畜牧兽医学报  2023, Vol. 54 Issue (6): 2231-2240. DOI: 10.11843/j.issn.0366-6964.2023.06.003    PDF    
鹿茸逆向成骨的研究进展
邢宝瑞1,2, 刘振2, 赵海平2, 马泽芳2, 李勋胜1, 周珏1, 孙红梅1     
1. 中国农业科学院特产研究所, 长春 130022;
2. 青岛农业大学动物科技学院, 青岛 266109
摘要:鹿茸作为鹿科动物的一种骨质性器官,基于干细胞进行年周期性再生,独特的生物学特性使其逐渐成为生物学、医学等领域的理想模型。鹿茸的骨化与体内性激素水平变化密切相关:在鹿机体性激素水平低、肋骨骨质流失的生理环境下,鹿茸的生长速度高达2.7 cm·d-1,一边生长一边骨化;随后性激素水平上升,鹿茸便进入快速骨化期,3个月的时间可形成重达30 kg的骨质性组织。鹿茸能够在体骨骼骨质大规模流失且低水平性激素的内分泌条件下实现快速成骨的现象称之为鹿茸逆向成骨。本文从细胞分化、激素、成骨、破骨和细胞因子角度对鹿茸逆向成骨的研究现状和发生机制进行了综述,旨在探索鹿茸逆向成骨机制,为提高产茸量与动物福利健康提供借鉴与参考。
关键词鹿茸    逆向成骨    骨质疏松    细胞因子    激素    
Research Progress in Reverse Osteogenesis of Deer Antler
XING Baorui1,2, LIU Zhen2, ZHAO Haiping2, MA Zefang2, LI Xunsheng1, ZHOU Jue1, SUN Hongmei1     
1. Institute of Special Animal and Plant Science of Chinese Academy of Agricultural Sciences, Changchun 130022, China;
2. Qingdao Agricultural University, Qingdao 266109, China
Abstract: As an osseous organ of deer family, deer antler undergoes annual cyclic regeneration based on stem cells, and its unique biological properties have gradually made it an ideal model for biology, medicine and other fields. Antler ossification is closely related to changes in sex hormone levels in the body: Under the physiological environment of low sex hormone levels and rib bone loss in deer, antlers grow at a rate of up to 2.7 cm·d-1, and ossifying as they grow; Then sex hormone levels rise and antlers enter a period of rapid ossification, forming bony tissues weighing more than 30 kg in just three months. This phenomenon that antler can achieve rapid osteogenesis under the endocrine conditions of massive body bone loss and low levels of sex hormones, which called antler reverse osteogenesis. This paper reviewed the current research status and occurrence mechanism of antler reverse osteogenesis from the perspectives of cell differentiation, hormone, osteogenesis, osteolysis and cytokines, with the aim of investigating the mechanisms of antler reverse osteogenesis and providing a reference for improving antler production and animal welfare and health.
Key words: deer antler    reverse osteogenesis    osteoporosis    cytokines    hormone    

鹿茸是生长在鹿科动物额外脊上的一种附属性器官,每年都经历从鹿茸至鹿角的软骨内成骨过程[1]。在生茸期,鹿的机体会发生严重的生理性骨质疏松症,体骨流失近30%,鹿茸却可在该生理状态下进行着快速生茸与骨化,短短3个月最高可形成重达30 kg骨组织,待鹿角形成后,体骨骨质疏松消失,第二年夏季,鹿体骨质疏松现象再一次触发[2-3]。有学者认为,生理性骨质疏松症属于特殊的鹿茸成骨补偿,鹿机体骨质疏松的发生与鹿茸成骨具有密切的相关性,即使在生茸期饲喂高剂量的钙、磷也不能够阻断骨质疏松的发生[4]。众所周知,动物机体的骨骼始终处于成骨与破骨的平衡状态,动态平衡的打破也就面临着骨质疏松的发生,但在鹿茸成骨机制研究中,尚不明了其特殊的分子机制[5-6]。因此,探讨鹿茸的成骨机制能够为提高鹿茸产量、改善动物福利健康乃至为医学领域中骨质疏松的治疗提供新思路。

1 鹿茸逆向成骨

在每年的快速生茸期,鹿茸的发育需要从机体骨骼大量重吸收矿物质,此时,鹿机体性激素水平极低,鹿科动物骨骼骨质流失并伴随生理性骨质疏松现象,将在低性激素水平且鹿体骨骼处于骨质疏松状态下鹿茸的快速生长发育现象称为鹿茸逆向成骨。

每年夏季(北半球)为鹿茸的快速生长季节,即生茸期。快速生长中心在鹿茸的顶端[7],根据Li等[8]的鹿茸分层方法,即将鹿茸由远心端至近心端依次分为真皮层(dermis, D)、间充质层(reserve mesenchyme, RM)、前软骨层(precartilage, PC)、过渡区(transition zone, TZ)、软骨层(cartilage, C)和骨组织。由图 1(该图为本团队试验制作)改良番红O-固绿与阿尔新蓝-核固红染色可见,鹿茸在快速生长的过程中伴随着从骨腔隙周围开始的快速骨化现象,Faucheux等[9]也证实了在过渡区骨腔隙间破骨细胞(osteoclast,OC)的存在。鹿茸快速生长的同时,鹿茸中大量血管[10]、神经[11]也在发育。根据相关数据统计,鹿茸从开始生长至生长完全仅需2个月[12],对比人类发育至成年后(18岁)骨骼才完成生长,其成骨速度约是人类的108倍[13]

RM. 间充质层;PC. 前软骨层;TZ. 过渡区;C. 软骨层。改良番红O-固绿染色:软骨基质深红色; 骨组织、胶原纤维、肌肉、细胞浆灰绿色,软骨细胞浆红色,细胞核为蓝色/灰黑色。阿尔新蓝-核固红染色:细胞核红色,软骨基质蓝色。*. 骨腔隙。比例尺=200 μm。 RM. Reserve mesenchyme; PC. Precartilage; TZ. Transitional zone; C. Cartilage. Modified saffron O-solid green staining: cartilage matrix was dark red; Bone tissue, collagen fibers, muscle, cytoplasm were gray green, chondrocyte plasma was red, nuclei was blue/gray black. Alcian blue-solid red staining: Nucleus were red, cartilage matrix were blue. *.Bone cavity. Scale bar=200 μm 图 1 鹿茸软骨、骨染色 Fig. 1 Cartilage and bone staining of deer antler

研究表明,生茸期的鹿体骨骼会发生不同程度的骨质流失,肋骨具有皮质变薄,重吸收窦增多,骨质多孔、骨小梁不完全骨化的特点,这些现象待鹿茸骨化后消失,雌性驯鹿同公鹿一样,存在鹿体骨质流失与逆转现象[14-16],目前关于鹿机体的骨质流失机制鲜见报道,由于鹿茸成骨过程中需要大量的钙、磷原料用于骨生成,探索骨质疏松的触发机制,有助于鹿茸逆向成骨的机制研究。在鹿茸成骨的相关研究中,雄激素的缺失会延缓鹿茸完全骨化过程[17],梅花鹿外周血甲状旁腺素(parathyroid hormone, PTH)水平在生茸期显著升高[18],在钙、磷代谢研究中[2],钙、磷的均衡摄入可提高产茸量,但生茸所需的更多矿物质仍来源于机体骨骼。除上述研究外,在其它物种干细胞成骨研究中,骨保护素(osteoprotegerin, OPG)、胰岛素样生长因子-1(insulin-like growth factor 1,IGF-1)、白细胞介素1(interleukin-1, IL-1)、转化生长因子β(transforming growth factor, TGF-β)等均在成骨过程中发挥促成骨作用[19]。综上,本文结合当前鹿茸成骨机制与细胞因子的研究现状进行综述,旨在为鹿茸成骨相关研究提供新见解。

2 成骨细胞与破骨细胞分化

成骨细胞(osteoblast,OB)与OC的成熟标志着鹿茸成骨的开始。OB最初起源于骨髓间充质干细胞,通过细胞增殖分化发挥骨生成作用,在骨的生成过程中,OB与OC相互作用、相辅相成,OB通过分泌M-CSFRANKLWnt5A和OPGWnt16来促进或抑制OC的分化和发育;OC通过分泌S1PSEMA4D、CTHRC1和C3促进OB的分化[20]。有研究发现,鹿茸间充质干细胞(reserve mesenchyme cells, RMCs)具备成骨分化的特点,经体外诱导可生成钙结节,可被茜素红着色[21-22]。OB作为一种内分泌细胞,能够产生骨钙素、碱性磷酸酶和Ⅰ型胶原等细胞外蛋白,一直以来也被认为是成骨分化的标志。

鹿茸生长是基于鹿茸顶端RMCs的增殖、分化作用[7],RMCs来源于角柄骨膜干细胞(pedicle periosteum cells, PPCs),两者干性相似,以软骨内成骨的方式成骨[22]。孙红梅等[21]体外诱导试验表明,采用PPCs进行成骨(微粒体)诱导,先经软骨诱导可分化为软骨细胞,紧接着更换成骨诱导液可再次分化为OB,因此,RMCs具备软骨细胞向OB的转分化能力[23]。由此推测,鹿茸中的大量OB可能是通过该渠道分化形成。伴随着RMCs不断向软骨细胞、OB的分化,近心段的细胞优先分化为OB发挥骨生成作用,在外周血激素及旁分泌因子的刺激下率先骨化,这可能是鹿茸生茸期不同区段骨化程度不均的原因之一。

OC起源于骨髓中的原单核细胞和幼单核细胞,属单核/巨噬细胞系[24],可经诱导分化而来,不能传代培养,行使完骨吸收功能后在OB的作用下逐步凋亡[25]。成熟的OC直径可达100 μm,位于哈佛斯系统内骨膜的内表面[26-27],胞质嗜酸性、多核。通过分泌H+、Cl-、组织蛋白酶K、基质金属蛋白酶来降解骨骼,在骨吸收过程中分解胶原和其它基质蛋白[28-30]。OC成熟过程分为髓样分化、髓样细胞前体向OC前体分化、OC前体向前OC分化、融合成熟,随后发挥骨吸收作用。分化过程中OC前体分别表达M-CSFRANKLRANKc-Fms[31]

OC在软骨内成骨过程中主要通过降解胶原与软骨基质进而为骨质转换提供空间[31]、分泌促OB分化因子来促进成骨[20]。在鹿茸研究中,Faucheux等[9]将马鹿源性鹿茸软骨细胞离体培养为OC,RT-PCR结果显示,有标志物M-CSFRANKL的表达,抗酒石酸酸性磷酸酶染色阳性,证实了OC的形成;在后续研究中,鹿茸中的OC形成受PTHrP正向调控,可通过激活PTH1R/PTHrP通路来促进OC形成,在培养基中联合添加甲状旁腺素相关蛋白(Parathyroid hormone-related protein,PTHrP)与RANKL可显著增加OC的生成数量[32],除上述研究外,尚未在鹿茸研究中发现有关OC的报道,有待进一步佐证。由于OC在软骨内成骨过程中发挥着不可或缺的作用,探索鹿茸中OC的分化与调控机制能进一步推动鹿茸成骨机制的研究。

综上,鹿花盘脱落后,来源于PPCs的RMCs开始向软骨细胞分化形成软骨组织,此时在软骨细胞的旁分泌作用下促进血管生成来供给营养,软骨细胞分化为OC与OB,OC通过降解胶原与软骨基质为骨转换提供空间,OB发挥骨生成作用。因鹿茸不同区段的细胞分化程度不同,故出现鹿茸骨化程度不均的现象。由于鹿茸基部最早成骨,在骨密度不断提高的过程中导致静脉回流逐步受阻,直至完全被阻隔,最后在得不到血液供应下,茸皮脱落,成为死组织。

图 2 鹿茸成骨细胞和破骨细胞的分化调控机制 Fig. 2 Differentiation and regulatory mechanisms of osteoblasts and osteoclasts in deer antler
3 鹿茸逆向成骨的激素调节 3.1 甲状旁腺素和甲状旁腺素相关肽

PTH是甲状旁腺的主要分泌产物,在低钙条件下,可增强肾内钙的重吸收,增加活性维生素D的产生,以增加肠内钙吸收和动员骨钙的作用[33]。在PTH介导的成骨过程中,其活性形式PTH(1-34)发挥着主要功能,也是骨质疏松药物“特立帕肽”的主要成分[34]PTHrP由细胞旁分泌作用产生,因其N-末端与PTH高度同源,两者可共享Ⅰ型PTH/PTHrP受体来促进骨生成[35]。有研究对白尾鹿成骨相关血清指标检测发现,Ca2+水平在每年5~7月份上升,7~9月份下降,ALP自4月份开始至7月份达峰值,PTH水平存在两次上升现象,分别出现在3~5月份和8~10月份,据此推测,生茸开始时PTH的增加可能是动员骨钙为骨沉积提供原料的重要原因,与鹿茸的骨化密切相关,6月份时Ca2+增加可能通过PTH的负反馈机制来降低PTH水平防止过度骨吸收[36]PTHrP及其受体广泛表达于鹿茸组织[37-38],对鹿茸软骨细胞增殖具有促进作用,PTHrP可通过JNK信号通路下调MMP9、p38 MAPKPKC信号通路下调MMP13的表达来抑制鹿茸软骨细胞向成骨细胞分化,参与软骨细胞的成熟和软骨基质的降解过程[39-40]。在对鹿茸OC研究中,外源性PTHrP可促进鹿茸软骨细胞向OC分化[9],添加抑制剂OPG,可显著降低OC的生成数量[32]。由此可见,PTHrP在鹿茸成骨与破骨过程中具有双重调节作用。然而,生茸期外周血PTH水平的升高除增加机体重吸收和动员骨钙外,尚未在鹿茸研究中发现有关PTH参与鹿茸干细胞和软骨细胞的分化过程,PTHrP介导的破骨机制还有待进一步被阐明。

3.2 雄激素与雌激素

睾酮(testosterone, T)和雌二醇(estradiol, E2)是性激素的两种主要成分。研究表明,雄激素与雌激素在骨代谢过程中发挥着重要作用,T可经芳香化酶代谢生成E2[41]。在对人类和啮齿类动物的研究中发现,两者均可通过减少OC的生成数量来抑制松质骨与皮质骨内表面的骨吸收,而且在维持骨骼健康方面E2作用大于T[42]。通过放射免疫分析法对梅花鹿外周血T与E2进行测定[43],两者在花盘脱落前均存在峰值,而生茸期都保持较低水平,骨化期两者均达全年最高水平,这与Weerasekera等[44]测定内源性(粪便)T水平趋势相一致。对去势白尾鹿,使用抑制剂醋酸环丙孕酮处理,可以明显延长鹿茸生长期,出现茸皮不脱落、骨小梁不完全骨化的现象;后续在狍子[45]、赤鹿[46]和黇鹿[47-48]等研究中均验证了雄激素的缺失可以延长鹿茸生长期(不完全骨化)并影响鹿茸的形态发生。雄性激素在鹿茸发生和再生过程中起着截然相反的作用,刘振[49]研究表明,低水平的雄性激素激活了鹿茸的再生过程,高水平的雄性激素激活了鹿茸的发生过程(角柄和初角茸的形成)。在体外细胞试验中,T对RMCs的增殖无显著影响,但可通过上调标志基因Col Ⅱ、AGCCOMP的表达来促进RMCs向软骨细胞分化,还可通过IHH信号通路抑制IHHGli1的表达,解除对Smo的抑制,进而促进Gli3的表达来增加Runx2转录促进软骨细胞分化[50]

雌激素的缺失是导致女性绝经后骨质疏松的原因所在,雌激素在骨代谢过程中通过ERK通路调控OB的转录活性,抑制OB凋亡[51];可通过上调骨形态发生蛋白的mRNA表达来促进OB的增殖与分化[52];还可激活Fas/FasL通路诱导OC凋亡[53]。驯鹿卵巢缺失后,E2治疗组与正常生长组可实现同步骨化(驯鹿雌雄均生茸),这表明E2在雌性驯鹿鹿茸骨化过程中起着促成骨作用,与雄激素介导的公鹿鹿茸成骨作用相似。但截至目前在公鹿中尚未发现雌激素介导鹿茸骨化过程的证据。综上,可以推测这两种激素均可参与鹿茸的成骨过程,但在生茸期雄性鹿体内E2水平升高,有研究表明[54],雄激素与雌激素存在着芳香化作用,两者可相互转化,这种雄激素与雌激素在动物体内的芳香化机制有待被阐明,对鹿茸逆向成骨的机制研究与骨质疏松治疗具有重要意义。

4 鹿茸成骨相关的细胞因子 4.1 OPG 

OPG又名OC抑制因子,属肿瘤坏死因子受体家族成员,在OC成熟的OPG/RANKL/RANK信号通路中起着关键调控作用,能够明显抑制OC的形成,OPG的作用机制是与RANKL竞争结合OC前体细胞膜上的RANK,从而阻断RANKL/RANK通路来抑制OC分化成熟,影响机体骨质的动态平衡[55-61]OPG来源广泛,可由OB、髓质胸腺上皮细胞、微折细胞、各类脏器等分泌[62]。靶向缺失OPG,小鼠会出现严重的早发性骨质疏松症[63]。过表达OPG,转基因小鼠则会得骨化病[64]。综上,OPG在动物骨形成中对OC的成熟起着重要的调节作用但在鹿茸研究中尚未检索到OPG相关报道,OPG作为OC分化的关键因子之一,有可能在鹿茸成骨中发挥着关键作用,具体调控机制还有待被阐明。

4.2 IGF-1

IGF-1作为一种碱性多肽,是鹿茸的主要活性成分之一,高表达于鹿茸组织,在对梅花鹿外周血水平与鹿茸生长相关性研究中,IGF-1的浓度变化与鹿茸生长和体重正相关[65]。同人类IGF-1序列比对,鹿科动物的蛋白序列与人类的比对效率高于小鼠,过表达IGF-1,鹿茸软骨细胞可通过上调标志基因CompCdk4、PcnaFgfr3的mRNA表达来促进鹿茸软骨细胞增殖,上调Col10a1, Omd, Smpd3和Pth1r表达来促进分化、还可通过下调MMP13、MMP3、MMP9、ADAMTS5的表达从而降低细胞外基质降解来促进成骨[66-69]。在鹿茸软骨细胞中,IGF-1可上调下游胰岛素样受体底物1/2,通过增加转录因子Runx1的转录来促进细胞分化[66]

4.3 IL-1

IL-1主要由巨噬细胞分泌,存在IL-1α和IL-1β两种亚型,具有调节OB、OC分化的能力。研究发现,IL-1β作用于OB,具有抑制碱性磷酸酶活性和下调OPG表达来抑制成骨的作用,还能够促进OB分泌IL-6、TNF-αM-CSFRANKL等OC分化因子,进一步加速OC前体的融合、分化来增强骨吸收能力[19, 70-73]IL-1也可直接作用于OC前体来促进其增殖与分化,提高OC活性进而增强骨吸收[74-75]Wnt经典信号通路是OB分化过程中的一条重要通路,在成纤维滑膜细胞中IL-1β可通过抑制Dickkopf相关蛋白1来促进Wnt信号的激活[76],还可上调软骨细胞中BMP2的表达[77]。Yang等[78]使用IL-1α对MC3T3-E1细胞系进行干预,IL-1α通过激活JNKp38 MAPK通路诱导OB凋亡,抑制OB分化。综上,IL-1对成骨具有抑制作用,在多方面可促进OC的分化来提高骨吸收能力,但在鹿茸软骨内成骨过程中,尚未有关IL-1对OB与OC成骨相关的报道。

4.4 TGF-β

TGF-β家族有TGF-β1、TGF-β2、TGF-β3三种亚型,通过调节细胞增殖、分化和迁移,在胚胎发生和成体组织稳态中发挥作用,TGF-β1通过激活SmadTAK1信号通路,在PTH刺激下,通过其受体Ⅰ将信号传递给TGF-β2,最终均通过上调Runx2的表达来促进成骨[79]TGF-β的三种亚型均有表达于鹿茸组织,其中以TGF-β3表达量最高,主要表达于软骨小梁内正在成熟和已经成熟的软骨细胞[80]。Liu等[81]发现, TGF-β1在鹿茸软骨组织相对其它层更高表达,敲除鹿茸软骨细胞TGF-β1减缓了细胞增殖,促进了细胞迁移,但上调了BMP4的mRNA表达,由此推测,当TGF-β1受阻时,可能激活了BMP信号通路介导的成骨补偿。最新研究表明,长链非编码RNA可以通过负向调控TGF-β/Smad通路抑制细胞的增殖与分化[82],重组人TGF-β蛋白的添加,可上调成骨标志物Runx2、COL-XALP的表达[83]。综上,TGF-β1在鹿茸软骨细胞中发挥着促进细胞增殖、分化和抑制细胞迁移的作用,可通过Smad信号通路来促进软骨细胞向成骨方向分化。

5 前景展望

本文探讨了鹿茸逆向成骨相关研究的最新进展。迄今为止,鹿机体骨质流失的机理研究较少,但还存在许多待解决的问题。例如:RMCs分化为软骨细胞后,OB与OC的形成机制。在鹿茸软骨内成骨过程中,OC成熟降解软骨基质为成骨提供空间是成骨的开始,因此这两种细胞显得格外重要,由于在鹿茸中OB、OC的作用机制不清楚,激素调节研究更多的局限在动物试验中。另外,T与E2的芳香化机制均有待被阐明。在鹿茸成骨机制研究中,对细胞因子的研究更多的是在促成骨方面,其抑制破骨和促进破骨作用还有待更进一步的研究。在未来,伴随着宏基因组、单细胞测序等技术研究的深入,或将打开这其中的奥妙,为提高产茸量、药物开发甚至为骨质疏松的治疗提供理论依据。

参考文献
[1]
FELEKE M, BENNETT S, CHEN J Z, et al. New physiological insights into the phenomena of deer antler: a unique model for skeletal tissue regeneration[J]. J Orthop Translat, 2021, 27: 57-66. DOI:10.1016/j.jot.2020.10.012
[2]
孙伟丽, 赵海平, 钟伟, 等. 鹿科动物生理周期性骨质疏松特点及研究进展[J]. 动物营养学报, 2019, 31(12): 5407-5411.
SUN W L, ZHAO H P, ZHONG W, et al. Characteristics of physiologic periodicity osteoporosis and research progresses in cervidae[J]. Chinese Journal of Animal Nutrition, 2019, 31(12): 5407-5411. DOI:10.3969/j.issn.1006-267x.2019.12.003 (in Chinese)
[3]
吴炎, 牛永梅, 司博, 等. 鹿茸细胞生长因子的研究进展[J]. 黑龙江畜牧兽医, 2015(19): 61-63.
WU Y, NIU Y M, SI B, et al. The research progress of the cell growth factors in antler velvet[J]. Heilongjiang Animal Science and Veterinary Medicine, 2015(19): 61-63. DOI:10.13881/j.cnki.hljxmsy.2015.1754 (in Chinese)
[4]
孙伟丽. 梅花鹿钙磷代谢规律及鹿茸功效的物质基础研究[D]. 北京: 中国农业科学院, 2019.
SUN W L. Calcium and phosphorus metabolism of Sika deer and effective ingredients of velvet antler[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese)
[5]
CHEN X, WANG Z Q, DUAN N, et al. Osteoblast-osteoclast interactions[J]. Connect Tissue Res, 2018, 59(2): 99-107. DOI:10.1080/03008207.2017.1290085
[6]
杨兴. RANK/TRAF-6/NF-κB1通路在氟砷联合染毒成骨与破骨细胞共培养体系中对破骨细胞分化的调控作用[D]. 贵阳: 贵州医科大学, 2019.
YANG X. Effect of combined expose of fluorine and arsenic on osteoclast differentiation and the RANK/TRAF-6/NF-κB1 pathway in a co-culture system[D]. Guiyang: Guizhou Medical University, 2019. (in Chinese)
[7]
LI C Y. Histogenetic aspects of deer antler development[J]. Front Biosci, 2013, E5(2): 479-489. DOI:10.2741/E629
[8]
LI C Y, CLARK D E, LORD E A, et al. Sampling technique to discriminate the different tissue layers of growing antler tips for gene discovery[J]. Anat Rec, 2002, 268(2): 125-130. DOI:10.1002/ar.10120
[9]
FAUCHEUX C, NESBITT S A, HORTON M A, et al. Cells in regenerating deer antler cartilage provide a microenvironment that supports osteoclast differentiation[J]. J Exp Biol, 2001, 204(Pt 3): 443-455.
[10]
CLARK D E, LI C Y, WANG W Y, et al. Vascular localization and proliferation in the growing tip of the deer antler[J]. Anat Rec A Discov Mol Cell Evol Biol, 2006, 288(9): 973-981.
[11]
李勋胜, 赵海平, 李春义, 等. 鹿茸神经再生的研究进展[J]. 生命科学, 2021, 33(8): 955-961.
LI X S, ZHAO H P, LI C Y, et al. Research progress of deer antler nerve regeneration[J]. Chinese Bulletin of Life Sciences, 2021, 33(8): 955-961. DOI:10.13376/j.cbls/2021104 (in Chinese)
[12]
ZHAO H P, CHU W H, LIU Z, et al. Deer antler: A unique model for studying mammalian organ morphogenesis[J]. Anim Prod Sci, 2016, 56(6): 946-952. DOI:10.1071/AN14902
[13]
ENSRUD K E, CRANDALL C J. Osteoporosis[J]. Ann Int Med, 2017, 167(3): ITC17-ITC32. DOI:10.7326/AITC201708010
[14]
BAKSI S N, NEWBREY J W. Bone metabolism during antler growth in female reindeer[J]. Calcif Tissue Int, 1989, 45(5): 314-317. DOI:10.1007/BF02556025
[15]
KIERDORF U, SCHULTZ M, KIERDORF H. The consequences of living longer-Effects of an experimentally extended velvet antler phase on the histomorphology of antler bone in fallow deer (Dama dama)[J]. J Anat, 2021, 239(5): 1104-1113. DOI:10.1111/joa.13495
[16]
STÉGER V, MOLNÁR A, BORSY A, et al. Antler development and coupled osteoporosis in the skeleton of red deer Cervus elaphus: Expression dynamics for regulatory and effector genes[J]. Mol Genet Genomics, 2010, 284(4): 273-287. DOI:10.1007/s00438-010-0565-0
[17]
JACZEWSKI Z, GIZEJEWSKI Z, BARTECKI R. The effect of cyproterone acetate on the antler cycle in red deer (Cervus elaphus L.)[J]. Reprod Biol, 2004, 4(2): 165-176.
[18]
KIERDORF U, STOCK S R, GOMEZ S, et al. Distribution, structure, and mineralization of calcified cartilage remnants in hard antlers[J]. Bone Rep, 2022, 16: 101571. DOI:10.1016/j.bonr.2022.101571
[19]
张萌萌, 张秀珍, 邓伟民, 等. 骨代谢生化指标临床应用专家共识(2020)[J]. 中国骨质疏松杂志, 2020, 26(6): 781-796.
ZHANG M M, ZHANG X Z, DENG W M, et al. Expert consensus on clinical application of biochemical indicators of bone metabolism (2020)[J]. Chinese Journal of Osteoporosis, 2020, 26(6): 781-796. DOI:10.3969/j.issn.1006-7108.2020.06.001 (in Chinese)
[20]
KIM J M, LIN C J, STAVRE Z, et al. Osteoblast-osteoclast communication and bone homeostasis[J]. Cells, 2020, 9(9): 2073. DOI:10.3390/cells9092073
[21]
孙红梅, 杨福合, 邢秀梅, 等. 鹿茸干细胞成骨诱导(微粒体)培养体系的建立[C]//2010中国鹿业进展. 包头: 中国畜牧业协会, 2010: 4.
SUN H M, YANG F H, XING X M, et al. Establishment of micromass culture system for antler stem cell induction toward osteoblast differentiation in vitros[C]//China Deer Industry Development 2010. Baotou: China Animal Agriculture Association, 2010: 4. (in Chinese)
[22]
WANG D T, BERG D, BA H X, et al. Deer antler stem cells are a novel type of cells that sustain full regeneration of a mammalian organ—deer antler[J]. Cell Death Dis, 2019, 10(6): 443. DOI:10.1038/s41419-019-1686-y
[23]
TSCHAFFON M E A, REBER S O, SCHOPPA A, et al. A novel in vitro assay to study chondrocyte-to-osteoblast transdifferentiation[J]. Endocrine, 2022, 75(1): 266-275. DOI:10.1007/s12020-021-02853-4
[24]
FULLER K, LAWRENCE K M, ROSS J L, et al. Cathepsin K inhibitors prevent matrix-derived growth factor degradation by human osteoclasts[J]. Bone, 2008, 42(1): 200-211. DOI:10.1016/j.bone.2007.09.044
[25]
NARDUCCI P, NICOLIN V. Differentiation of activated monocytes into osteoclast-like cells on a hydroxyapatite substrate: An in vitro study[J]. Ann Anat, 2009, 191(4): 349-355. DOI:10.1016/j.aanat.2009.02.009
[26]
ASAGIRI M, TAKAYANAGI H. The molecular understanding of osteoclast differentiation[J]. Bone, 2007, 40(2): 251-264. DOI:10.1016/j.bone.2006.09.023
[27]
KUROTAKI D, YOSHIDA H, TAMURA T. Epigenetic and transcriptional regulation of osteoclast differentiation[J]. Bone, 2020, 138: 115471. DOI:10.1016/j.bone.2020.115471
[28]
YAO Z Q, GETTING S J, LOCKE I C. Regulation of TNF-induced osteoclast differentiation[J]. Cells, 2021, 11(1): 132. DOI:10.3390/cells11010132
[29]
ZHU L X, TANG Y, LI X Y, et al. Osteoclast-mediated bone resorption is controlled by a compensatory network of secreted and membrane-tethered metalloproteinases[J]. Sci Transl Med, 2020, 12(529): eaaw6143. DOI:10.1126/scitranslmed.aaw6143
[30]
CHARLES J F, ALIPRANTIS A O. Osteoclasts: more than 'bone eaters'[J]. Trends Mol Med, 2014, 20(8): 449-459. DOI:10.1016/j.molmed.2014.06.001
[31]
ONO T, NAKASHIMA T. Recent advances in osteoclast biology[J]. Histochem Cell Biol, 2018, 149(4): 325-341. DOI:10.1007/s00418-018-1636-2
[32]
FAUCHEUX C, HORTON M A, PRICE J S. Nuclear localization of type Ⅰ parathyroid hormone/parathyroid hormone-related protein receptors in deer antler osteoclasts: evidence for parathyroid hormone-related protein and receptor activator of NF-κB-dependent effects on osteoclast formation in regenerating mammalian bone[J]. J Bone Miner Res, 2002, 17(3): 455-464. DOI:10.1359/jbmr.2002.17.3.455
[33]
GOLTZMAN D. Physiology of parathyroid hormone[J]. Endocrinol Metab Clin North Am, 2018, 47(4): 743-758. DOI:10.1016/j.ecl.2018.07.003
[34]
WU H J, XUE Y, ZHANG Y, et al. PTH1-34 promotes osteoblast formation through Beclin1-dependent autophagic activation[J]. J Bone Miner Metab, 2021, 39(4): 572-582. DOI:10.1007/s00774-021-01212-7
[35]
DEMARET T, WINTJENS R, SANA G, et al. Case report: inactivating PTH/PTHrP signaling disorder type 1 presenting with PTH resistance[J]. Front Endocrinol, 2022, 13: 928284. DOI:10.3389/fendo.2022.928284
[36]
TAO D Y, ZHAO J X, DENG G Z, et al. Relationship between velvet antler ossification and PTH and androgen serum levels in Tarim Red deer (Cervus elaphus)[J]. J Exp Zool A Ecol Genet Physiol, 2015, 323(10): 696-703. DOI:10.1002/jez.1962
[37]
BARLING P M, LIU H, MATICH J, et al. Expression of PTHrP and the PTH/PTHrP receptor in growing red deer antler[J]. Cell Biol Int, 2004, 28(10): 661-673. DOI:10.1016/j.cellbi.2004.05.005
[38]
FAUCHEUX C, NICHOLLS B M, ALLEN S, et al. Recapitulation of the parathyroid hormone-related peptide-Indian hedgehog pathway in the regenerating deer antler[J]. Dev Dyn, 2004, 231(1): 88-97. DOI:10.1002/dvdy.20117
[39]
GUO B, WANG S T, DUAN C C, et al. Effects of PTHrP on chondrocytes of sika deer antler[J]. Cell Tissue Res, 2013, 354(2): 451-460. DOI:10.1007/s00441-013-1670-2
[40]
WANG S T, GAO Y J, DUAN C C, et al. Effects of PTHrP on expression of MMP9 and MMP13 in sika deer antler chondrocytes[J]. Cell Biol Int, 2013, 37(12): 1300-1307. DOI:10.1002/cbin.10168
[41]
DE OLIVEIRA D H A, FIGHERA T M, BIANCHET L C, et al. Androgens and bone[J]. Minerva Endocrinol, 2012, 37(4): 305-314.
[42]
ALMEIDA M, LAURENT M R, DUBOIS V, et al. Estrogens and androgens in skeletal physiology and pathophysiology[J]. Physiol Rev, 2017, 97(1): 135-187. DOI:10.1152/physrev.00033.2015
[43]
BARTOS L, SCHAMS D, BUBENIK G A. Testosterone, but not IGF-1, LH, prolactin or cortisol, may serve as antler-stimulating hormone in red deer stags (Cervus elaphus)[J]. Bone, 2009, 44(4): 691-698. DOI:10.1016/j.bone.2008.12.004
[44]
WEERASEKERA D S, PERERA S J, NANAYAKKARA D K K, et al. The antler cycle and fecal testosterone of male sambar deer Rusa unicolor unicolor at the Horton plains national park in Sri Lanka[J]. BioMed Res Int, 2020, 2020: 6903407.
[45]
SEMPÉRÉ A J, LACROIX A. Temporal and seasonal relationships between LH, testosterone and antlers in fawn and adult male roe deer (Capreolus capreolus L.): a longitudinal study from birth to four years of age[J]. Acta Endocrinol (Copenh), 1982, 99(2): 295-301.
[46]
SUTTIE J M, FENNESSY P F, LAPWOOD K R, et al. Role of steroids in antler growth of red deer stags[J]. J Exp Zool, 1995, 271(2): 120-130. DOI:10.1002/jez.1402710207
[47]
KIERDORF U, KIERDORF H, KNUTH S. Effects of castration on antler growth in fallow deer (Dama dama L.)[J]. J Exp Zool, 1995, 273(1): 33-43. DOI:10.1002/jez.1402730105
[48]
KOLLE R, KIERDORF U, FISCHER K. Effects of an antiandrogen treatment on morphological characters and physiological functions of male fallow deer (Dama dama L.)[J]. J Exp Zool, 1993, 267(3): 288-298. DOI:10.1002/jez.1402670307
[49]
刘振. 雄性激素调控鹿茸发育干细胞组织的蛋白组学研究[D]. 北京: 中国农业科学院, 2019.
LIU Z. Proteomics study of the antler stem cell tissue that was activated by circulating androgen hormones for antler development[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese)
[50]
耿爽. 睾酮对梅花鹿鹿茸间充质细胞及软骨细胞增殖与分化的影响[D]. 长春: 吉林大学, 2017.
GENG S. The effects of testosterone on proliferation and differentiation of sika deer antler mesenchymal cells and chondrocytes[D]. Changchun: Jilin University, 2017. (in Chinese)
[51]
孙晓琪. 雌二醇通过G蛋白偶联雌激素受体30 (GPR30)/ERK1/2信号通路调节MC3T3-E1细胞线粒体自噬的分子机制研究[D]. 沈阳: 中国医科大学, 2018.
SUN X Q. Effects and molecular mechanisms of 17β-estradiol on mitophagy in MC3T3-E1 cells via g protein-coupled estrogen receptor 30 (GPR30) and the ERK1/2 signaling pathway[D]. Shenyang: China Medical University, 2018. (in Chinese)
[52]
张萌萌. 雌激素与雌激素受体骨代谢调节作用[J]. 中国骨质疏松杂志, 2019, 25(5): 704-708.
ZHANG M M. Estrogen and estrogen receptors on bone metabolism regulation[J]. Chinese Journal of Osteoporosis, 2019, 25(5): 704-708. DOI:10.3969/j.issn.1006-7108.2019.05.025 (in Chinese)
[53]
沈国蔚, 成心锟, 颜世昌, 等. CFTR在雌激素诱导破骨细胞凋亡中的作用机制研究[J]. 中国骨与关节损伤杂志, 2018, 33(11): 1150-1152.
SHEN G W, CHENG X K, YAN S C, et al. Role and mechanism of CFTR in estrogen-induced apoptosis of osteoclasts[J]. Chinese Journal of Bone and Joint Injury, 2018, 33(11): 1150-1152. DOI:10.7531/j.issn.1672-9935.2018.11.010 (in Chinese)
[54]
YOSHIMOTO F K, GUENGERICH F P. Mechanism of the third oxidative step in the conversion of androgens to estrogens by cytochrome P450 19A1 steroid aromatase[J]. J Am Chem Soc, 2014, 136(42): 15016-15025. DOI:10.1021/ja508185d
[55]
ZENG X Z, HE L G, WANG S, et al. Aconine inhibits RANKL-induced osteoclast differentiation in RAW264.7 cells by suppressing NF-κB and NFATc1 activation and DC-STAMP expression[J]. Acta Pharmacol Sin, 2016, 37(2): 255-263. DOI:10.1038/aps.2015.85
[56]
CHEN J Y, HENDRIKS M, CHATZIS A, et al. Bone vasculature and bone marrow vascular niches in health and disease[J]. J Bone Miner Res, 2020, 35(11): 2103-2120. DOI:10.1002/jbmr.4171
[57]
WU L L, LUO Z H, LIU Y T, et al. Aspirin inhibits RANKL-induced osteoclast differentiation in dendritic cells by suppressing NF-κB and NFATc1 activation[J]. Stem Cell Res Ther, 2019, 10(1): 375. DOI:10.1186/s13287-019-1500-x
[58]
KIM K, KIM J H, KIM I, et al. TRIM38 regulates NF-κB activation through TAB2 degradation in osteoclast and osteoblast differentiation[J]. Bone, 2018, 113: 17-28. DOI:10.1016/j.bone.2018.05.009
[59]
MURUGANANDAN S, IONESCU A M, SINAL C J. At the crossroads of the adipocyte and osteoclast differentiation programs: future therapeutic perspectives[J]. Int J Mol Sci, 2020, 21(7): 2277. DOI:10.3390/ijms21072277
[60]
REN X Y, ZHOU Q, FOULAD D, et al. Osteoprotegerin reduces osteoclast resorption activity without affecting osteogenesis on nanoparticulate mineralized collagen scaffolds[J]. Sci Adv, 2019, 5(6): eaaw4991. DOI:10.1126/sciadv.aaw4991
[61]
TAKAYANAGI H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems[J]. Nat Rev Immunol, 2007, 7(4): 292-304. DOI:10.1038/nri2062
[62]
GREENHILL C. Osteoprotegerin sources examined[J]. Nat Rev Endocrinol, 2020, 16(12): 678.
[63]
WEI B, WANG C, YAN C, et al. Osteoprotegerin/bone morphogenetic protein 2 combining with collagen sponges on tendon-bone healing in rabbits[J]. J Bone Miner Metab, 2020, 38(4): 432-441. DOI:10.1007/s00774-019-01078-w
[64]
CAWLEY K M, BUSTAMANTE-GOMEZ N C, GUHA A G, et al. Local production of osteoprotegerin by osteoblasts suppresses bone resorption[J]. Cell Rep, 2020, 32(10): 108052. DOI:10.1016/j.celrep.2020.108052
[65]
PARK J, JEON B, KANG S, et al. Study on the changes in enzyme and insulin-like growth factor-1 concentrations in blood serum and growth characteristics of velvet antler during the antler growth period in sika deer (Cervus nippon)[J]. Asian-Australas J Anim Sci, 2015, 28(9): 1303-1308. DOI:10.5713/ajas.14.0535
[66]
YANG Z Q, ZHANG H L, DUAN C C, et al. IGF1 regulates RUNX1 expression via IRS1/2:Implications for antler chondrocyte differentiation[J]. Cell Cycle (Georgetown, Tex.), 2017, 16(6): 522-532. DOI:10.1080/15384101.2016.1274471
[67]
ZHONG J H, ZHANG J C, ZHOU Z W, et al. Novel insights into the effect of deer IGF-1 on chondrocyte viability and IL-1β-induced inflammation response[J/OL]. J Biochem Mol Toxicol, 2022: e23227[2022-12-29]. https://pubmed.ncbi.nlm.nih.gov/36177510/. doi: 10.1002/jbt.23227.
[68]
杨占清. IGF-1在梅花鹿茸角再生过程中的作用及其调控机理[D]. 长春: 吉林大学, 2017.
YANG Z Q. Effects and regulatory mechanisms of IGF-1 on the regeneration of sika deer antlers[D]. Changchun: Jilin University, 2017. (in Chinese)
[69]
丁军莉. IGF1对梅花鹿鹿茸间充质细胞增殖分化的调控[D]. 长春: 吉林大学, 2019.
DING J L. Regulation of IGF-1 on proliferation and differentiation of sika deer antler Mesenchymal cells[D]. Changchun: Jilin University, 2019. (in Chinese)
[70]
LANGE J, SAPOZHNIKOVA A, LU C Y, et al. Action of IL-1β during fracture healing[J]. J Orthop Res, 2010, 28(6): 778-784. DOI:10.1002/jor.21061
[71]
DING J, GHALI O, LENCEL P, et al. TNF-α and IL-1β inhibit RUNX2 and collagen expression but increase alkaline phosphatase activity and mineralization in human mesenchymal stem cells[J]. Life Sci, 2009, 84(15-16): 499-504. DOI:10.1016/j.lfs.2009.01.013
[72]
AMARASEKARA D S, YUN H, KIM S, et al. Regulation of osteoclast differentiation by cytokine networks[J]. Immune Netw, 2018, 18(1): e8. DOI:10.4110/in.2018.18.e8
[73]
GUO C, YANG X G, WANG F, et al. IL-1α induces apoptosis and inhibits the osteoblast differentiation of MC3T3-E1 cells through the JNK and p38 MAPK pathways[J]. Int J Mol Med, 2016, 38(1): 319-327. DOI:10.3892/ijmm.2016.2606
[74]
WANG Q, DELCORDE J, TANG T, et al. Regulation of IL-1 signaling through control of focal adhesion assembly[J]. FASEB J, 2018, 32(6): 3119-3132. DOI:10.1096/fj.201700966R
[75]
ROLPH D, DAS H. Transcriptional regulation of osteoclastogenesis: the emerging role of KLF2[J]. Front Immunol, 2020, 11: 937. DOI:10.3389/fimmu.2020.00937
[76]
YOSHIDA Y, YAMASAKI S, OI K, et al. IL-1β Enhances Wnt Signal by Inhibiting DKK1[J]. Inflammation, 2018, 41(5): 1945-1954. DOI:10.1007/s10753-018-0838-z
[77]
FUKUI N, ZHU Y, MALONEY W J, et al. Stimulation of BMP-2 expression by pro-inflammatory cytokines IL-1 and TNF-α in normal and osteoarthritic chondrocytes[J]. J Bone Joint Surg Am, 2003, 85-A(Suppl 3): 59-66.
[78]
YANG C H, CAI W J, WEN H, et al. Pilose antler peptide protects osteoblasts from inflammatory and oxidative injury through EGF/EGFR signaling[J]. Int J Biol Macromol, 2017, 99: 15-20. DOI:10.1016/j.ijbiomac.2017.02.056
[79]
CHEN G Q, DENG C X, LI Y P. TGF-β and BMP signaling in osteoblast differentiation and bone formation[J]. Int J Biol Sci, 2012, 8(2): 272-288. DOI:10.7150/ijbs.2929
[80]
韩玉帅. TGF-β家族及其受体在梅花鹿茸角中的表达与调节[D]. 长春: 吉林大学, 2011.
HAN Y S. Expression and regulation of TGF-β family and their receptors in sika deer antler[D]. Changchun: Jilin University, 2011. (in Chinese)
[81]
LIU M X, HAN X Y, LIU H Y, et al. The effects of CRISPR-Cas9 knockout of the TGF-β1 gene on antler cartilage cells in vitro[J]. Cell Mol Biol Lett, 2019, 24: 44. DOI:10.1186/s11658-019-0171-z
[82]
CHEN D Y, LI Y J, JIANG R F, et al. Effects and mechanism of lncRNA-27785.1 that regulates TGF-β1 of sika deer on antler cell proliferation[J]. J Cell Physiol, 2021, 236(8): 5742-5756. DOI:10.1002/jcp.30258
[83]
MA L, YANG Z Q, DING J L, et al. Function and regulation of transforming growth factor β1 signalling in antler chondrocyte proliferation and differentiation[J]. Cell Prolif, 2019, 52(4): e12637. DOI:10.1111/cpr.12637

(编辑   范子娟)