,这意味着HSPA1L缺失突变能够增强奶牛胚胎对热应激的抵抗力,进而提高热应激条件下胚胎的存活率[64]

2.3.2 PRLR基因   奶牛毛发长度影响奶牛抗热应激的能力。在炎热环境中,被毛较短的牛能更加地高效散热,因此这类牛对热的耐受性更强[65]。研究表明,当催乳素受体基因(PRLR)上出现SLICK突变时,奶牛表现出短被毛的光滑表型,抗热应激的能力大大提高[62]

催乳素(prolactin,PRL)具有抑制毛发生长[66]及毛囊发育[67]的功能。当PRLR上出现SLICK突变时,PRL对毛发的抑制作用被放大,进而导致牛呈现短毛、光滑表型[68]。哺乳动物PRLR主要包括长型(long form)和短型(short form)[69],而SLICK突变的PRLR长度介于长型PRLR和短型PRLR之间[62]。目前已知,PRLR上的SLICK突变有3种,包括SLICK1、SLICK2和SLICK3。其中,SLICK1突变发现于Senepol牛上,SLICK2突变发现于Carora和Criollo Limonero牛,而SLICK3突变在Criollo Limonero牛中被发现[62]。这3类突变均属于移码突变,能使PRLR的转录提前终止,形成“截短型受体”[62]。有研究指出,SLICK突变导致催乳素信号传导过程中参与JAK2/STAT5激活的蛋白质的C末端区域被截断[70],其中7个酪氨酸残基中有2个发生丢失[68],这或许会影响STAT5的激活[70]。不过,依赖PI3K/MAPK等途径进行信号传递的短型PRLR则不会受到影响[68]。在此基础上,牛表现出短毛性状,体温调节能力也随之增强[68]

此外,SLICK1突变在提高牛抗热应激能力的同时未发现对牛存在负面影响。Carmickle等[71]的研究表明,携带SLICK1等位基因的荷斯坦奶牛犊牛的出生重、平均日增重及断奶重与野生型荷斯坦奶牛相似。Sosa等[68]指出,SLICK1等位基因杂合的荷斯坦奶牛直肠及瘤胃温度低于野生型。SLICK1突变还提高了荷斯坦奶牛体温调节的能力[72],并且不会对奶牛的胚胎发育造成负面影响[70]。不仅如此,由于短被毛的奶牛散热能力更强,对高温的耐受性也更高,因此短被毛奶牛在炎热环境中产奶量也高于野生型奶牛。而在寒冷季节,短被毛奶牛的产奶量则与野生型奶牛相似[73]。由此可见,短被毛性状或许能有效帮助奶牛应对高温环境,并提高奶牛产奶量[74]

3 结语

环境温度过高是引发奶牛热应激的直接原因。而热应激通过影响奶牛激素水平及干扰奶牛卵母细胞、胚胎的正常发育,进而破坏奶牛繁殖性能,造成巨大经济损失。因此,在奶牛养殖业发展中,急需寻找到高效、经济的应对热应激的方法。如:通过物理降温及激素治疗等手段,调节奶牛体温及内分泌水平;在体外胚胎生产过程中添加IGF1等药物,缓解胚胎发育过程中热应激造成的损伤;利用基因编辑技术修饰奶牛胚胎HSPA1L、PRLR等基因,改善胚胎及奶牛耐热性。联合使用多种抗热应激手段,或将从根本上有效提高热应激条件下胚胎的发育能力,具有广阔的发展前景。

参考文献
[1]
刘秀娟. 中国奶业发展策略研究[D]. 保定: 河北农业大学, 2019.
LIU X J. Research on the development strategy of China's dairy industry[D]. Baoding: Hebei Agricultural University, 2019. (in Chinese)
[2]
杨祯妮, 祝文琪, 程广燕. 2021年奶业市场形势回顾与2022年趋势研判[J]. 中国畜牧杂志, 2022, 58(5): 273-276.
YANG Z N, ZHU W Q, CHENG G Y. Review of dairy market situation in 2021 and analysis of trend in 2022[J]. Chinese Journal of Animal Science, 2022, 58(5): 273-276. DOI:10.19556/j.0258-7033.20220224-05 (in Chinese)
[3]
DASH S, CHAKRAVARTY A K, SINGH A, et al. Effect of heat stress on reproductive performances of dairy cattle and buffaloes: a review[J]. Vet World, 2016, 9(3): 235-244. DOI:10.14202/vetworld.2016.235-244
[4]
THORNTON P, NELSON G, MAYBERRY D, et al. Impacts of heat stress on global cattle production during the 21st century: a modelling study[J]. Lancet Planet Health, 2022, 6(3): e192-e201. DOI:10.1016/S2542-5196(22)00002-X
[5]
WANKAR A K, RINDHE S N, DOIJAD N S. Heat stress in dairy animals and current milk production trends, economics, and future perspectives: the global scenario[J]. Trop Anim Health Prod, 2021, 53(1): 70. DOI:10.1007/s11250-020-02541-x
[6]
亓建刚. 热应激对北京地区荷斯坦牛生产性状的影响[D]. 乌鲁木齐: 新疆农业大学, 2018.
QI J G. Effects of heat stress on the production traits of Holstein in Beijing[D]. Urumqi: Xinjiang Agricultural University, 2018. (in Chinese)
[7]
WOLFENSON D, ROTH Z. Impact of heat stress on cow reproduction and fertility[J]. Anim Front, 2019, 9(1): 32-38. DOI:10.1093/af/vfy027
[8]
GERNAND E, KÖNIG S, KIPP C. Influence of on-farm measurements for heat stress indicators on dairy cow productivity, female fertility, and health[J]. J Dairy Sci, 2019, 102(7): 6660-6671. DOI:10.3168/jds.2018-16011
[9]
BERMAN A. An overview of heat stress relief with global warming in perspective[J]. Int J Biometeorol, 2019, 63(4): 493-498. DOI:10.1007/s00484-019-01680-7
[10]
RANJITKAR S, BU D P, VAN WIJK M, et al. Will heat stress take its toll on milk production in China?[J]. Clim Change, 2020, 161(4): 637-652. DOI:10.1007/s10584-020-02688-4
[11]
ROTH Z. Reproductive physiology and endocrinology responses of cows exposed to environmental heat stress-experiences from the past and lessons for the present[J]. Theriogenology, 2020, 155: 150-156. DOI:10.1016/j.theriogenology.2020.05.040
[12]
KASIMANICKAM R, KASIMANICKAM V. Impact of heat stress on embryonic development during first 16 days of gestation in dairy cows[J]. Sci Rep, 2021, 11(1): 14839. DOI:10.1038/s41598-021-94278-2
[13]
BESENFELDER U, BREM G, HAVLICEK V. Review: environmental impact on early embryonic development in the bovine species[J]. Animal, 2020, 14(S1): s103-s112.
[14]
NANAS I, CHOUZOURIS T M, DOVOLOU E, et al. Early embryo losses, progesterone and pregnancy associated glycoproteins levels during summer heat stress in dairy cows[J]. J Therm Biol, 2021, 98: 102951. DOI:10.1016/j.jtherbio.2021.102951
[15]
张志登, 刘影, 王玲. 热应激对奶牛繁殖性能的影响研究进展[J]. 中国畜牧杂志, 2019, 55(5): 5-10.
ZHANG Z D, LIU Y, WANG L. Progress in research on effects of heat stress on reproductive performance of dairy cows[J]. Chinese Journal of Animal Science, 2019, 55(5): 5-10. DOI:10.19556/j.0258-7033.2019-05-005 (in Chinese)
[16]
STAMPERNA K, DOVOLOU E, GIANNOULIS T, et al. Developmental competence of heat stressed oocytes from Holstein and limousine cows matured in vitro[J]. Reprod Domest Anim, 2021, 56(10): 1302-1314. DOI:10.1111/rda.13993
[17]
WOLFENSON D, ROTH Z, MEIDAN R. Impaired reproduction in heat-stressed cattle: basic and applied aspects[J]. Anim Reprod Sci, 2000, 60-61: 535-547. DOI:10.1016/S0378-4320(00)00102-0
[18]
BÁEZ F, LÓPEZ DARRIULAT R, RODRÍGUEZ-OSORIO N, et al. Effect of season on germinal vesicle stage, quality, and subsequent in vitro developmental competence in bovine cumulus-oocyte complexes[J]. J Therm Biol, 2022, 103: 103171. DOI:10.1016/j.jtherbio.2021.103171
[19]
CAMARGO L S A, AGUIRRE-LAVIN T, ADENOT P, et al. Heat shock during in vitro maturation induces chromatin modifications in the bovine embryo[J]. Reproduction, 2019, 158(4): 313-322. DOI:10.1530/REP-19-0245
[20]
ROTH Z, WOLFENSON D. Comparing the effects of heat stress and mastitis on ovarian function in lactating cows: basic and applied aspects[J]. Domest Anim Endocrinol, 2016, 56(S): S218-S227.
[21]
ROTH Z. Heat stress, the follicle, and its enclosed oocyte: mechanisms and potential strategies to improve fertility in dairy cows[J]. Reprod Domest Anim, 2008, 43: 238-244. DOI:10.1111/j.1439-0531.2008.01168.x
[22]
ROTH Z. Effect of heat stress on reproduction in dairy cows: insights into the cellular and molecular responses of the oocyte[J]. Annu Rev Anim Biosci, 2017, 5: 151-170. DOI:10.1146/annurev-animal-022516-022849
[23]
CORDEIRO A L L, SATRAPA R A, GREGIANINI H A G, et al. Influence of temperature-humidity index on conception rate of Nelore embryos produced in vitro in northern Brazil[J]. Trop Anim Health Prod, 2020, 52(3): 1527-1532. DOI:10.1007/s11250-019-02141-4
[24]
ABDEL AZIZ R L, HUSSEIN M M, MOHAMED M A A, et al. Heat stress during critical windows of the oestrous cycle and risk of pregnancy establishment in embryo-recipient dairy heifers[J]. Reprod Domest Anim, 2022, 57(8): 856-863. DOI:10.1111/rda.14128
[25]
STAMPERNA K, GIANNOULIS T, DOVOLOU E, et al. The effects of heat shock protein 70 addition in the culture medium on the development and quality of in vitro produced heat shocked bovine embryos[J]. Animals, 2021, 11(12): 3347. DOI:10.3390/ani11123347
[26]
NARANJO-GÓMEZ J S, URIBE-GARCÍA H F, HERRERA-SÁNCHEZ M P, et al. Heat stress on cattle embryo: gene regulation and adaptation[J]. Heliyon, 2021, 7(3): e06570. DOI:10.1016/j.heliyon.2021.e06570
[27]
HANSEN P J. Reproductive physiology of the heat-stressed dairy cow: implications for fertility and assisted reproduction[J]. Anim Reprod, 2019, 16(3): 497-507. DOI:10.21451/1984-3143-AR2019-0053
[28]
张弛. 热应激对牛体细胞克隆胚胎早期发育的影响[D]. 杨凌: 西北农林科技大学, 2007.
ZHANG C. The effect of heat shock on development of cloned embryo[D]. Yangling: Northwest Agriculture and Forestry University, 2007. (in Chinese)
[29]
赵园, 齐晓楠, 田文儒. 热应激影响奶牛繁殖力及其应对措施[J]. 黑龙江畜牧兽医, 2015(11): 109-112.
ZHAO Y, QI X N, TIAN W R. Effect of heat stress on cow fecundity and its countermeasures[J]. Heilongjiang Animal Science and Veterinary Medicine, 2015(11): 109-112. DOI:10.13881/j.cnki.hljxmsy.2015.0968 (in Chinese)
[30]
ROTH Z. Cooling is the predominant strategy to alleviate the effects of heat stress on dairy cows[J]. Reprod Domest Anim, 2022, 57(S1): 16-22. DOI:10.1111/rda.13765
[31]
FLAMENBAUM I, GALON N. Management of heat stress to improve fertility in dairy cows in Israel[J]. J Reprod Dev, 2010, 56(S): S36-S41. DOI:10.1262/jrd.1056S36
[32]
DOS SANTOS S G C G, SARAIVA E P, GONZAGA NETO S, et al. Heat tolerance, thermal equilibrium and environmental management strategies for dairy cows living in intertropical regions[J]. Front Vet Sci, 2022, 9: 988775. DOI:10.3389/fvets.2022.988775
[33]
FARIA A F P A, MAIA A S C, MOURA G A B, et al. Use of solar panels for shade for Holstein heifers[J]. Animals (Basel), 2023, 13(3): 329.
[34]
FRIEDMAN E, VOET H, REZNIKOV D, et al. Hormonal treatment before and after artificial insemination differentially improves fertility in subpopulations of dairy cows during the summer and autumn[J]. J Dairy Sci, 2014, 97(12): 7465-7475. DOI:10.3168/jds.2014-7900
[35]
MISHRA S R. Behavioural, physiological, neuro-endocrine and molecular responses of cattle against heat stress: an updated review[J]. Trop Anim Health Prod, 2021, 53(3): 400. DOI:10.1007/s11250-021-02790-4
[36]
HANSEN P J, TRÍBULO P. Regulation of present and future development by maternal regulatory signals acting on the embryo during the morula to blastocyst transition-insights from the cow[J]. Biol Reprod, 2019, 101(3): 526-537. DOI:10.1093/biolre/ioz030
[37]
BONILLA A Q S, OZAWA M, HANSEN P J. Timing and dependence upon mitogen-activated protein kinase signaling for pro-developmental actions of insulin-like growth factor 1 on the preimplantation bovine embryo[J]. Growth Horm IGF Res, 2011, 21(2): 107-111. DOI:10.1016/j.ghir.2011.03.003
[38]
HANSEN P J. To be or not to be—determinants of embryonic survival following heat shock[J]. Theriogenology, 2007, 68(S1): S40-S48.
[39]
JOUSAN F D, HANSEN P J. Insulin-like growth factor-I as a survival factor for the bovine preimplantation embryo exposed to heat shock[J]. Biol Reprod, 2004, 71(5): 1665-1670. DOI:10.1095/biolreprod.104.032102
[40]
ASCARI I J, ALVES N G, JASMIN J, et al. Addition of insulin-like growth factor I to the maturation medium of bovine oocytes subjected to heat shock: effects on the production of reactive oxygen species, mitochondrial activity and oocyte competence[J]. Domest Anim Endocrinol, 2017, 60: 50-60. DOI:10.1016/j.domaniend.2017.03.003
[41]
RODRIGUES T A, ISPADA J, RISOLIA P H B, et al. Thermoprotective effect of insulin-like growth factor 1 on in vitro matured bovine oocyte exposed to heat shock[J]. Theriogenology, 2016, 86(8): 2028-2039. DOI:10.1016/j.theriogenology.2016.06.023
[42]
LIMA R S, RISOLIA P H B, ISPADA J, et al. Role of insulin-like growth factor 1 on cross-bred Bos indicus cattle germinal vesicle oocytes exposed to heat shock[J]. Reprod Fertil Dev, 2017, 29(7): 1405-1414. DOI:10.1071/RD15514
[43]
BLOCK J, HANSEN P J. Interaction between season and culture with insulin-like growth factor-1 on survival of in vitro produced embryos following transfer to lactating dairy cows[J]. Theriogenology, 2007, 67(9): 1518-1529. DOI:10.1016/j.theriogenology.2007.03.012
[44]
BLOCK J, WRENZYCKI C, NIEMANN H, et al. Effects of insulin-like growth factor-1 on cellular and molecular characteristics of bovine blastocysts produced in vitro[J]. Mol Reprod Dev, 2008, 75(5): 895-903. DOI:10.1002/mrd.20826
[45]
BONILLA A Q S, OLIVEIRA L J, OZAWA M, et al. Developmental changes in thermoprotective actions of insulin-like growth factor-1 on the preimplantation bovine embryo[J]. Mol Cell Endocrinol, 2011, 332(1-2): 170-179. DOI:10.1016/j.mce.2010.10.009
[46]
JOUSAN F D, OLIVEIRA L J, HANSEN P J. Short-term culture of in vitro produced bovine preimplantation embryos with insulin-like growth factor-I prevents heat shock-induced apoptosis through activation of the phosphatidylinositol 3-kinase/Akt pathway[J]. Mol Reprod Dev, 2008, 75(4): 681-688. DOI:10.1002/mrd.20830
[47]
MITKIEWSKA K, KORDOWITZKI P, PAREEK C S. Effects of heat stress on bovine oocytes and early embryonic development—an update[J]. Cells, 2022, 11(24): 4073. DOI:10.3390/cells11244073
[48]
GENDELMAN M, ROTH Z. Incorporation of coenzyme Q10 into bovine oocytes improves mitochondrial features and alleviates the effects of summer thermal stress on developmental competence[J]. Biol Reprod, 2012, 87(5): 118.
[49]
ABDULHASAN M K, LI Q, DAI J, et al. CoQ10 increases mitochondrial mass and polarization, ATP and Oct4 potency levels, and bovine oocyte MII during IVM while decreasing AMPK activity and oocyte death[J]. J Assist Reprod Genet, 2017, 34(12): 1595-1607. DOI:10.1007/s10815-017-1027-y
[50]
YANG C X, LIU S, MIAO J K, et al. CoQ10 improves meiotic maturation of pig oocytes through enhancing mitochondrial function and suppressing oxidative stress[J]. Theriogenology, 2021, 159: 77-86. DOI:10.1016/j.theriogenology.2020.10.009
[51]
LEE C H, KANG M K, SOHN D H, et al. Coenzyme Q10 ameliorates the quality of mouse oocytes during in vitro culture[J]. Zygote, 2022, 30(2): 249-257. DOI:10.1017/S0967199421000617
[52]
BEN-MEIR A, BURSTEIN E, BORREGO-ALVAREZ A, et al. Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging[J]. Aging Cell, 2015, 14(5): 887-895. DOI:10.1111/acel.12368
[53]
CAVALLARI F D C, LEAL C L V, ZVI R, et al. Effects of melatonin on production of reactive oxygen species and developmental competence of bovine oocytes exposed to heat shock and oxidative stress during in vitro maturation[J]. Zygote, 2019, 27(3): 180-186. DOI:10.1017/S0967199419000236
[54]
YAACOBI-ARTZI S, SHIMONI C, KALO D, et al. Melatonin slightly alleviates the effect of heat shock on bovine oocytes and resulting blastocysts[J]. Theriogenology, 2020, 158: 477-489. DOI:10.1016/j.theriogenology.2020.09.039
[55]
CEBRIAN-SERRANO A, SALVADOR I, RAGA E, et al. Beneficial effect of melatonin on blastocyst in vitro production from heat-stressed bovine oocytes[J]. Reprod Domest Anim, 2013, 48(5): 738-746. DOI:10.1111/rda.12154
[56]
AN Q L, PENG W, CHENG Y Y, et al. Melatonin supplementation during in vitro maturation of oocyte enhances subsequent development of bovine cloned embryos[J]. J Cell Physiol, 2019, 234(10): 17370-17381. DOI:10.1002/jcp.28357
[57]
TIAN X Z, WANG F, HE C J, et al. Beneficial effects of melatonin on bovine oocytes maturation: a mechanistic approach[J]. J Pineal Res, 2014, 57(3): 239-247. DOI:10.1111/jpi.12163
[58]
SU J M, WANG Y S, XING X P, et al. Melatonin significantly improves the developmental competence of bovine somatic cell nuclear transfer embryos[J]. J Pineal Res, 2015, 59(4): 455-468. DOI:10.1111/jpi.12275
[59]
武秀香. 中国南方黄牛系统地位、抗热特性及HSP70-1、SCD1和DGAT1基因的遗传效应研究[D]. 扬州: 扬州大学, 2011.
WU X X. Phenogenetic status and heat-resistance characters of Chinese southern cattle and genetic effects of HSP70-l, SCD1 and DGAT1 gene on the corresponding traits[D]. Yangzhou: Yangzhou University, 2011. (in Chinese)
[60]
吴珑韬. 中国荷斯坦奶牛HSP70-1基因多态性与耐热性能相关性分析[D]. 福州: 福建农林大学, 2015.
WU L T. Association of HSP70-1 polymorphisms and relationship with thermal tolerance in Chinese Hostein cows[D]. Fuzhou: Fujian Agriculture and Forestry University, 2015. (in Chinese)
[61]
STAMPERNA K, GIANNOULIS T, DOVOLOU E, et al. Heat shock protein 70 improves in vitro embryo yield and quality from heat stressed bovine oocytes[J]. Animals (Basel), 2021, 11(6): 1794.
[62]
HANSEN P J. Prospects for gene introgression or gene editing as a strategy for reduction of the impact of heat stress on production and reproduction in cattle[J]. Theriogenology, 2020, 154: 190-202. DOI:10.1016/j.theriogenology.2020.05.010
[63]
BASIRICÒ L, MORERA P, PRIMI V, et al. Cellular thermotolerance is associated with heat shock protein 70.1 genetic polymorphisms in Holstein lactating cows[J]. Cell Stress Chaperones, 2011, 16(4): 441-448. DOI:10.1007/s12192-011-0257-7
[64]
ORTEGA M S, ROCHA-FRIGONI N A S, MINGOTI G Z, et al. Modification of embryonic resistance to heat shock in cattle by melatonin and genetic variation in HSPA1L[J]. J Dairy Sci, 2016, 99(11): 9152-9164. DOI:10.3168/jds.2016-11501
[65]
SARLO DAVILA K M, HOWELL A, NUNEZ A, et al. Genome-wide association study identifies variants associated with hair length in Brangus cattle[J]. Anim Genet, 2020, 51(5): 811-814. DOI:10.1111/age.12970
[66]
CRAVEN A J, ORMANDY C J, ROBERTSON F G, et al. Prolactin signaling influences the timing mechanism of the hair follicle: analysis of hair growth cycles in prolactin receptor knockout mice[J]. Endocrinology, 2001, 142(6): 2533-2539. DOI:10.1210/endo.142.6.8179
[67]
FOITZIK K, KRAUSE K, NIXON A J, et al. Prolactin and its receptor are expressed in murine hair follicle epithelium, show hair cycle-dependent expression, and induce Catagen[J]. Am J Pathol, 2003, 162(5): 1611-1621. DOI:10.1016/S0002-9440(10)64295-2
[68]
SOSA F, SANTOS J E P, RAE D O, et al. Effects of the SLICK1 mutation in PRLR on regulation of core body temperature and global gene expression in liver in cattle[J]. Animal, 2022, 16(5): 100523. DOI:10.1016/j.animal.2022.100523
[69]
热阳古·阿布拉. 伊犁马及其杂交马催乳素与催乳素受体基因多态性的初步研究[D]. 乌鲁木齐: 新疆农业大学, 2012.
ABULA R. Preliminary research on polymorphisms in prolactin (PRL) and prolactin receptor (PRLR) gene of Yili horse and its hybrids[D]. Urumqi: Xinjiang Agricultural University, 2012. (in Chinese)
[70]
SOSA F, CARMICKLE A T, JIMÉNEZ-CABÁN E, et al. Inheritance of the SLICK1 allele of PRLR in cattle[J]. Anim Genet, 2021, 52(6): 887-890. DOI:10.1111/age.13145
[71]
CARMICKLE A T, ZAMARONI M R, PEREIRA J, et al. PSVI-19 evaluation of birth weight, weaning weight and average daily weight gain of Holstein female calves carrying the SLICK1 allele of the prolactin receptor (PRLR) gene[J]. J Anim Sci, 2021, 99(S3): 229-230.
[72]
DENICOL A C, CARMICKLE A T, PEREIRA J, et al. 253 Physiological responses to heat stress of Holstein heifers carrying the SLICK1 allele of the prolactin receptor (PRLR) gene[J]. J Anim Sci, 2021, 99(S3): 137.
[73]
LITTLEJOHN M D, HENTY K M, TIPLADY K, et al. Functionally reciprocal mutations of the prolactin signalling pathway define hairy and slick cattle[J]. Nat Commun, 2014, 5: 5861. DOI:10.1038/ncomms6861
[74]
PORTO-NETO L R, BICKHART D M, LANDAETA-HERNANDEZ A J, et al. Convergent evolution of slick coat in cattle through truncation mutations in the prolactin receptor[J]. Front Genet, 2018, 9: 57. DOI:10.3389/fgene.2018.00057

(编辑   郭云雁)