2. 西北农林科技大学动物科技学院, 杨凌 712100;
3. 佛山科学技术学院生命科学与工程学院, 佛山 528231
2. College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China;
3. School of Life Science and Engineering, Foshan University of Science and Technology, Foshan 528231, China
瘤胃微生物群落由细菌、古细菌、原生动物、真菌和病毒(主要为噬菌体)组成,具有蛋白水解、纤维分解和脂肪分解等功能,可在厌氧条件下发酵日粮碳水化合物、蛋白质等生成短链脂肪酸、微生物蛋白质、肽类、氨基酸、维生素B和维生素K等代谢物[1]。这些代谢物被瘤胃上皮或小肠组织吸收进入血液供宿主利用[2],可为宿主提供超过70%的能量和80%的蛋白质需要[3-4]。瘤胃微生物群落的差异与宿主许多表型有关,包括饲料效率[5]、代谢特征[6-8]、健康状态[9]和甲烷排放[10]等。因此,调控瘤胃微生态,改善瘤胃发酵对于保障瘤胃健康、内环境稳态和机体生理健康等有深远意义。在诸多调控瘤胃微生态的措施中,瘤胃微生物移植(rumen microbiota transplantation,RMT)可更快调节宿主瘤胃的微生物群落,达到瘤胃菌群重塑或微生物组修复等目的[11]。此外,瘤胃微生物移植在治疗动物瘤胃酸中毒、植物源中毒及消化不良等方面效果显著[12]。瘤胃微生物移植研究具有很高的理论和应用价值,是国际科研探索的热点。本文对瘤胃微生物移植的应用研究进展进行了综述,以期为后续研究提供参考。
1 瘤胃微生物移植的定义及发展瘤胃微生物移植也称为瘤胃微生物组移植、瘤胃内容物移植,是将特定健康供体瘤胃中的功能微生物及其代谢物移植到受体内,重塑胃肠道菌群微生态结构,从而治疗动物疾病或提高动物生产性能的一种措施。瘤胃微生物移植属于微生物移植范畴,最早的微生物移植可追溯到公元4世纪东晋时期葛洪的《肘后备急方》中黄龙汤的使用,即来源于马、牛、人的粪汁可用于治疗严重食物中毒、发热、腹泻等症状的患者。到了17世纪,意大利解剖学家Acquapendente提出了“转宿”(transfaunation)概念,即将健康动物咀嚼过的食物(胃肠道内容物)移植到患病动物体内以治疗胃肠疾病,为瘤胃内容物移植的雏形,此后广泛应用于兽医领域[13]。1776年,瑞典牧民用健康牛或羊的新鲜反刍物来治愈消化不良的患病动物[14],移植瘤胃食糜或瘤胃液相关的试验由此蓬勃展开。1968年,Singh等[15]将水牛和瘤牛瘤胃内容物交换,进行了RMT跨物种移植研究的早期尝试。1976年,Waymack[16]将来自有尿素氮适应性的成年母羊的瘤胃液制成冻干菌粉饲喂给羔羊,为缩短羔羊对日粮尿素氮的适应期,进行了RMT移植新形式的尝试;另有学者将移植新鲜或冻干瘤胃液接种物的移植效果进行了对比,发现两种接种物对受体生长性能均有积极影响,新鲜瘤胃液的接种效果更好[17-18]。Yu等[19]对所采集的瘤胃液在两次高速离心操作后进行冻干,将瘤胃冻干粉应用于羔羊断奶期间的作用效果进行了系统评价,发现其有助于羔羊对开食料中非结构性碳水化合物的消化。近年来,RMT过程中随微生物一同移入受体的单一或复合代谢物[20-22]以及原生动物[23-25]的作用逐渐纳入考量之中,RMT后具转录活性的微生物互作关系和功能特征受到关注[25]。随着生物技术的发展,未来可向移植瘤胃基因编辑微生物等应用方向迈进,以期RMT可起到更安全、有针对性、即时、显著且持久的应用效果。
2 瘤胃微生物移植对宿主健康及生产性能的作用瘤胃微生物群对饲料利用和宿主健康具有重要作用,调节瘤胃微生物组以有效提高动物生产性能是长期的追求[26]。RMT被认为是重塑共生微生物群和提高宿主健康及性能的最有前景的方法之一[12]。表 1列举了RMT应用研究相关文献。
RMT揭示了反刍动物瘤胃微生物特性或功能。目前通过RMT已经揭示了瘤胃微生物组能够决定反刍动物的高纤维利用率[27];论证了瘤胃亚急性酸中毒(subacute ruminal acidosis, SARA)可能与瘤胃淀粉降解细菌有关,SARA的炎症反应和菌群结构通过RMT能转移到小鼠结肠,并且应用高纤维日粮治疗奶山羊SARA的方法同样可以缓解小鼠结肠炎症,且适量抗生素的前处理能提高RMT对受体的影响[28];证明了与饲料效率相关的部分瘤胃微生物菌群重塑模式不尽相同,有的敏感可调,有的在适应期后恢复[29];初步得出了纤毛虫普遍不具有宿主特异性的结论[30-31];发现了瘤胃微生物的跨物种定植情况,即受体菌群结构显著变化,但未改变受体优势原生动物,新引入的微生物定植成功率低[32]。以上发现的揭示过程都是先确定相关目标的生物标志菌或标志原生动物,再通过RMT移植到缺少上述标志物的受体中,通过了解其定植情况及其对相关功能的影响,从而确定目标微生物的特性或功能。
2.2 RMT对瘤胃功能和生产性能的改善作用RMT有助于改善反刍动物瘤胃功能和生产性能。如RMT改善了反刍动物消化不良[33-34],提高了幼龄反刍动物纤维素及干物质消化率[35],缓解了由高纤维低多不饱和脂肪酸日粮引起的成年奶牛低乳脂症情况[36],短暂提高了低产奶效率奶牛的泌乳性能[37]。其中,RMT对幼龄反刍动物瘤胃功能和生长性能的调控作用更为突出,幼龄反刍动物通过RMT引入成熟瘤胃区系的关键共生菌群,重塑了瘤胃菌群,提高了微生物活性及相关酶活性,调节了挥发性脂肪酸尤其是丙酸或丁酸的产量及占比,加速了受体瘤胃发育,进而改善了受体瘤胃功能和生产性能[19, 33-35]。而生产性能较低的成年反刍动物通过RMT只短暂提高了性能,一方面说明引入的微生物组及代谢物发挥了作用,另一方面由于健康的成熟瘤胃中菌群定植抗性较强,对应性能的提高随引入微生物及代谢物的消耗而消失[37]。
2.3 RMT有助于疾病预防及治疗RMT可预防或治疗反刍动物相关疾病。如RMT可预防反刍动物亚急性瘤胃酸中毒(牛链球菌减少和原生动物增多等)[38]、植物源中毒(提高对含3-羟基-4-吡啶酮(DHP)的银合欢属植物或含单氟乙酸钠(MFA)的苣苔属植物中毒的抵抗力)[39-40]。RMT有助于疾病预后或宿主机能的恢复,如加快坏疽性乳腺炎、皱胃移位和皱胃嵌塞[41]的术后恢复(如接受10 L健康牛瘤胃液移植的皱胃移位术3 d后,奶牛的干物质摄入量和产奶量相较对照组更高),加快瘤胃酸中毒后瘤胃稳态和瘤胃上皮细胞损伤的恢复(瘤胃的乳头高度、上皮细胞增殖情况和形态、微生物功能等更早恢复)[42],加快受到抗生素干扰的胃肠道菌群种类及功能的恢复[43],降低因长时间运输造成的动物应激(提高了牛运输后一段时间内的干物质采食量)[44]。
RMT还可作为前胃迟缓[45]、瘤胃臌气、酮血症、乳热症[12]等疾病的应急疗法,并可减缓腹泻情况(腹泻率及持续时间降低45%以上)[46-47]。RMT通过将健康瘤胃共生微生物组导入菌群紊乱的受体瘤胃中,修复了微生物区系,进而逆转了病程,治疗效果明显,此过程涉及到微生物互作、有害物质代谢和宿主免疫激活等[48]。
3 影响RMT应用的因素尽然RMT有诸多益处,但在生产实践中大规模使用存在一定的局限性,如增加的处理成本、复杂的操作技术、产品安全性、受体适应性和应用效果的不确定性等。不同研究目的的RMT,其瘤胃内容物供体来源、移植策略、受体、移植效果等可能不尽相同,RMT对反刍动物生产效率的影响并非是完全一致的,亦有文献称RMT对受体采食量、生长指标或外周血单个核细胞微生物组并无影响[46, 51-52]。影响RMT应用效果的因素包括:
3.1 供体营养及取样首先,供体筛选条件(品种、性别、体重、日龄、经产方式等)不同可导致移植物微生物组有较大差异[53-54]。其次,日粮是影响反刍动物微生物结构的重要因素,由饲喂不同日粮的供体获得的瘤胃接种物进行移植,所重塑的受体瘤胃菌群结构将会不同[55],另有研究指出,供体接种物中可定植的微生物才是调控受体菌群结构的关键[56],而不是接种物菌群结构[20]。第三,采样时机的选择也很重要,饲前收集的供体微生物组更能反映机体发酵功能,饲后收集的供体微生物组则更能反映饲粮发酵情况,且饲后3 h所采新鲜瘤胃液微生物组最具多样化和活跃性[57]。另外,采用口腔胃管采样时的胃管探入深度[58]、胃管在瘤胃中所处位置及唾液污染[59]需要引起重视。
3.2 受体受体层面影响RMT效果的最重要因素是反刍动物瘤胃发育成熟程度。对成年反刍动物进行RMT可能得不到理想效果,这是因为成熟瘤胃微生物区系具有功能冗余、扰动恢复能力和宿主特异性[60],能调节一定程度的瘤胃微生物变化[61]。反刍动物的早期发育阶段为移植的最佳窗口期,因其瘤胃微生物区系较简单、多样性较少而具有较小的定植抗性,更容易接受外源性接种[48]。另外,受体的个体体况和遗传背景的差异[62]也会造成对移植的耐受性及适应性的不同[37]。RMT应用效果还可能直接或间接受饲养管理模式[63]、断奶时间[64]、物种/品种[65]、移植物的存储[66-67]等因素的影响。
3.3 移植方式与剂量移植方式主要有口服、鼻饲、胃管灌服、瘘管灌入及瘤胃穿刺等[12]。采用口服方式通常需先对移植物进行加工,利于保留其活性和在受体体内发挥作用,如可对瘤胃微生物进行冷冻干燥处理[16-19],该技术对微生物细胞结构特征的损伤较小,使其快速进入休眠状态,保护其生物活性和有效成分的稳定性。而在移植次数和移植剂量上,移植次数或移植量过少,无法形成足够的生态占位和定植抗力[50, 68-69]。遗憾的是,目前仍没有建立可信的有效移植剂量,相关研究建议的瘤胃液移植量从几毫升至1升,乃至十几升[33, 70-71],差异很大;瘤胃内容物单次交换需要在70%以上[12, 50, 68],较低的瘤胃内容物交换率将不能达到理想效果[69];瘤胃微生物冻干菌粉通过口服的接种用量仍需大量试验进行确定。移植剂量需根据移植方式、移植物所含微生物及其代谢物量、使用目的、宿主生长阶段进行综合考虑。
4 RMT的作用机理宿主瘤胃具有相关机制可使宿主能够与瘤胃微生物群及其代谢物共存,且瘤胃在不同发育阶段对各种微生物的定植抗性发生着动态变化[72],直接影响RMT后微生物定植效率及宿主应答。目前,人们对RMT的机制了解非常有限,可能的机制包括以下几个方面:一是RMT有利于加速特定菌群在受体瘤胃中的增殖和活性提升,促进纤维和淀粉分解活动,尤其增强了淀粉酶活性[19],提高了瘤胃发酵能力和日粮营养成分消化率[17-18],进而改善宿主生产性能;二是被移植的瘤胃微生物具有生态位抢占和修饰能力,可通过防止病原体黏附以及激活,改善微生态平衡[48];三是RMT可能向受体转移丁酸及衍生物[73-74]、细菌多糖[22]等代谢产物,以及与免疫细胞分化、树突细胞分化、淋巴组织发育有关的微RNA(miRNA),如miR-15/16、miR-29和miR-196[75]等,促进瘤胃发育并提高生产性能[42]。瘤胃微生物是非常复杂的系统,未来仍需研究移植后微生物的定植模式、菌群平衡或互作、宿主免疫应答、群体感应[76]等机制,以及微生物的宿主特异性、定植抗性等问题[77]。
5 RMT安全性RMT在应用研究中显示了其对反刍动物积极有益的作用,但目前对RMT的安全性了解还不够。人类粪菌移植(fecal microbiota transplantation, FMT)实践中少数的菌血症、败血症、多器官衰竭甚至死亡的案例[78]提示人们,需要对其安全性引起足够的重视,菌群安全性需要在不同要求下反复考证[79]。
目前对RMT安全性还没有一套系统的核查标准,建议考虑的层面有:供体的健康及移植物的无害性、移植流程及剂量的科学性、受体的适应性等。供体选择要经血清学检测,无动物疾病、无特定病原体、体征和精神良好、移植过程中无传播疾病的风险[19, 80]。供体移植物要做好各项记录可溯源,筛查感染性病原体,包括副伤寒分枝杆菌、沙门菌、隐孢子虫或大肠杆菌(O157:H7)等[12],非传染疾病因素如引起宿主自身免疫反应等也应纳入筛查[81]。此外,供体瘤胃液pH尽可能在6.8左右,以确保瘤胃基本的健康情况(无酸、碱中毒)和保障瘤胃原虫正常生理状态[82],并需了解日粮中淀粉类型及其瘤胃可用性、纤维含量和纤维源的物理形态等因素。要做好移植物分类及妥善储存,通过瘤胃液气味、颜色、黏稠度、沉淀物、酸碱度等情况,可对采集到的瘤胃微生物质量进行初步直观地分类,保证其最基本的安全性,如表 2所示。此外,生化检验可作瘤胃发酵状态及其菌群结构的进一步参考,如亚甲基蓝还原试验、纤毛虫的活力镜检及计数、亚硝酸盐还原试验、葡萄糖发酵试验、纤维素消化试验等[33]。直接移植新鲜接种物时,操作时间最好控制在30 min以内[83],以避免接种物变质和减少动物应激。
就RMT本身而言,应对其各环节操作规程进行完善,确定移植成功的参考标准,加强对RMT后宿主微生物群如何重塑,外源微生物到达宿主体内能否以及如何利用宿主、微生物群和环境因素,生物标志物、微生物组、宿主的互作等机理的探究。菌群移植中洗涤移植物可除去部分导致炎症的物质,显著减少移植后受体的不良应答[87],RMT的移植策略可类似优化,但需额外注意来源于不同瘤胃部分的微生物结构及功能特征的差异[88]。RMT视角可拓展到与瘤胃进化发育、瘤胃功能的完善、宿主基因表达等密切相关的定植在瘤胃上皮的微生物[2, 89],瘤胃上皮微生物群与瘤胃内容物微生物群结构不同,虽然在生物体中相对丰度不高,但可运用培养组学进行扩增后冻干,在宿主生命早期施用。反刍动物随年龄、日粮、环境的改变,瘤胃微生物区系随之变化[90],考虑到适应性应答通常是积极的,RMT的移植物未来加工为适应动物每阶段核心菌群的微生态制剂并起短期调控作用更为安全。当然,不一定需要供体菌株完全定植,引起受体菌株迭代也是有益的。此外,除瘤胃菌群和原生动物外,可对比研究噬菌体或挥发性脂肪酸、微生物蛋白、氨基酸、维生素等“瘤胃天然益生元”单独或以一定比例混合的移植效果,并溯源相关微生物菌群,将对产业研究及应用的快速发展大有裨益。
就RMT提高健康动物生产效率而言,RMT后对宿主菌群稳态、机能状态、生产性能等方面短期和长期影响需要进一步明确,RMT所用移植物需在起主要作用的微生物群或成分上进行斟酌。此外,只有当外来微生物组的引入是有助于消除病因时,操纵可能才是有益的,如果微生物组的改变是代偿有益反应,甚至可能是有害的[91]。当然,这仍需要在大量试验后做进一步讨论。
就RMT纳入疾病治疗方案而言,首先要明晰其适应症。Walter等[92]发现,预先使用抗生素可增强移植微生物的定植并减少变异,但此做法本身对受体存在不良影响。RMT应用于疾病治疗或预防还需要明确对相关病症施用的时间、移植物、剂量、方式等配套方案,以及了解RMT在疾病发展时间轴、宿主机能响应和疾病生态学层面等的贡献。做好受体动物的长期跟踪,以查明RMT后受体微生物菌群结构及代谢物(如短链脂肪酸、胆汁酸、激素等)的变化,研究RMT对宿主遗传、表观遗传效应、机体系统的影响,并考虑反刍动物饮食习惯,以便在使用前就可预知RMT效果[93],最终开发出新颖、更具吸引力、操纵微生物群或调节疾病表型的高效个性化策略。
7 结语综上所述,RMT是调控瘤胃微生物区系的重要手段。RMT应用已包括了促进动物生长发育或提高生产性能、治疗动物胃肠疾病、预防植物源中毒、减少动物应激等具体场景。但RMT应用仍需加强对其安全性和效果稳定性的考察,阐明RMT后移植菌群及代谢物、原菌群、宿主等互作机制,了解其对受体短期或长期的影响。未来推广RMT应用重点是找到对动物起有益作用的关键菌群或成分,再作为微生态制剂进行工业化生产,将会在畜牧业及其他领域有不俗的发展前景。
[1] |
WEIMER P J. Redundancy, resilience, and host specificity of the ruminal microbiota: Implications for engineering improved ruminal fermentations[J]. Front Microbiol, 2015, 6: 296. |
[2] |
NA S W, GUAN L L. Understanding the role of rumen epithelial host-microbe interactions in cattle feed efficiency[J]. Anim Nutr, 2022, 10: 41-53. DOI:10.1016/j.aninu.2022.04.002 |
[3] |
HUWS S A, CREEVEY C J, OYAMA L B, et al. Addressing global ruminant agricultural challenges through understanding the rumen microbiome: Past, present, and future[J]. Front Microbiol, 2018, 9: 2161. DOI:10.3389/fmicb.2018.02161 |
[4] |
HU F, XUE Y F, GUO C Z, et al. The response of ruminal fermentation, epithelium-associated microbiota, and epithelial barrier function to severe feed restriction in pregnant ewes[J]. J Anim Sci, 2018, 96(10): 4293-4305. DOI:10.1093/jas/sky306 |
[5] |
MYER P R, FREETLY H C, WELLS J E, et al. Analysis of the gut bacterial communities in beef cattle and their association with feed intake, growth, and efficiency[J]. J Anim Sci, 2017, 95(7): 3215-3224. |
[6] |
SHABAT S K B, SASSON G, DORON-FAIGENBOIM A, et al. Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants[J]. ISME J, 2016, 10(12): 2958-2972. DOI:10.1038/ismej.2016.62 |
[7] |
MAO S Y, HUO W J, ZHU W Y. Microbiome-metabolome analysis reveals unhealthy alterations in the composition and metabolism of ruminal microbiota with increasing dietary grain in a goat model[J]. Environ Microbiol, 2016, 18(2): 525-541. DOI:10.1111/1462-2920.12724 |
[8] |
MORGAVI D P, RATHAHAO-PARIS E, POPOVA M, et al. Rumen microbial communities influence metabolic phenotypes in lambs[J]. Front Microbiol, 2015, 6: 1060. |
[9] |
KHAFIPOUR E, LI S C, PLAIZIER J C, et al. Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis[J]. Appl Environ Microbiol, 2009, 75(22): 7115-7124. DOI:10.1128/AEM.00739-09 |
[10] |
SHI W B, MOON C D, LEAHY S C, et al. Methane yield phenotypes linked to differential gene expression in the sheep rumen microbiome[J]. Genome Res, 2014, 24(9): 1517-1525. DOI:10.1101/gr.168245.113 |
[11] |
MCALLISTER T A, BEAUCHEMIN K A, ALAZZEH A Y, et al. Review: The use of direct fed microbials to mitigate pathogens and enhance production in cattle[J]. Can J Anim Sci, 2011, 91(2): 193-211. DOI:10.4141/cjas10047 |
[12] |
DEPETERS E J, GEORGE L W. Rumen transfaunation[J]. Immunol Lett, 2014, 162(2): 69-76. DOI:10.1016/j.imlet.2014.05.009 |
[13] |
DE GROOT P F, FRISSEN M N, DE CLERCQ N C, et al. Fecal microbiota transplantation in metabolic syndrome: History, present and future[J]. Gut Microbes, 2017, 8(3): 253-267. DOI:10.1080/19490976.2017.1293224 |
[14] |
BRAG S, HANSEN H J. Treatment of ruminal indigestion according to popular belief in Sweden[J]. Rev Sci Tech, 1994, 13(2): 529-535. DOI:10.20506/rst.13.2.782 |
[15] |
SINGH R, LANGAR P N, BHATIA I S. Effect of the exchange of rumen contents in the buffalo and zebu on the number of Oscillospira guillermondii[J]. Indian J Vet Sci Anim Husb, 1968, 38: 689-692. |
[16] |
WAYMACK L B. Effect of feeding lyophilized rumen contents on adaptation to urea diet by lambs[J]. J Anim Sci, 1976, 43(3): 712-714. DOI:10.2527/jas1976.433712x |
[17] |
ZHONG R Z, SUN H X, LI G D, et al. Effects of inoculation with rumen fluid on nutrient digestibility, growth performance and rumen fermentation of early weaned lambs[J]. Livest Sci, 2014, 162: 154-158. DOI:10.1016/j.livsci.2013.12.021 |
[18] |
ABO-DONIA F M, GHADA S I, NADI S, et al. Effect of inoculating new born lambs with fresh or lyophilized rumen fluid on rumen activity and lamb performance[J]. J Am Sci, 2011, 7(9): 409-422. |
[19] |
YU S B, SHI W B, YANG B, et al. Effects of repeated oral inoculation of artificially fed lambs with lyophilized rumen fluid on growth performance, rumen fermentation, microbial population and organ development[J]. Anim Feed Sci Technol, 2020, 264: 114465. DOI:10.1016/j.anifeedsci.2020.114465 |
[20] |
PALMA-HIDALGO J M, JIMENEZ E, POPOVA M, et al. Inoculation with rumen fluid in early life accelerates the rumen microbial development and favours the weaning process in goats[J]. Anim Microbiome, 2021, 3(1): 11. DOI:10.1186/s42523-021-00073-9 |
[21] |
HUANG S, ZHENG G, MEN H K, et al. The response of fecal microbiota and host metabolome in dairy cows following rumen fluid transplantation[J]. Front Microbiol, 2022, 13: 940158. DOI:10.3389/fmicb.2022.940158 |
[22] |
MUSCATO T V, TEDESCHI L O, RUSSELL J B. The effect of ruminal fluid preparations on the growth and health of newborn, milk-fed dairy calves[J]. J Dairy Sci, 2002, 85(3): 648-656. DOI:10.3168/jds.S0022-0302(02)74119-2 |
[23] |
PARK T, CERSOSIMO L M, LI W L, et al. Pre-weaning ruminal administration of differentially-enriched, rumen-derived inocula shaped rumen bacterial communities and co-occurrence networks of post-weaned dairy calves[J]. Front Microbiol, 2021, 12: 625488. DOI:10.3389/fmicb.2021.625488 |
[24] |
CERSOSIMO L M, RADLOFF W, ZANTON G I. Microbial inoculum composition and pre-weaned dairy calf age alter the developing rumen microbial environment[J]. Front Microbiol, 2019, 10: 1651. DOI:10.3389/fmicb.2019.01651 |
[25] |
PARK T, CERSOSIMO L M, RADLOFF W, et al. The rumen liquid metatranscriptome of post-weaned dairy calves differed by pre-weaning ruminal administration of differentially-enriched, rumen-derived inocula[J]. Anim Microbiome, 2022, 4(1): 4. DOI:10.1186/s42523-021-00142-z |
[26] |
LIU K Z, ZHANG Y D, YU Z T, et al. Ruminal microbiota-host interaction and its effect on nutrient metabolism[J]. Anim Nutr, 2021, 7(1): 49-55. DOI:10.1016/j.aninu.2020.12.001 |
[27] |
CHEN X D, YAN F, LIU T, et al. Ruminal microbiota determines the high-fiber utilization of ruminants: Evidence from the ruminal microbiota transplant[J]. Microbiol Spectr, 2022, 10(4): e00446-22. |
[28] |
CHEN X D, SU X D, LI J L, et al. Real-time monitoring of ruminal microbiota reveals their roles in dairy goats during subacute ruminal acidosis[J]. npj Biofilms Microbiomes, 2021, 7(1): 45. DOI:10.1038/s41522-021-00215-6 |
[29] |
ZHOU M, PENG Y J, CHEN Y H, et al. Assessment of microbiome changes after rumen transfaunation: implications on improving feed efficiency in beef cattle[J]. Microbiome, 2018, 6(1): 62. DOI:10.1186/s40168-018-0447-y |
[30] |
IMAI S, MATSUMOTO M, WATANABE A, et al. Establishment of a spinated type of Diplodinium rangiferi by transfaunation of the rumen ciliates of Japanese sika deer (Cervus nippon centralist to the Rumen of Two Japanese Shorthorn Calves (Bos taurus taurus)[J]. J Eukaryot Microbiol, 2002, 49(1): 38-41. DOI:10.1111/j.1550-7408.2002.tb00337.x |
[31] |
WILLIAMS A G, WITHERS S E. Changes in the rumen microbial population and its activities during the refaunation period after the reintroduction of ciliate protozoa into the rumen of defaunated sheep[J]. Can J Microbiol, 1993, 39(1): 61-69. DOI:10.1139/m93-009 |
[32] |
SANTOS B P, BESSEGATTO J A, ALFIERI A A, et al. Transfaunation of the ruminal fluid from cows alters ruminal microbiota structure but not dominant protozoa in healthy sheep[J]. Small Ruminant Res, 2021, 194: 106283. DOI:10.1016/j.smallrumres.2020.106283 |
[33] |
STEINER S, LINHART N, NEIDL A, et al. Evaluation of the therapeutic efficacy of rumen transfaunation[J]. J Anim Physiol Anim Nutr, 2020, 104(1): 56-63. DOI:10.1111/jpn.13232 |
[34] |
JASMIN B H, BOSTON R C, MODESTO R B, et al. Perioperative ruminal pH changes in domestic sheep (Ovis aries) housed in a biomedical research setting[J]. J Am Assoc Lab Anim Sci, 2011, 50(1): 27-32. |
[35] |
CONRAD H R, HIBBS J W, POUNDEN W D, et al. The effect of rumen inoculations on the digestibility of roughages in young dairy calves[J]. J Dairy Sci, 1950, 33(8): 585-592. DOI:10.3168/jds.S0022-0302(50)91940-0 |
[36] |
RICO D E, YING Y, CLARKE A R, et al. The effect of rumen digesta inoculation on the time course of recovery from classical diet-induced milk fat depression in dairy cows[J]. J Dairy Sci, 2014, 97(6): 3752-3760. DOI:10.3168/jds.2013-7342 |
[37] |
WEIMER P J, COX M S, DE PAULA T V, et al. Transient changes in milk production efficiency and bacterial community composition resulting from near-total exchange of ruminal contents between high-and low-efficiency Holstein cows[J]. J Dairy Sci, 2017, 100(9): 7165-7182. DOI:10.3168/jds.2017-12746 |
[38] |
ARIK H D, GULSEN N, HAYIRLI A, et al. Efficacy of Megasphaera elsdenii inoculation in subacute ruminal acidosis in cattle[J]. J Anim Physiol Anim Nutr (Berl), 2019, 103(2): 416-426. DOI:10.1111/jpn.13034 |
[39] |
QUIRK M F, BUSHELL J J, JONES R J, et al. Live-weight gains on leucaena and native grass pastures after dosing cattle with rumen bacteria capable of degrading DHP, a ruminal metabolite from leucaena[J]. J Agric Sci, 1988, 111(1): 165-170. DOI:10.1017/S0021859600082976 |
[40] |
DA SILVA L C A, PESSOA D A D N, LOPES J R G, et al. Resistance transferance of Amorimia septentrionalis poisoning in goats by ruminal transferance fluid from goats with induced resistance by the inoculation of sodium monofluoroacetate-degrading bacteria[J]. Ciencia Rural, 2015, 45(12): 2218-2222. DOI:10.1590/0103-8478cr20141231 |
[41] |
RAGER K D, GEORGE L W, HOUSE J K, et al. Evaluation of rumen transfaunation after surgical correction of left-sided displacement of the abomasum in cows[J]. J Am Vet Med Assoc, 2004, 225(6): 915-920. DOI:10.2460/javma.2004.225.915 |
[42] |
LIU J H, LI H W, ZHU W Y, et al. Dynamic changes in rumen fermentation and bacterial community following rumen fluid transplantation in a sheep model of rumen acidosis: implications for rumen health in ruminants[J]. FASEB J, 2019, 33(7): 8453-8467. DOI:10.1096/fj.201802456R |
[43] |
JI S K, JIANG T, YAN H, et al. Ecological restoration of antibiotic-disturbed gastrointestinal microbiota in foregut and hindgut of cows[J]. Front Cell Infect Microbiol, 2018, 8: 79. DOI:10.3389/fcimb.2018.00079 |
[44] |
LEO-PENU C L O, FITZPATRICK L A, ZERBY H N, et al. Treating Bos indicus bulls with rumen transfaunation after 24 hours of transportation does not replete muscle glycogen[J]. Anim Prod Sci, 2015, 10(56): 1738-1744. |
[45] |
VAN METRE D C, CALLAN R J, HOLT T N, et al. Abdominal emergencies in cattle[J]. Vet Clin North Am Food Anim Pract, 2005, 21(3): 655-696. DOI:10.1016/j.cvfa.2005.06.003 |
[46] |
BU D P, ZHANG X, MA L, et al. Repeated inoculation of young calves with rumen microbiota does not significantly modulate the rumen prokaryotic microbiota consistently but decreases diarrhea[J]. Front Microbiol, 2020, 11: 1403. DOI:10.3389/fmicb.2020.01403 |
[47] |
张鑫. 灌服瘤胃液对犊牛生长性能及胃肠道发育的影响[D]. 扬州: 扬州大学, 2017. ZHANG X. Effects of rumen fluid on growth performance and gastrointestinal development of calves[D]. Yangzhou: Yangzhou University, 2017. (in Chinese) |
[48] |
YÁÑEZ-RUIZ D R, ABECIA L, NEWBOLD C J. Manipulating rumen microbiome and fermentation through interventions during early life: a review[J]. Front Microbiol, 2015, 6: 1133. |
[49] |
YIN X, JI S, DUAN C, et al. Rumen fluid transplantation affects growth performance of weaned lambs by altering gastrointestinal microbiota, immune function and feed digestibility[J]. Animal, 2021, 15(1): 100076. DOI:10.1016/j.animal.2020.100076 |
[50] |
MU Y Y, QI W P, ZHANG T, et al. Changes in rumen fermentation and bacterial community in lactating dairy cows with subacute rumen acidosis following rumen content transplantation[J]. J Dairy Sci, 2021, 104(10): 10780-10795. DOI:10.3168/jds.2021-20490 |
[51] |
CERSOSIMO L M, RADLOFF W, ZANTON G I. Microbial inoculum composition and pre-weaned dairy calf age alter the developing rumen microbial environment[J]. Front Microbiol, 2019, 10: 1651. DOI:10.3389/fmicb.2019.01651 |
[52] |
PEÑA-CEARRA A, BELANCHE A, GONZALEZ-LOPEZ M, et al. Peripheral blood mononuclear cells (PBMC) microbiome is not affected by colon microbiota in healthy goats[J]. Anim Microbiome, 2021, 3(1): 28. DOI:10.1186/s42523-021-00091-7 |
[53] |
HITCH T C A, HALL L J, WALSH S K, et al. Microbiome-based interventions to modulate gut ecology and the immune system[J]. Mucosal Immunol, 2022, 15(6): 1095-1113. DOI:10.1038/s41385-022-00564-1 |
[54] |
HAN L L, XUE W C, CAO H W, et al. Comparison of rumen fermentation parameters and microbiota of yaks from different altitude regions in Tibet, China[J]. Front Microbiol, 2022, 12: 807512. DOI:10.3389/fmicb.2021.807512 |
[55] |
DE BARBIERI I, HEGARTY R S, SILVEIRA C, et al. Programming rumen bacterial communities in newborn Merino lambs[J]. Small Ruminant Res, 2015, 129: 48-59. DOI:10.1016/j.smallrumres.2015.05.015 |
[56] |
FRIEDMAN N, JAMI E, MIZRAHI I. Compositional and functional dynamics of the bovine rumen methanogenic community across different developmental stages[J]. Environ Microbiol, 2017, 19(8): 3365-3373. DOI:10.1111/1462-2920.13846 |
[57] |
BELANCHE A, PALMA-HIDALGO J M, NEJJAM I, et al. In vitro assessment of the factors that determine the activity of the rumen microbiota for further applications as inoculum[J]. J Sci Food Agric, 2019, 99(1): 163-172. DOI:10.1002/jsfa.9157 |
[58] |
SHEN J S, CHAI Z, SONG L J, et al. Insertion depth of oral stomach tubes may affect the fermentation parameters of ruminal fluid collected in dairy cows[J]. J Dairy Sci, 2012, 95(10): 5978-5984. DOI:10.3168/jds.2012-5499 |
[59] |
LI M, PENNER G B, HERNANDEZ-SANABRIA E, et al. Effects of sampling location and time, and host animal on assessment of bacterial diversity and fermentation parameters in the bovine rumen[J]. J Appl Microbiol, 2009, 107(6): 1924-1934. DOI:10.1111/j.1365-2672.2009.04376.x |
[60] |
WEIMER P J. Redundancy, resilience, and host specificity of the ruminal microbiota: implications for engineering improved ruminal fermentations[J]. Front Microbiol, 2015, 6: 296. |
[61] |
MALMUTHUGE N, GUAN L L. Understanding host-microbial interactions in rumen: searching the best opportunity for microbiota manipulation[J]. J Anim Sci Biotechnol, 2017, 8: 8. DOI:10.1186/s40104-016-0135-3 |
[62] |
RIBEIRO G O, OSS D B, HE Z X, et al. Repeated inoculation of cattle rumen with bison rumen contents alters the rumen microbiome and improves nitrogen digestibility in cattle[J]. Sci Rep, 2017, 7(1): 1276. DOI:10.1038/s41598-017-01269-3 |
[63] |
HUANG W Q, CUI K, HAN Y, et al. Long term effects of artificial rearing before weaning on the growth performance, ruminal microbiota and fermentation of fattening lambs[J]. J Integr Agr, 2022, 21(4): 1146-1160. DOI:10.1016/S2095-3119(21)63763-2 |
[64] |
CHAI J M, DIAO Q Y, WANG H C, et al. Effects of weaning age on growth, nutrient digestibility and metabolism, and serum parameters in Hu lambs[J]. Anim Nutr, 2015, 1(4): 344-348. DOI:10.1016/j.aninu.2015.11.007 |
[65] |
BHARANIDHARAN R, LEE C H, THIRUGNANASAMBANTHAM K, et al. Feeding systems and host breeds influence ruminal fermentation, methane production, microbial diversity and metagenomic gene abundance[J]. Front Microbiol, 2021, 12: 701081. DOI:10.3389/fmicb.2021.701081 |
[66] |
SPANGHERO M, CHIARAVALLI M, COLOMBINI S, et al. Rumen inoculum collected from cows at slaughter or from a continuous fermenter and preserved in warm, refrigerated, chilled or freeze-dried environments for in vitro tests[J]. Animals, 2019, 9(10): 815. DOI:10.3390/ani9100815 |
[67] |
MOULD F L, KLIEM K E, MORGAN R, et al. In vitro microbial inoculum: a review of its function and properties[J]. Anim Feed Sci Technol, 2005, 123-124: 31-50. DOI:10.1016/j.anifeedsci.2005.04.028 |
[68] |
COX M S, DEBLOIS C L, SUEN G. Assessing the response of ruminal bacterial and fungal microbiota to whole-rumen contents exchange in dairy cows[J]. Front Microbiol, 2021, 12: 665776. DOI:10.3389/fmicb.2021.665776 |
[69] |
COLE N A. Effects of animal-to-animal exchange of ruminal contents on the feed intake and ruminal characteristics of fed and fasted lambs[J]. J Anim Sci, 1991, 69(4): 1795-1803. DOI:10.2527/1991.6941795x |
[70] |
BELANCHE A, PALMA-HIDALGO J M, NEJJAM I, et al. Inoculation with rumen fluid in early life as a strategy to optimize the weaning process in intensive dairy goat systems[J]. J Dairy Sci, 2020, 103(6): 5047-5060. DOI:10.3168/jds.2019-18002 |
[71] |
YU S B, ZHANG G Y, LIU Z B, et al. Repeated inoculation with fresh rumen fluid before or during weaning modulates the microbiota composition and co-occurrence of the rumen and colon of lambs[J]. BMC Microbiol, 2020, 20(1): 29. DOI:10.1186/s12866-020-1716-z |
[72] |
王佳堃, 杨斌, 黄开朗. 幼龄反刍动物消化道微生物演替与消化道发育及其调控[J]. 动物营养学报, 2020, 32(10): 4697-4707. WANG J K, YANG B, HUANG K L. Regulation of microbial succession and gastrointestinal development in young ruminants[J]. Chinese Journal of Animal Nutrition, 2020, 32(10): 4697-4707. DOI:10.3969/j.issn.1006-267x.2020.10.021 (in Chinese) |
[73] |
ABDELSATTAR M M, VARGAS-BELLO-PÉREZ E, ZHUANG Y M, et al. Impact of dietary supplementation of β-hydroxybutyric acid on performance, nutrient digestibility, organ development and serum stress indicators in early-weaned goat kids[J]. Anim Nutr, 2022, 9: 16-22. DOI:10.1016/j.aninu.2021.11.003 |
[74] |
GÓRKA P, KOWALSKI Z M, ZABIELSKI R, et al. Invited review: use of butyrate to promote gastrointestinal tract development in calves[J]. J Dairy Sci, 2018, 101(6): 4785-4800. DOI:10.3168/jds.2017-14086 |
[75] |
LIANG G X, MALMUTHUGE N, MCFADDEN T B, et al. Potential regulatory role of microRNAs in the development of bovine gastrointestinal tract during early life[J]. PLoS One, 2014, 9(3): e92592. DOI:10.1371/journal.pone.0092592 |
[76] |
WON M Y, OYAMA L B, COURTNEY S J, et al. Can rumen bacteria communicate to each other[J]. Microbiome, 2020, 8(1): 23. DOI:10.1186/s40168-020-00796-y |
[77] |
张定然, 吴燕, 邢小光, 等. 瘤胃液移植技术及应用的研究进展[J]. 中国畜牧杂志, 2021, 57(8): 28-32. ZHANG D R, WU Y, XING X G, et al. Research progress on the technology and application of rumen fluid transplantion[J]. Chinese Journal of Animal Science, 2021, 57(8): 28-32. DOI:10.19556/j.0258-7033.20200812-04 (in Chinese) |
[78] |
DEFILIPP Z, BLOOM P P, SOTO M T, et al. Drug-Resistant E. coli bacteremia transmitted by fecal microbiota transplant[J]. N Engl J Med, 2019, 381(21): 2043-2050. DOI:10.1056/NEJMoa1910437 |
[79] |
焦帅, 付域泽, 张乃锋. 下一代益生菌作用机制及功能特性研究进展[J]. 动物营养学报, 2022, 34(8): 4836-4846. JIAO S, FU Y Z, ZHANG N F. Progress on mechanism and functional characteristics of next generation probiotics[J]. Chinese Journal of Animal Nutrition, 2022, 34(8): 4836-4846. DOI:10.3969/j.issn.1006-267x.2022.08.010 (in Chinese) |
[80] |
HU J, CHEN L L, TANG Y M, et al. Standardized preparation for fecal microbiota transplantation in pigs[J]. Front Microbiol, 2018, 9: 1328. DOI:10.3389/fmicb.2018.01328 |
[81] |
QAZI T, AMARATUNGA T, BARNES E L, et al. The risk of inflammatory bowel disease flares after fecal microbiota transplantation: systematic review and meta-analysis[J]. Gut Microbes, 2017, 8(6): 574-588. DOI:10.1080/19490976.2017.1353848 |
[82] |
FANIYI T O, ADEGBEYE M J, ELGHANDOUR M M M Y, et al. Role of diverse fermentative factors towards microbial community shift in ruminants[J]. J Appl Microbiol, 2019, 127(1): 2-11. DOI:10.1111/jam.14212 |
[83] |
WEIMER P J, STEVENSON D M, MANTOVANI H C, et al. Host specificity of the ruminal bacterial community in the dairy cow following near-total exchange of ruminal contents[J]. J Dairy Sci, 2010, 93(12): 5902-5912. DOI:10.3168/jds.2010-3500 |
[84] |
NAVARRE C B, BAIRD A N, PUGH D G. Diseases of the gastrointestinal system[M]//PUGH D G, BAIRD A N. Sheep and Goat Medicine. 2nd ed. Amsterdam: Elsevier, 2012: 71-105.
|
[85] |
ASRAT M, MANOHAR B M, MELKAMU S. Clinical and rumen fluid evaluation of ruminal disorders in cattle[J]. J Anim Res, 2015, 5(2): 359-372. DOI:10.5958/2277-940X.2015.00062.5 |
[86] |
KRAUSE K M, OETZEL G R. Understanding and preventing subacute ruminal acidosis in dairy herds: a review[J]. Anim Feed Sci Technol, 2006, 126(3-4): 215-236. DOI:10.1016/j.anifeedsci.2005.08.004 |
[87] |
ZHANG T, LU G C, ZHAO Z, et al. Washed microbiota transplantation vs.manual fecal microbiota transplantation: clinical findings, animal studies and in vitro screening[J]. Protein Cell, 2020, 11(4): 251-266. DOI:10.1007/s13238-019-00684-8 |
[88] |
ZHAO W, ABDELSATTAR M M, WANG X, et al. In vitro modulation of rumen fermentation by microbiota from the recombination of rumen fluid and solid phases[J]. Microbiol Spectr, 2023, 11(1): e03387-22. |
[89] |
CHAI J M, LV X K, DIAO Q Y, et al. Solid diet manipulates rumen epithelial microbiota and its interactions with host transcriptomic in young ruminants[J]. Environ Microbiol, 2021, 23(11): 6557-6568. DOI:10.1111/1462-2920.15757 |
[90] |
马涛, 张乃锋, 屠焰, 等. 羔羊瘤胃微生物区系建立、发展与调控技术研究进展[J]. 动物营养学报, 2020, 32(10): 4733-4742. MA T, ZHANG N F, TU Y, et al. Research advance in establishment, development and regulation technology of rumen microbiota in lambs[J]. Chinese Journal of Animal Nutrition, 2020, 32(10): 4733-4742. DOI:10.3969/j.issn.1006-267x.2020.10.025 (in Chinese) |
[91] |
WALTER J, ARMET A M, FINLAY B B, et al. Establishing or exaggerating causality for the gut microbiome: lessons from human microbiota-associated rodents[J]. Cell, 2020, 180(2): 221-232. DOI:10.1016/j.cell.2019.12.025 |
[92] |
WALTER J, MALDONADO-GÓMEZ M X, MARTÍNEZ I. To engraft or not to engraft: an ecological framework for gut microbiome modulation with live microbes[J]. Curr Opin Biotechnol, 2018, 49: 129-139. DOI:10.1016/j.copbio.2017.08.008 |
[93] |
LAVELLE A, SOKOL H. Understanding and predicting the efficacy of FMT[J]. Nat Med, 2022, 28(9): 1759-1760. DOI:10.1038/s41591-022-01991-0 |
(编辑 孟培)