畜牧兽医学报  2023, Vol. 54 Issue (6): 2215-2222. DOI: 10.11843/j.issn.0366-6964.2023.06.001    PDF    
circRNA作为ceRNA调控畜禽重要经济性状的研究进展
安宗麒, 占思远, 李利, 张红平     
四川农业大学 畜禽遗传资源发掘与创新利用四川省重点实验室,成都 611130
摘要:竞争性内源RNA(competing endogenous RNA,ceRNA)机制指具有同种miRNA反应元件(microRNA response elements,MRE)的RNA分子,通过竞争性地结合该miRNA以在转录后水平调控基因的表达,进而影响细胞的生物学功能。ceRNA机制的有效性受细胞环境、miRNA活性及其与不同RNA分子间亲和力等因素的影响。虽然环状RNA(circular RNA,circRNA)和长链非编码RNA(long non-coding RNA,lncRNA)等均可作为ceRNA,但circRNA是相对更为有效的ceRNA分子,因为其在进化过程中稳定且保守,可使ceRNA信号在不同组织中传导。本文在探讨ceRNA调控机制影响因素的基础上,进一步综述了circRNA作为ceRNA调控畜禽肌肉发育、脂肪沉积、乳腺及卵泡发育等方面的研究进展,以期为深入研究畜禽重要经济性状中ceRNA调控网络提供新思路。
关键词竞争性内源RNA    影响因素    环状RNA    经济性状    调控机制    
ceRNA-mediated Function of CircRNA on Critical Economic Traits in Animals
AN Zongqi, ZHAN Siyuan, LI Li, ZHANG Hongping     
Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
Abstract: Competing endogenous RNAs (ceRNA) refers to RNAs harboring the same microRNA response elements (MRE), competitively binding the miRNA to regulate gene expression post-transcriptionally. Eventually, the biological functions of cells are altered. The efficiency of ceRNA is affected by the cellular environment, miRNA activity, intermolecular affinity with RNAs, etc. Both circular RNA (circRNA) and long non-coding RNA (lncRNA) can act as ceRNA; circRNA is more effective based on its higher stability and conservation, enabling its transition into different tissues. This paper discussed the factors affecting the ceRNA mechanism, then reviewed the research progress of ceRNA-mediated regulation of circRNAs in muscle growth, fat deposition, mammary gland and follicular development in animals. In the hope of providing new insight for the in-depth study of the ceRNA regulatory network in the development of critical economic traits for animals.
Key words: competing endogenous RNAs    influence factor    circRNA    economic trait    regulatory mechanism    

近年来,竞争性内源RNA(competing endogenous RNAs,ceRNA)机制成为研究热点,即不同RNA分子间通过竞争小RNA(microRNA,miRNA)以阻断其对靶基因的抑制,因此,这些ceRNA也称为miRNA分子海绵(miRNA sponge)。2011年,Cesana等[1]发现长非编码RNA可作为ceRNA调控基因表达;同年, ceRNA作用机理假说也试图解释RNA分子间如何通过miRNA反应元件(microRNA response elements,MRE)进行“交流”[2]。近年来, 不同物种(包括病毒、植物、小鼠和人类)的相关研究表明,ceRNA可能代表了一个普遍的基因调控层面,其不仅可由非编码RNA介导,还能赋予mRNA编码蛋白质以外的功能[3]。研究表明,ceRNA信号受细胞环境、MRE数量、miRNA活性、ceRNA与miRNA间亲和力等众多因素影响。miRNA活性取决于自身表达丰度、亚细胞定位及miRNA相对靶点丰度(relative target site abundance,TA),miRNA偶联的RNA间丰度还会相互影响[4]。因此,ceRNA信号的变化会在其调控网络中级联放大,影响上千个基因的表达[5]。并且,ceRNA调控网络并不只是信号的串联,而是包含分子本身的浓度控制、作用元件的调节、细胞环境影响的庞大调控系统。然而,ceRNA信号间的串扰、分子间定量关系、作用效率等问题在很大程度上仍不明晰。虽然环状RNA(circular RNA,circRNA)和长链非编码RNA(long non-coding RNA,lncRNA)等均可作为ceRNA,但circRNA是相对更为有效的ceRNA分子,因为其在进化过程中稳定且保守,可使ceRNA信号在不同组织中传导。本文就ceRNA调控机制的影响因素以及circRNA通过ceRNA途径调控畜禽重要经济性状的研究进展进行综述。

1 ceRNA调控机制影响因素

ceRNA信号是以miRNA为核心的基因沉默现象,且是一种普遍的、在进化上保守的细胞调控途径[6]。ceRNA所包含的MRE数量、miRNA和ceRNA丰度、miRNA-RNA间分子亲和力等影响ceRNA活性的因素对维持生理稳态至关重要(图 1)。

a.共享MRE的ceRNA可协同抑制靶基因丰度;b.ceRNA结合miRNA至其浓度降至阈值后释放,以充分抑制关键靶基因的表达;c.7 nt和8 nt的种子序列丰度低但具高亲和力,6 nt种子序列丰度高但低亲和力 a. ceRNAs sharing MREs can collaboratively suppress target gene abundance; b. ceRNAs bind miRNAs until their concentration drops to a threshold and then release them to fully suppress expression of target genes; c. 7 nt and 8 nt seed-matched sequences have low abundance but high affinity, 6 nt seed-matched sequences have high abundance but low affinity 图 1 ceRNA机制的影响因素 Fig. 1 The factors affecting the ceRNA mechanism
1.1 ceRNA中MRE数量

MRE是位于靶mRNA与miRNA特异性结合的序列,通常导致靶点降解从而抑制靶基因的表达,转录本中包含的多个MRE可同时抑制多个靶基因的表达[7],因此RNA分子间存在共享MRE的现象。事实上,大多数ceRNA包含1~10个MRE[8],circRNA CDR1as(cerebellar degeneration-related 1 antisense)上有近70个miR-7结合位点[9]。由于共享的MRE将不同的ceRNA信号串联,因此MRE被共享的次数越多其串扰调控效应越强;而非共享MRE对ceRNA信号间的互作影响可忽略不计[10]。有研究表明,在IFN-α1基因家族间形成了一个ceRNA网络,IFN-α家族的反义IFN-α7/-α8/-α10/-α14/-α17亚型与4个mRNA亚型(IFN-α8/-α10/-α14/-α17)共享MRE位点参与拮抗miRNA-1270,竞争性地调节IFN-α1的mRNA水平[11]。由于体细胞碱基对突变、单核苷酸多态性(single nucleotide polymorphism,SNP)、染色体易位、转录融合、选择性剪接等情况会影响MRE的结合效率[3],因此, 有研究报道可借助生物信息学手段对MRE突变的影响进行预测[12]

1.2 miRNA和ceRNA丰度

miRNA活性受其自身丰度和MRE在转录组内的相对数量(即TA)的影响[13]。Figliuzzi等[14]认为, ceRNA调控网络中只有处于易感状态的ceRNA才能对miRNA干扰作出反应,并显著地减弱ceRNA信号间的互作强度。在包含CDR1as的正常细胞中引入已被验证的靶标miR-7时,CDR1as水平在细胞外泌体中显著下调,而在细胞中略有上调,表明circRNA作为ceRNA在一定程度上受miRNA水平变化的调节[15]。ceRNA对miRNA的抑制受阈值的限制[2]。当miRNA不断与ceRNA结合至其浓度降至阈值,ceRNA释放使miRNA表达迅速升高,使ceRNA信号被短暂抑制,以充分抑制关键靶基因的表达[16]。定量研究证实,在每个肝细胞中添加1.5×105个MRE位点时开始观察到抑制现象,此阈值超过了任何内源性靶点的生理水平,因此单个ceRNA的表达变化很难影响miRNA分子或其他靶点的表达[17]。但ceRNA和miRNA等摩尔质量时,ceRNA信号的活性可达到最佳状态[10, 14]。因此,miRNA丰度可能对ceRNA信号传导效率起主导调控作用,且几乎不受ceRNA丰度的影响;而ceRNA可通过间接调控miRNA丰度诱导ceRNA信号传导。

1.3 miRNA与RNA分子间亲和力

ceRNA的亲和力越高竞争miRNA的能力越强[18],即使在ceRNA浓度较低时,高亲和力ceRNA仍可以其高活性与miRNA有效结合,再逐渐扩散到亲和力较低的位点[19]。同样地,具有高亲和力的miRNA靶点越少,抑制效果也越显著,而此时对其余靶点的影响几乎可以忽略不计[8]。亲和力主要取决于miRNA靶基因上MRE和miRNA种子区间的匹配度,在哺乳动物细胞中,大多数miRNA与其靶RNA是不完全互补的,受SNP、选择性剪接等因素的影响[20],因此MRE核苷酸组成的不同,对靶RNA的抑制程度也并不相同,例如6 nt的种子序列具有低亲和力但高丰度,而7 nt和8 nt的种子序列具有高亲和力但低表达丰度[21]。MRE的简并性也导致与miRNA结合后ceRNA不会立即被降解,因此比完全互补的序列能更有效地发挥分子海绵作用[22]

2 circRNA作为ceRNA调控畜禽重要经济性状

近年来,对circRNA的深入研究丰富了人们对ceRNA信号的认知。大多数circRNA由编码蛋白质的外显子生成,并通过下游剪接供体反向共价连接上游剪接体环化形成[23],这种结构使其在进化过程中稳定且保守,因此,circRNA可能成为比其他非编码RNA更为有效的ceRNA分子[24]。近年,circRNA在肌肉发育、脂肪沉积等重要经济性状形成的分子机制研究中大量被发现(图 2)。

图 2 调控畜禽经济形状的ceRNA网络图 Fig. 2 A map of the ceRNA network for regulating economic traits of animals
2.1 circRNA作为ceRNA调控畜禽肌肉生长发育

肌肉生长发育过程受蛋白编码基因和非编码RNA的精细调控,circRNA在肌肉组织中大量富集使其迅速成为肌肉生长调控网络的研究热点[25]。畜禽肌肉组织转录组测序生物信息学结果显示,差异表达的circRNA主要富集在糖酵解/糖异生、氨基酸生物合成、丙酮酸代谢等与细胞增殖、生存和分化等生物学过程,亲本基因显著汇集到JNK、AMPK、AKT、FoxO、mTOR、IGF1R等与生长发育显著相关的信号通路中[26-28]

以牛的成肌细胞为例,circACTA1通过竞争性结合miR-199a-5p和miR-433激活丝裂原活化蛋白激酶11(MAP3K11)、丝裂原活化蛋白激酶7(MAP2K7)以及JNK信号通路,抑制成肌细胞的增殖、促进分化和凋亡过程[29];circCPE通过结合miR-138抑制FOXC1的表达,circUBE2Q2和circFUT10共同吸附miR-33a,抑制牛成肌细胞的增殖,促进成肌细胞的凋亡[30-32]。不同的是,circTTN-miR-432-IGF2和circHUWE1-miR-29b-AKT3信号可通过介导AKT通路激活,促进成肌细胞的增殖和分化[33-34]。circINSR的调控路径是多样的,不仅可以通过circINSR-miR-34a-Bcl-2/CyclinE2信号抑制成肌细胞的增殖和凋亡,还可通过circINSR-miR-15/16-CCND1/Bcl-2/FOXO1/EPT1信号促进成肌细胞和前脂肪细胞的形成和增殖[35-36]。在家鸡上也陆续证实了一批通过ceRNA机制参与成肌调控的circRNA。如circCCDC91通过调控miR-15家族的多个成员,与circSVIL-miR-203-c-JUN/MEF2C/STAT1、circHIPK3-miR-30a-3p-MEF2C途径共同促进成肌细胞的增殖和分化[37-39];circRILPL1-miR-145-IGF1R、circPTPN4-miR-499-3p-NAMPT信号,可以激活下游MAPK和AKT信号通路促进成肌细胞的发育[40-41]。circMGA-miR-144-5p-FAP信号可抑制成肌细胞增殖,促进肌管的形成[42]。家鸡骨骼肌卫星细胞中差异表达的circTAF8侧翼内含子序列中包含8个与肌肉发育和胴体肌肉重量相关的SNPs[43],但这些SNPs是否对circTAF8成环或与MRE的结合有关还有待进一步深入研究。山羊的成肌细胞中包括CDR1as-miR-27a-3p-ANGPT1、circUSP13-miR-29c-IGF信号通路[44-45],分别抑制和促进成肌细胞的分化过程。Cao等[46]给仔猪体内注射circMYLK4,发现其显著提高了慢肌标记基因的mRNA和蛋白水平,促进氧化型肌纤维(慢肌)形成。以上研究表明,circRNA介导的ceRNA调控网络对成肌细胞的生长发育具有重要调控作用。

2.2 circRNA作为ceRNA调控畜禽脂肪细胞的发育

家畜脂肪组织转录组测序结果显示, circRNA参与了大量与脂肪发育相关的ceRNA调控网络[47-48]。如在猪和牛的脂肪细胞中脂肪沉积相关基因PPAR家族成员PPAR-α、PPAR-γ和产生的环状转录本circPPARα、circPPARγ分别通过circPPARα-miR-429、circPPARγ-miR-200b/miR-92a-3p-YY1信号途径促进脂肪细胞分化,抑制细胞增殖和凋亡[49-50];circFUT10通过结合与繁殖性状密切相关的miRNA-let-7c抑制脂肪沉积相关基因PPARGC1的表达,促进脂肪细胞的增殖[51]。Zhang等[52]对牛不同时期脂肪细胞(前脂肪细胞、分化前脂肪细胞和成熟脂肪细胞)的转录组测序发现, circRNA大量表达于白色脂肪中,且近10%线性转录本也同时能够生成circRNA;进一步分析差异表达的circRNA中有80%与亲本基因表达水平相关性极高,在畜禽中验证了circRNA可能对亲本基因表达具有潜在的调控作用。鸭的脂肪细胞中也鉴定到circPLXNA1-miR-214-CTNNB1信号[53]。综上,circRNA可作为ceRNA参与调控脂肪细胞发育过程。

2.3 circRNA作为ceRNA调控动物乳腺上皮细胞发育和乳合成

不同乳产品中差异表达的RNA(differentially expressed RNAs,DERs)文库构建促进了对泌乳性状具有重要调控作用circRNA的筛选[54],小尾寒羊泌乳高峰期和非泌乳期乳腺组织样本中鉴定到差异表达circRNA,其中上调的有40个,下调的有1个,并从中预测到与乳腺发育相关的多个miRNA结合位点[55]。夏季和冬季奶牛的血样及乳样中发现19个上调和19个下调的circRNA[56]。研究报道circ006258-miR-574-5p-EVI5L信号可促进山羊乳腺上皮细胞生长和乳合成[57]。circEZH2-miR378b-LPL/CD36信号可促进牛乳腺上皮细胞的增殖,抑制其凋亡[58]

2.4 circRNA作为ceRNA调控家畜卵泡和胚胎发育

miRNA被广泛报道参与卵泡发育和闭锁调控[59],circRNA作为miRNA海绵在动物繁殖过程中也发挥着重要作用。利用RNA测序技术分析不同繁殖力山羊群体卵泡期和黄体期卵泡中circRNA的表达情况,发现56个miRNA可以靶向192个DERs,包括miR-133家族(miR-133a-3p和miR-133b)、miR-129-3p和miR-21等对山羊的繁殖性状有重要影响的miRNA[60]。在山羊子宫内膜基质细胞中,circ9110-miR-100-5p-HOXA1信号可激活PI3K/AKT/mTOR和ERK1/2通路,促进子宫内膜基质细胞的增殖,有利于胚胎着床[61];而子宫内膜上皮细胞中可通过circ8073-miR-34/miR-34-CEP55信号激活RAS/RAF/MEK/ERK/PI3K/AKT/mTOR通路抑制子宫内膜上皮细胞凋亡[62]。猪的卵巢颗粒细胞中可通过circANKHD1-miR-27a-3p/miR-142-5p-SFRP1和circINHA-miR-10a-5p-CTGF通路促进颗粒细胞的增殖[63-64],而circ013267-miR-113-THBS1信号通路可促进鸭颗粒细胞的凋亡[65]。在健康猪卵泡中高表达的circSLC41A1,不仅可以通过circSLC41A1/miR-9820-5p/SRSF1途径促进卵泡颗粒细胞凋亡,通过生物信息学手段预测其还具有编码小肽的潜能[66]。另外体内试验证明,在猪卵丘细胞和卵母细胞中circARMC4以发育阶段特异性大量动态表达,通过体内注射其干扰siRNA导致仔猪染色体排列严重受损,并显著抑制早期胚胎发育[67]

3 总结与展望

对于非编码RNA调控网络ceRNA机制已作为一种较为成熟的信号传递途径,circRNA作为新的分子海绵,其高度保守性和稳定性更有利于ceRNA信号在不同组织中传导。circRNA中含有的多个MRE也可以实现ceRNA通路间的串扰,通过级联放大效应影响成百上千个ceRNA转录本的翻译。综上,circRNA在畜禽肌肉发育、脂肪沉积等重要经济性状形成的分子机制研究中大量被发现,但ceRNA通路间信号串扰的定量关系在很大程度上是未知的。因此,利用分子生物学算法以及新一代测序技术定量确定ceRNA的影响因素如何调控信号的传导或许是有待深入的研究方向。

参考文献
[1]
CESANA M, CACCHIARELLI D, LEGNINI I, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA[J]. Cell, 2011, 147(2): 358-369. DOI:10.1016/j.cell.2011.09.028
[2]
SALMENA L, POLISENO L, TAY Y, et al. A ceRNA hypothesis: The Rosetta stone of a hidden RNA language?[J]. Cell, 2011, 146(3): 353-358. DOI:10.1016/j.cell.2011.07.014
[3]
KARRETH F A, TAY Y, PERNA D, et al. In vivo identification of tumor-suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma[J]. Cell, 2011, 147(2): 382-395. DOI:10.1016/j.cell.2011.09.032
[4]
CHIU H S, MARTÍNEZ M R, BANSAL M, et al. High-throughput validation of ceRNA regulatory networks[J]. BMC Genomics, 2017, 18(1): 418. DOI:10.1186/s12864-017-3790-7
[5]
TAY Y, RINN J, PANDOLFI P P. The multilayered complexity of ceRNA crosstalk and competition[J]. Nature, 2014, 505(7483): 344-352. DOI:10.1038/nature12986
[6]
LI J J, LIU Y, XIN X F, et al. Evidence for positive selection on a number of microRNA regulatory interactions during recent human evolution[J]. PLoS Genet, 2012, 8(3): e1002578. DOI:10.1371/journal.pgen.1002578
[7]
THOMAS M, LIEBERMAN J, LAL A. Desperately seeking microRNA targets[J]. Nat Struct Mol Biol, 2010, 17(10): 1169-1174. DOI:10.1038/nsmb.1921
[8]
SEITZ H. Redefining microRNA targets[J]. Curr Biol, 2009, 19(10): 870-873. DOI:10.1016/j.cub.2009.03.059
[9]
MEMCZAK S, JENS M, ELEFSINIOTI A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency[J]. Nature, 2013, 495(7441): 333-338. DOI:10.1038/nature11928
[10]
ALA U, KARRETH F A, BOSIA C, et al. Integrated transcriptional and competitive endogenous RNA networks are cross-regulated in permissive molecular environments[J]. Proc Natl Acad Sci U S A, 2013, 110(18): 7154-7159. DOI:10.1073/pnas.1222509110
[11]
KIMURA T, JIANG S W, YOSHIDA N, et al. Interferon-alpha competing endogenous RNA network antagonizes microRNA-1270[J]. Cell Mol Life Sci, 2015, 72(14): 2749-2761. DOI:10.1007/s00018-015-1875-5
[12]
STAMOULAKATOU E, PINOLI P, CERI S, et al. Impact of mutational signatures on microRNA and their response elements[C]//Proceedings of the Pacific Symposium on Biocomputing 2020. Fairmont Orchid: World Scientific Publishing, 2020: 250-261.
[13]
GARCIA D M, BAEK D, SHIN C, et al. Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs[J]. Nat Struct Mol Biol, 2011, 18(10): 1139-1146. DOI:10.1038/nsmb.2115
[14]
FIGLIUZZI M, MARINARI E, DE MARTINO A. MicroRNAs as a selective channel of communication between competing RNAs: a steady-state theory[J]. Biophys J, 2013, 104(5): 1203-1213. DOI:10.1016/j.bpj.2013.01.012
[15]
LI Y, ZHENG Q P, BAO C Y, et al. Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis[J]. Cell Res, 2015, 25(8): 981-984. DOI:10.1038/cr.2015.82
[16]
EBERT M S, SHARP P A. Emerging roles for natural microRNA sponges[J]. Curr Biol, 2010, 20(19): R858-R861. DOI:10.1016/j.cub.2010.08.052
[17]
DENZLER R, AGARWAL V, STEFANO J, et al. Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance[J]. Mol cell, 2014, 54(5): 766-776. DOI:10.1016/j.molcel.2014.03.045
[18]
BOSSON A D, ZAMUDIO J R, SHARP P A. Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition[J]. Mol Cell, 2014, 56(3): 347-359. DOI:10.1016/j.molcel.2014.09.018
[19]
QI X L, ZHANG D H, WU N, et al. CeRNA in cancer: Possible functions and clinical implications[J]. J Med Genet, 2015, 52(10): 710-718. DOI:10.1136/jmedgenet-2015-103334
[20]
TAN C, LIU S, TAN S K, et al. Polymorphisms in microRNA target sites of forkhead box O genes are associated with hepatocellular carcinoma[J]. PLoS One, 2015, 10(3): e0119210. DOI:10.1371/journal.pone.0119210
[21]
GRIMSON A, FARH K K H, JOHNSTON W K, et al. MicroRNA targeting specificity in mammals: Determinants beyond seed pairing[J]. Mol Cell, 2007, 27(1): 91-105. DOI:10.1016/j.molcel.2007.06.017
[22]
EBERT M S, SHARP P A. MicroRNA sponges: progress and possibilities[J]. RNA, 2010, 16(11): 2043-2050. DOI:10.1261/rna.2414110
[23]
RYBAK-WOLF A, STOTTMEISTER C, GLAŽAR P, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed[J]. Mol Cell, 2015, 58(5): 870-885. DOI:10.1016/j.molcel.2015.03.027
[24]
HANSEN T B, JENSEN T I, CLAUSEN B H, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013, 495(7441): 384-388. DOI:10.1038/nature11993
[25]
ZHANG P P, CHAO Z, ZHANG R, et al. Circular RNA regulation of myogenesis[J]. Cells, 2019, 8(8): 885. DOI:10.3390/cells8080885
[26]
ZHOU Z Y, LI K Y, LIU J N, et al. Expression profile analysis to identify circular RNA expression signatures in muscle development of Wu'an goat Longissimus dorsi tissues[J]. Front Vet Sci, 2022, 9: 833946. DOI:10.3389/fvets.2022.833946
[27]
LIU R L, LIU X X, BAI X J, et al. Identification and characterization of circRNA in Longissimus dorsi of different breeds of cattle[J]. Front Genet, 2020, 11: 565085. DOI:10.3389/fgene.2020.565085
[28]
LI M, ZHANG N, ZHANG W F, et al. Comprehensive analysis of differentially expressed circRNAs and ceRNA regulatory network in porcine skeletal muscle[J]. BMC Genomics, 2021, 22(1): 320. DOI:10.1186/s12864-021-07645-8
[29]
QI A, RU W X, YANG H Y, et al. Circular RNA ACTA1 acts as a sponge for miR-199a-5p and miR-433 to regulate bovine myoblast development through the MAP3K11/MAP2k7/JNK pathway[J]. J Agric Food Chem, 2022, 70(10): 3357-3373. DOI:10.1021/acs.jafc.1c07762
[30]
ZHANG R M, PAN Y, ZOU C X, et al. CircUBE2Q2 promotes differentiation of cattle muscle stem cells and is a potential regulatory molecule of skeletal muscle development[J]. BMC Genomics, 2022, 23(1): 267. DOI:10.1186/s12864-022-08518-4
[31]
LI H, YANG J M, WEI X F, et al. CircFUT10 reduces proliferation and facilitates differentiation of myoblasts by sponging miR-133a[J]. J Cell Physiol, 2018, 233(6): 4643-4651. DOI:10.1002/jcp.26230
[32]
RU W X, QI A, SHEN X M, et al. The circular RNA circCPE regulates myoblast development by sponging miR-138[J]. J Anim Sci Biotechnol, 2021, 12(1): 102. DOI:10.1186/s40104-021-00618-7
[33]
WANG X G, CAO X K, DONG D, et al. Circular RNA TTN acts as a miR-432 sponge to facilitate proliferation and differentiation of myoblasts via the IGF2/PI3K/AKT signaling pathway[J]. Mol Ther Nucleic Acids, 2019, 18: 966-980. DOI:10.1016/j.omtn.2019.10.019
[34]
YUE B L, WANG J, RU W X, et al. The circular RNA circHUWE1 sponges the miR-29b-AKT3 axis to regulate myoblast development[J]. Mol Ther Nucleic Acids, 2020, 19: 1086-1097. DOI:10.1016/j.omtn.2019.12.039
[35]
SHEN X M, TANG J, RU W X, et al. CircINSR regulates fetal bovine muscle and fat development[J]. Front Cell Dev Biol, 2021, 8: 615638. DOI:10.3389/fcell.2020.615638
[36]
SHEN X M, ZHANG X Y, RU W X, et al. circINSR promotes proliferation and reduces apoptosis of embryonic myoblasts by sponging miR-34a[J]. Mol Ther Nucleic Acids, 2020, 19: 986-999. DOI:10.1016/j.omtn.2019.12.032
[37]
OUYANG H J, CHEN X L, LI W M, et al. Circular RNA circSVIL promotes myoblast proliferation and differentiation by sponging miR-203 in chicken[J]. Front Genet, 2018, 9: 172. DOI:10.3389/fgene.2018.00172
[38]
CHEN B, YU J, GUO L J, et al. Circular RNA circHIPK3 promotes the proliferation and differentiation of chicken myoblast cells by sponging miR-30a-3p[J]. Cells, 2019, 8(2): 177. DOI:10.3390/cells8020177
[39]
ZHAO J, ZHAO X Y, SHEN X X, et al. CircCCDC91 regulates chicken skeletal muscle development by sponging miR-15 family via activating IGF1-PI3K/AKT signaling pathway[J]. Poult Sci, 2022, 101(5): 101803. DOI:10.1016/j.psj.2022.101803
[40]
SHEN X M, TANG J, JIANG R, et al. CircRILPL1 promotes muscle proliferation and differentiation via binding miR-145 to activate IGF1R/PI3K/AKT pathway[J]. Cell Death Dis, 2021, 12(2): 142. DOI:10.1038/s41419-021-03419-y
[41]
CAI B L, MA M T, ZHOU Z, et al. CircPTPN4 regulates myogenesis via the miR-499-3p/NAMPT axis[J]. J Anim Sci Biotechnol, 2022, 13(1): 2. DOI:10.1186/s40104-021-00664-1
[42]
WANG Z J, ZHANG M, LI K, et al. CircMGA depresses myoblast proliferation and promotes myotube formation through miR-144-5p/FAP signal[J]. Animals (Basel), 2022, 12(7): 873.
[43]
LI K, HUANG W C, WANG Z J, et al. CircTAF8 regulates myoblast development and associated carcass traits in chicken[J]. Front Genet, 2022, 12: 743757. DOI:10.3389/fgene.2021.743757
[44]
KYEI B, ODAME E, LI L, et al. Knockdown of CDR1as decreases differentiation of goat skeletal muscle satellite cells via upregulating mir-27a-3p to inhibit ANGPT1[J]. Genes (Basel), 2022, 13(4): 663. DOI:10.3390/genes13040663
[45]
ZHANG Z, FAN Y, DENG K, et al. Circular RNA circUSP13 sponges miR-29c to promote differentiation and inhibit apoptosis of goat myoblasts by targeting IGF1[J]. Faseb, 2022, 36(1): e22097.
[46]
CAO H G, LIU J M, DU T N, et al. Circular RNA screening identifies circMYLK4 as a regulator of fast/slow myofibers in porcine skeletal muscles[J]. Mol Genet Genomics, 2022, 297(1): 87-99. DOI:10.1007/s00438-021-01835-5
[47]
JIN L, TANG Q Z, HU S L, et al. A pig bodymap transcriptome reveals diverse tissue physiologies and evolutionary dynamics of transcription[J]. Nat Commun, 2021, 12(1): 3715. DOI:10.1038/s41467-021-23560-8
[48]
HUANG J P, ZHAO J H, ZHENG Q Z, et al. Characterization of circular RNAs in Chinese buffalo (Bubalus bubalis) adipose tissue: A focus on circular RNAs involved in fat deposition[J]. Animals (Basel), 2019, 9(7): 403.
[49]
WU J Y, ZHANG S L, YUE B L, et al. CircRNA profiling reveals circPPARγ modulates adipogenic differentiation via sponging miR-92a-3p[J]. J Agric Food Chem, 2022, 70(22): 6698-6708. DOI:10.1021/acs.jafc.2c01815
[50]
LI B J, HE Y, WU W J, et al. Circular RNA profiling identifies novel circPPARA that promotes intramuscular fat deposition in pigs[J]. J Agric Food Chem, 2022, 70(13): 4123-4137. DOI:10.1021/acs.jafc.1c07358
[51]
JIANG R, LI H, YANG J M, et al. CircRNA profiling reveals an abundant circFUT10 that promotes adipocyte proliferation and inhibits adipocyte differentiation via sponging let-7[J]. Mol Ther Nucleic Acids, 2020, 20: 491-501. DOI:10.1016/j.omtn.2020.03.011
[52]
ZHANG P P, HAN Q, SHENG M X, et al. Identification of circular RNA expression profiles in white adipocytes and their roles in Adipogenesis[J]. Front Physiol, 2021, 12: 728208. DOI:10.3389/fphys.2021.728208
[53]
WANG L D, LIANG W S, WANG S S, et al. Circular RNA expression profiling reveals that circ-PLXNA1 functions in duck adipocyte differentiation[J]. PLoS One, 2020, 15(7): e0236069. DOI:10.1371/journal.pone.0236069
[54]
HAO Z Y, ZHOU H T, HICKFORD J G H, et al. Identification and characterization of circular RNA in lactating mammary glands from two breeds of sheep with different milk production profiles using RNA-seq[J]. Genomics, 2020, 112(3): 2186-2193. DOI:10.1016/j.ygeno.2019.12.014
[55]
WANG J Q, ZHOU H T, HICKFORD J G H, et al. Identification and characterization of circular RNAs in mammary gland tissue from sheep at peak lactation and during the nonlactating period[J]. J Dairy Sci, 2021, 104(2): 2396-2409. DOI:10.3168/jds.2020-18911
[56]
WANG D Y, CHEN Z J, ZHUANG X N, et al. Identification of circRNA-associated-ceRNA networks involved in milk fat metabolism under heat stress[J]. Int J Mol Sci, 2020, 21(11): 4162. DOI:10.3390/ijms21114162
[57]
ZHANG M, MA L, LIU Y H, et al. CircRNA-006258 sponge-adsorbs miR-574-5p to regulate cell growth and milk synthesis via EVI5l in goat mammary epithelial cells[J]. Genes (Basel), 2020, 11(7): 718. DOI:10.3390/genes11070718
[58]
WANG D Y, ZHAO Z J, SHI Y R, et al. CircEZH2 regulates milk fat metabolism through miR-378b sponge activity[J]. Animals (Basel), 2022, 12(6): 718.
[59]
CLIFFORD R L, SINGER C A, JOHN A E. Epigenetics and miRNA emerge as key regulators of smooth muscle cell phenotype and function[J]. Pulm Pharmacol Ther, 2013, 26(1): 75-85. DOI:10.1016/j.pupt.2012.07.002
[60]
LIU Y F, ZHOU Z Y, HE X Y, et al. Differentially expressed circular RNA profile signatures identified in prolificacy trait of Yunshang black goat ovary at estrus cycle[J]. Front Physiol, 2022, 13: 820459. DOI:10.3389/fphys.2022.820459
[61]
MA L, ZHANG M, CAO F J, et al. Effect of MiR-100-5p on proliferation and apoptosis of goat endometrial stromal cell in vitro and embryo implantation in vivo[J]. J Cell Mol Med, 2022, 26(9): 2543-2556. DOI:10.1111/jcmm.17226
[62]
LIU X R, ZHANG L, YANG L C, et al. miR-34a/c induce caprine endometrial epithelial cell apoptosis by regulating circ-8073/CEP55 via the RAS/RAF/MEK/ERK and PI3K/AKT/mTOR pathways[J]. J Cell Physiol, 2020, 235(12): 10051-10067. DOI:10.1002/jcp.29821
[63]
LI X Y, GAO F L, FAN Y S, et al. A novel identified circ-ANKHD1 targets the miR-27a-3p/SFRP1 signaling pathway and modulates the apoptosis of granulosa cells[J]. Environ Sci Pollut Res Int, 2021, 28(41): 57459-57469. DOI:10.1007/s11356-021-14699-4
[64]
GUO T Y, ZHANG J B, YAO W, et al. CircINHA resists granulosa cell apoptosis by upregulating CTGF as a ceRNA of miR-10a-5p in pig ovarian follicles[J]. Biochim Biophys Acta Gene Regul Mech, 2019, 1862(10): 194420. DOI:10.1016/j.bbagrm.2019.194420
[65]
WU Y, XIAO H W, PI J S, et al. The circular RNA aplacirc_13267 upregulates duck granulosa cell apoptosis by the apla-miR-1-13/THBS1 signaling pathway[J]. J Cell Physiol, 2020, 235(7-8): 5750-5763. DOI:10.1002/jcp.29509
[66]
WANG H M, ZHANG Y, ZHANG J B, et al. CircSLC41A1 resists porcine granulosa cell apoptosis and follicular atresia by promoting SRSF1 through miR-9820-5p sponging[J]. Int J Mol Sci, 2022, 23(3): 1509. DOI:10.3390/ijms23031509
[67]
CAO Z B, GAO D, XU T T, et al. Circular RNA profiling in the oocyte and cumulus cells reveals that circARMC4 is essential for porcine oocyte maturation[J]. Aging, 2019, 11(18): 8015-8034. DOI:10.18632/aging.102315

(编辑   范子娟)