畜牧兽医学报  2023, Vol. 54 Issue (4): 1545-1554. DOI: 10.11843/j.issn.0366-6964.2023.04.018    PDF    
不同粗蛋白水平人工鸽乳对乳鸽生长性能、血清抗氧化水平及肠道发育的影响
王明礼1, 王猛1, 李延森1, 徐善金2, 韩国锋1, 李春梅1     
1. 南京农业大学动物科技学院 家畜环境控制与智慧生产研究中心, 南京 210095;
2. 南京东晨鸽业有限公司, 南京 211500
摘要:本试验旨在研究不同粗蛋白水平人工鸽乳对乳鸽生长性能、血清抗氧化及肠道发育的影响,以确定合理的人工鸽乳粗蛋白水平。试验选取7日龄乳鸽192只,随机分为4组,每组8个重复,每个重复6只乳鸽。分别饲喂粗蛋白水平为16.5%、18%、19.5%、21%的人工鸽乳(CP16.5%组、CP18%组、CP19.5%组和CP21%组),饲养时间为18 d。结果表明:1)各组乳鸽初始体重、终末体重、平均日增重(ADG)、平均日采食量(ADFI)、料重比(F/G)均无显著差异(P>0.05)。2)CP21%组乳鸽胴体率最高且显著高于CP18%组与CP19.5%组(P < 0.05);CP16.5%组半净膛率最高且显著高于CP19.5%组(P < 0.05);各组全净膛率无显著差异(P>0.05);CP21%组乳鸽胸肌率最高且显著高于CP18%组(P < 0.05)。3)CP16.5%组乳鸽粗蛋白、粗脂肪和干物质的表观代谢率均为最高,但只有粗蛋白和干物质的表观代谢率显著高于其余各组(P < 0.05),各组之间粗脂肪的表观代谢率无显著差异(P>0.05)。4)CP18%组乳鸽的脾脏指数显著高于其他各组(P < 0.05);CP16.5%组乳鸽肾脏指数显著低于其他各组(P < 0.05);CP16.5%组的肌胃指数最高且显著高于其他各组(P < 0.05);CP16.5%组的法氏囊指数最高且显著高于CP21%组(P < 0.05);各组乳鸽的心脏、肝脏和腺胃指数均无显著差异(P>0.05)。5)CP21%组乳鸽十二指肠绒毛高度显著低于其余各组(P < 0.05),各组十二指肠隐窝深度无显著差异(P>0.05),CP21%组十二指肠的绒毛高度/隐窝深度(V/C)显著低于CP18%组和CP19.5%组(P < 0.05);各组乳鸽空肠与回肠的绒毛高度、隐窝深度、绒隐比均无显著差异(P>0.05)。6)CP16.5%组血清丙二醛显著低于CP21%组(P < 0.05),其余各组的血清总抗氧化能力、过氧化氢酶与超氧化物歧化酶水平均无显著差异(P>0.05)。综上所述,人工鸽乳粗蛋白水平为16.5%~21%时可以维持乳鸽的正常生长性能,随人工鸽乳粗蛋白水平增高,乳鸽胴体率和胸肌率增加,但血清抗氧化能力降低。人工鸽乳粗蛋白水平为16.5%时,粗蛋白表观代谢率最高,而且可以满足乳鸽生长营养需要。因此,在本试验条件下,推荐人工鸽乳粗蛋白水平为16.5%。
关键词乳鸽    人工鸽乳    粗蛋白水平    生长性能    肠道发育    
Effect of Different Crude Protein Levels of Artificial Crop Milk on Growth Performance, Serum Antioxidant Level and Intestinal Development of Squabs
WANG Mingli1, WANG Meng1, LI Yansen1, XU Shanjin2, HAN Guofeng1, LI Chunmei1     
1. Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
2. Nanjing Dongchen Pigeon Industry Co. Ltd., Nanjing 211500, China
Abstract: The aim of this experiment was to study the effects of different crude protein levels of artificial pigeon milk on growth performance, serum antioxidant and intestinal development of the suckling pigeons in order to determine a reasonable crude protein level of artificial pigeon milk. One hundred and ninety-two 7-day-old suckling pigeons were randomly divided into 4 groups with 8 replicates and 6 suckling pigeons in each group. They were fed artificial pigeon milk with crude protein levels of 16.5%, 18%, 19.5% and 21% (CP16.5%, CP18%, CP19.5% and CP21% groups), respectively, for 18 days. The results were showed as follows: 1) There were no significant differences in initial body weight, final body weight, average daily gain (ADG), average daily feed intake (ADFI) and feed/gain ratio (F/G) among the groups of suckling pigeons(P>0.05). 2) The carcass rate of suckling pigeons in CP21% group was the highest and significantly higher than those of CP18% and CP19.5% groups (P < 0.05); The half-evisceration rate in CP16.5% group was the highest and significantly higher than that in CP19.5% group (P < 0.05); There was no significant difference in the evisceration rate among all groups (P>0.05); The breast muscle rate in CP21% group was the highest and significantly higher than that of CP18% group (P < 0.05). 3) The apparent metabolic rates of crude protein, crude fat and dry matter in the CP16.5% group were the highest, but only the apparent metabolic rates of crude protein and dry matter in the CP16.5% group were significantly higher than those of the other groups (P < 0.05), and there was no significant difference in the apparent metabolic rates of crude fat among all groups (P>0.05). 4) The spleen index was significantly higher in the CP18% group than other groups (P < 0.05); The kidney index in the CP16.5% group was significantly lower than other groups (P < 0.05); The gizzard index in the CP16.5% group was the highest and significantly higher than other groups (P < 0.05); The bursal index in the CP16.5% group was the highest and significantly higher than the CP21% group (P < 0.05); The heart, liver and glandular stomach indices of the suckling pigeons had no significant difference among all groups (P>0.05). 5) The height of the duodenal villi in the CP21% group was significantly lower than those of the other groups (P < 0.05), the depth of the duodenal crypt had no significant difference among all groups (P>0.05), and the ratio of the duodenal villi height to crypt depth (V/C) ratio in the CP21% group was significantly lower than those of the CP18% and CP19.5% groups (P < 0.05). The jejunum and ileum morphology index had no significant difference among groups (P>0.05). 6) Serum malondialdehyde in the CP16.5% group was significantly lower than the CP21% group (P < 0.05), while serum total antioxidant capacity, catalase and superoxide dismutase levels among all groups had no significant difference (P>0.05). In conclusion, the crude protein level of artificial pigeon milk at 16.5% to 21% could maintain the normal growth performance of pigeons, and with the increase of crude protein level of artificial pigeon milk, the carcass rate and breast muscle rate of pigeons increased, but the serum antioxidant capacity decreased. The highest crude protein apparent metabolic rate was found at 16.5% crude protein level of artificial pigeon milk, and it could meet the nutritional needs of growing pigeons. Therefore, the crude protein level of artificial pigeon milk is recommended to be 16.5% under the conditions of this experiment.
Key words: squab pigeon    artificial crop milk    crude protein level    growth performance    intestinal development    

鸽子是继鸡、鸭、鹅之后的中国第四大家禽[1-2],属于晚成鸟,刚出壳未睁眼时无法行走与进食[3-4]。乳鸽出壳后到上市前全程需要亲鸽的鸽乳哺喂,在哺喂乳鸽10~15 d后亲鸽会产下下一窝鸽蛋,这延长了亲鸽的繁殖周期,严重限制了母鸽产雏数,制约着养鸽业的发展。为了减少亲鸽补喂时间,增加母鸽产雏数,增加养殖效益,常用人工鸽乳来代替亲鸽哺喂[5]。相比于其他家禽,有关鸽的营养需求研究较少,国内在肉鸽饲粮营养需要量方面仅有一个团体标准[6],人工鸽乳的粗蛋白水平也并不明确。如果人工鸽乳粗蛋白水平过高,不仅浪费蛋白饲料资源、增加饲养成本,还会影响乳鸽的生长性能甚至引发疾病[7-8]。因此,为了保障养鸽业的稳定发展,确定适宜的人工鸽乳粗蛋白水平成为研究的重点。谢青梅等[9]试验表明,乳鸽10日龄时就可以进行人工哺喂,最佳能量和粗蛋白需要分别为15.38 MJ·kg-1和53.3%(以干样计)。胡文娥等[10]用14日龄乳鸽进行人工哺育研究发现,随人工鸽乳粗蛋白水平的提高,乳鸽增重也随之增加,当超过一定的粗蛋白水平,对乳鸽增重无显著作用,粗蛋白水平在18%~20%较为理想。杜正智等[11]试验发现,粗蛋白含量为15.05%的饲料对乳鸽进行人工哺喂经济效果最好。为进一步明确人工鸽乳的最适粗蛋白含量,本试验以健康7日龄乳鸽为试验动物,通过哺喂不同粗蛋白水平的人工鸽乳,观察其对乳鸽生长性能及肠道发育的影响,探究人工鸽乳中合理的粗蛋白水平,为配置科学合理的人工鸽乳提供理论依据。

1 材料与方法 1.1 试验设计

选择7日龄乳鸽192只,公母各半,随机分为4组,每组8个重复,每个重复6只乳鸽。分别饲喂粗蛋白水平为16.5%、18%、19.5%、21%的人工鸽乳(CP16.5%组、CP18%组、CP19.5%组和CP21%组),饲养时间为18 d。试验期间,每日分别在7点、13点、20点进行3次人工哺喂。补喂量见表 1,哺喂的饲料为糊状液体饲料,料水比为1∶3,采取注射器式哺喂器进行哺喂。饲粮组成及营养成分见表 2

表 1 不同日龄人工鸽乳哺喂量(干物质) Table 1 Feeding amount of artificial pigeon milk at different days of ages (Dry matter)  
表 2 人工鸽乳组成及营养水平(风干基础) Table 2 Ingredients and nutrient composition of experimental diets (air-dry basis)  
1.2 试验材料

电子天平(FA-1004型,上海精密科学仪器有限公司);酶标仪(Thermo,美国);可调式微量移液器(Thermo,美国);超低温冰箱(合肥中科美菱);MX-201型冷冻高速离心机(TOMY,日本);石蜡切片机(Leica RM-2235);光学显微镜(YS-100,Nikon);匀浆机(PRO-200,美国PRO Scientific);凯氏定氮仪(kjeltec-8400,美国)。试验鸽来自南京东晨鸽业有限公司。

1.3 测定指标与方法

1.3.1 记录和统计哺喂量方法   饲喂前称取饲料总重量(g)与记录饲料总体积(mL),饲喂时记录各组各重复饲喂的饲料体积(mL),再通过公式:各重复饲喂重量(g)=饲料总重量(g)/饲料总体积(mL)*各重复饲喂的饲料体积(mL)。

1.3.2 生长性能   在乳鸽7日龄时称取初始重量,试验期间每隔2 d空腹称重1次,计算乳鸽7~25日龄平均日增重(ADG)、平均日采食量(ADFI)和料重比(F/G)。

1.3.3 屠宰性能   25日龄时每个重复随机选取1只乳鸽,记录乳鸽活重、胴体重、半净膛重、全净膛重、胸肌重,计算胴体率、半净膛率、全净膛率、胸肌率。

1.3.4 器官指数   屠宰后,称乳鸽的心、肝、脾、肾、肌胃、腺胃、法氏囊重量,并计算器官指数。其中器官指数计算公式如下:器官指数(%)=器官重量(g)/体重(g)×100。

1.3.5 肠道形态   屠宰后,将十二指肠、空肠和回肠各取一小部分置于4%多聚甲醛中,24 h后更换75%无水乙醇中保存,待测肠道绒毛高度和隐窝深度。剪切后进行石蜡包埋、切片、苏木精-伊红(hematoxylin-eosin staining, HE)染色,并在显微镜下观测切片,最后用Image J软件计算绒毛高度/隐窝深度(V/C)。

1.3.6 血清抗氧化指标   25日龄屠宰前,通过颈动脉采集血液5 mL,离心后取上清-80 ℃保存备用。测定血清中丙二醛(MDA)含量,超氧化物歧化酶(SOD)、过氧化氢酶(CAT)活性及总抗氧化能力(T-AOC),所用试剂盒均购于南京建成生物工程研究所。

1.3.7 表观消化率   在人工哺喂试验的第10、13、16天,采集各组饲料以及乳鸽粪便分别放于自封袋中,将粪便与10%盐酸充分混合固定(每10 g粪便喷洒1 mL盐酸)。最后将3 d的粪便分别混合,保存在-20 ℃冰箱中用于表观消化率的测定。以盐酸不溶灰分(AIA)作为内源性指示剂,计算乳鸽的表观消化率。根据张丽英[12]的方法测定饲料样品和粪便样品中的干物质(DM)、粗蛋白(CP)、粗脂肪(EE)的含量。

常规表观代谢率(ATTD)使用以下公式计算:

$ \begin{gathered} \operatorname{ATTD}(\%)=100-\left[\left(\mathrm{AIA}_{\mathrm{D}} \div \mathrm{AIA}_{\mathrm{F}}\right) \times\right. \\ \left.\left(\mathrm{DC}_{\mathrm{F}} \div \mathrm{DC}_{\mathrm{D}}\right) \times 100\right] \end{gathered} $

AIAD表示饲料样品中AIA的浓度;AIAF表示粪便样品中AIA的浓度;DCF表示粪便样品中营养成分的浓度;DCD表示饲料样品中营养成分的浓度。

1.4 数据统计与分析

所有数据经Excel 2013进行统计,应用SPSS 23.0进行单因素方差分析(one-way ANOVA),应用GraphPad Prism 8.2.1进行柱状图的绘制。数据以“平均值±标准误(SEM)”表示,P>0.05为差异不显著,P < 0.05为差异显著。

2 结果 2.1 不同粗蛋白水平人工鸽乳对乳鸽生长性能的影响

表 3可知,各组10、13、16、19、22和25日龄的乳鸽体重均无显著差异(P>0.05);CP19.5%组乳鸽平均日增重最高,为19.99 g·d-1;CP21%组的平均日采食量最高,为47.85 g·d-1;CP19.5%组的料重比最低,为2.37,但各组乳鸽ADG、ADFI和F/G均无显著差异(P>0.05)。

表 3 不同粗蛋白水平人工鸽乳对乳鸽生长性能的影响 Table 3 The effect of different crude protein levels of artificial crop milk on the growth performance of squabs
2.2 不同粗蛋白水平人工鸽乳对乳鸽屠宰性能的影响

表 4可知,CP21%组胴体率最高且显著高于CP18%组与CP19.5%组(P<0.05);CP16.5%组半净膛率最高且显著高于CP19.5%组(P<0.05);各组全净膛率无显著差异(P>0.05);CP21%组胸肌率最高且显著高于CP18%组(P<0.05)。

表 4 不同粗蛋白水平人工鸽乳对乳鸽屠宰性能的影响 Table 4 The effect of different crude protein levels of artificial crop milk on the slaughter performance of squabs  
2.3 不同粗蛋白水平人工鸽乳对乳鸽表观代谢率的影响

表 5可知,CP16.5%粗蛋白、粗脂肪和干物质的表观代谢率均为最高,粗蛋白和干物质的表观代谢率显著高于其余各组(P<0.05),各组之间粗脂肪的表观代谢率无显著差异(P>0.05)。

表 5 人工鸽乳各营养成分的表观代谢率 Table 5 Apparent metabolic rate of various nutrients of artificial crop milk  
2.4 不同粗蛋白水平人工鸽乳对乳鸽器官指数的影响

表 6可知,CP18%组的脾脏指数显著高于其他各组(P<0.05);CP16.5%组的肾脏指数显著低于其他各组(P<0.05);CP16.5%组的肌胃指数最高且显著高于其他各组(P<0.05);CP16.5%组的法氏囊指数最高且显著高于CP21%组(P<0.05)。各组心脏、肝脏和腺胃指数均无显著差异(P>0.05)。

表 6 不同粗蛋白水平人工鸽乳对乳鸽器官指数的影响 Table 6 The effect of different crude protein levels in artificial crop milk on the organ index of squabs  
2.5 不同粗蛋白水平人工鸽乳对乳鸽肠道形态的影响

表 7可知,CP21%组的十二指肠绒毛高度显著低于其余各组(P<0.05),各组十二指肠隐窝深度无显著差异(P>0.05),CP21%组十二指肠的绒隐比显著低于CP18%组和CP19.5%组(P<0.05);各组乳鸽空肠与回肠的绒毛高度、隐窝深度、V/C均无显著差异(P>0.05)。

表 7 不同粗蛋白水平人工鸽乳对乳鸽肠道形态的影响 Table 7 The effects of different crude protein levels of artificial crop milk on intestinal morphology of squabs
2.6 不同粗蛋白水平人工鸽乳对乳鸽血清抗氧化水平的影响

图 1可知,CP16.5%组的MDA显著低于CP21%组(P<0.05),其余各组的血清T-AOC、CAT与T-SOD水平均无显著差异(P>0.05)。

图 1 不同粗蛋白水平人工鸽乳对乳鸽血清抗氧化水平的影响 Fig. 1 The effect of different crude protein levels in artificial crop milk on anti-oxidation in serum of squabs
3 讨论

NRC(美国国家科学研究委员会)至今未提供鸽的营养需要标准,导致肉鸽饲料大多是参考肉鸡饲料营养标准进行配置。因此要配制更精确的人工鸽乳,首先要探究乳鸽的营养需要。蛋白质是生命活动的直接执行者,是动物机体组织和动物产品的主要成分[13]。王晓慧[14]研究表明,“2+4”肉鸽养殖模式下,从乳鸽的生产性能、屠宰性能、肉品质角度看,18%的粗蛋水平日粮较好。王修启等[15]研究表明,饲粮粗蛋白水平为16%基本能满足种鸽“2+4”的生产需要。朱丽慧等[16]研究表明,在“2+2”养殖模式下,日粮粗蛋白水平为18%时乳鸽肉品质最好。Yang和Vohra[17]研究表明,乳鸽能量需要量为13.39 MJ·kg-1,粗蛋白需要量为20%。Ospina-Rojas等[18]研究表明,在平衡氨基酸的情况下,肉仔鸡饲粮粗蛋白水平由19.0%降低到16.0%,对42日龄肉鸡体重无显著影响。本研究表明,哺喂不同粗蛋白水平的人工鸽乳对乳鸽的终末体重、日增重、料重比均无显著影响,与王晓慧[14]研究不一致,这可能与试验饲养环境及饲料原料不同有关。屠宰性能是畜禽肉产量最直观的衡量标准。研究发现,粗蛋白水平能影响动物胸肌率[19-20]。本试验中,哺喂不同粗蛋白水平人工鸽乳,乳鸽活重、胴体重、半净膛重等无显著差异,但粗蛋白水平越高,乳鸽胴体率、胸肌率越高,将人工鸽乳粗蛋白水平由16.5%增加到21%,可使胸肌率提高4.7%,与王晓慧[14]研究一致。但人工鸽乳粗蛋白水平为16.5%时,乳鸽的半净膛率最高,这可能与样本数相对较少,不同人员进行器官分割有误差相关。人工鸽乳粗蛋白水平为16.5%时粗蛋白表观代谢率显著高于其他组,说明人工鸽乳粗蛋白水平过高导致蛋白浪费严重,而粗脂肪代谢率各组之间无显著差异。吴曼等[21]分别对公、母信鸽进行营养物质利用率研究,发现CP15%组的粗蛋白和干物质代谢率均显著高于CP13%组,粗脂肪代谢率无显著差异。李杨等[8]发现,乳鸽在CP水平分别为17%或18%时沉积氮最高。不同的试验结果与试验设计的不同蛋白梯度和饲养条件有关。

器官指数是指器官重与活体重之比,器官指数的大小表示器官的发育程度。人工鸽乳粗蛋白水平不同,乳鸽的心、肝、腺胃器官指数无显著差异,而CP16.5%组乳鸽肾脏器官指数显著低于其他3组乳鸽,可能由于人工鸽乳粗蛋白水平过高,肾负担过大导致。胸腺、法氏囊、脾是禽类重要的免疫器官, 其指数是机体免疫器官发育的主要指标, 可在一定程度上表明免疫功能的强弱[22]。CP18%组乳鸽脾脏器官指数显著高于其他组,该组免疫功能可能较强于其他组,具体原因需要进一步研究。

家禽小肠黏膜绒毛高度与隐窝深度是评价小肠发育程度的重要指标,动物消化吸收能力与肠道绒毛结构的变化密切相关[23-24]。小肠黏膜绒毛高度越高,与食糜接触的表面积越大,表明肠道的消化吸收功能越强,隐窝深度是肠道上皮细胞增殖率与成熟度的重要指标,隐窝变深则表明细胞增殖率下降,分泌功能降低[25-26]。本研究中,随人工鸽乳粗蛋白水平增高,乳鸽十二指肠黏膜绒毛略有增高,绒隐比增大,但差异不显著,十二指肠隐窝深度无显著变化,而人工鸽乳粗蛋白水平为21%时,乳鸽十二指肠黏膜绒毛高度、绒毛高度/隐窝深度均减小。乳鸽空肠与回肠绒毛高度、隐窝深度无显著变化。而过高粗蛋白水平人工鸽乳会影响乳鸽肠道十二指肠绒毛发育,有研究表明,饲喂高蛋白水平日粮时,仔猪小肠隐窝深度显著加深,且V/C显著降低[27-29]

乳鸽生长速度快,体内营养物质代谢旺盛,特别是蛋白质和脂肪代谢,当机体快速消耗氧气和能量时会积累自由基[30]。而且MDA含量增加会影响人类健康,并导致糖酵解的不良变化,也会形成不良的风味和气味[31-32]。本试验中,CP21%组乳鸽血清MDA含量显著高于其他3组,虽然T-SOD、T-AOC、CAT无显著差异,但随人工鸽乳粗蛋白水平的增加,T-SOD、CAT含量均呈下降趋势,故CP16.5%、CP18%两组乳鸽抗氧化能力最强。

4 结论

综上所述,当人工鸽乳中粗蛋白水平在16.5%~ 21%范围时,对乳鸽生长性能无显著影响,但随着人工鸽乳粗蛋白水平的增高,降低了乳鸽血清抗氧化能力。人工鸽乳粗蛋白水平为16.5%时,粗蛋白的表观代谢率最高,而且也可以满足乳鸽生长营养需要。因此在本试验条件下,人工鸽乳粗蛋白推荐水平为16.5%。

参考文献
[1]
XU Q Q, LI H Y, ZHOU W T, et al. Age-related changes in serum lipid levels, hepatic morphology, antioxidant status, lipid metabolism related gene expression and enzyme activities of domestic pigeon squabs (Columba livia)[J]. Animals, 2020, 10(7): 1121. DOI:10.3390/ani10071121
[2]
梁雅茜, 杨永磊, 胥蕾, 等. 亲鸽日粮添加维生素C对乳鸽生长性能、屠宰性能、肉品质及血清生化指标的影响[J]. 饲料研究, 2022, 45(13): 39-43.
LIANG Y Q, YANG Y L, XU L, et al. Effect of adding vitamin C to parent pigeons' diets on growth performance, slaughter performance, meat quality and serum biochemical indexes of squabs[J]. Feed Research, 2022, 45(13): 39-43. (in Chinese)
[3]
SHAPIRO M D, DOMYAN E T. Domestic pigeons[J]. Curr Biol, 2013, 23(8): R302-R303. DOI:10.1016/j.cub.2013.01.063
[4]
CHEN M J, FU Z, JIANG S G, et al. Targeted disruption of TORC1 retards young squab growth by inhibiting the synthesis of crop milk protein in breeding pigeon (Columba livia)[J]. Poult Sci, 2020, 99(1): 416-422. DOI:10.3382/ps/pez513
[5]
常玲玲, 汤青萍, 刘佳佳, 等. 不同时期鸽乳营养水平及生理活性物质动态变化分析[J]. 中国畜牧兽医, 2021, 48(9): 3215-3222.
CHANG L L, TANG Q P, LIU J J, et al. Analysis on dynamic changes of nutrient levels and physiological active substances in pigeon milk at different periods of squabs[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(9): 3215-3222. DOI:10.16431/j.cnki.1671-7236.2021.09.012 (in Chinese)
[6]
赵东栋, 李星, 王铮, 等. 种鸽饲粮不同水平铁对乳鸽体重、屠宰性能、肉品质及血液指标的影响[J]. 动物营养学报, 2022, 34(6): 3635-3644.
ZHAO D D, LI X, WANG Z, et al. Effects of different levels of iron in breeding pigeon diets on body weight, slaughter performance, meat quality and blood indexes of squabs[J]. Chinese Journal of Animal Nutrition, 2022, 34(6): 3635-3644. DOI:10.3969/j.issn.1006-267x.2022.06.025 (in Chinese)
[7]
赵洁, 张贤军, 李海英. 不同蛋白水平对种鸽生产性能的影响[J]. 四川畜牧兽医, 2000, 27(12): 25.
ZHAO J, ZHANG X J, LI H Y. An effect of the different leval protein concenf of breeding pigen's producl performance[J]. Sichuan Animal & Veterinary Sciences, 2000, 27(12): 25. DOI:10.3969/j.issn.1001-8964.2000.12.016 (in Chinese)
[8]
李杨, 李复煌, 余斯炅, 等. 不同哺育模式和蛋白水平对乳鸽生长性能、屠宰性能和氮平衡的影响[J]. 中国畜牧杂志, 2022, 58(2): 161-166.
LI Y, LI F H, YU S J, et al. Effects of different feeding patterns and protein levels on growth performance, slaughter performance and nitrogen balance of suckling pigeons[J]. Chinese Journal of Animal Science, 2022, 58(2): 161-166. DOI:10.19556/j.0258-7033.20210103-01 (in Chinese)
[9]
谢青梅, 毕英佐, 陈朝霞, 等. 不同人工鸽乳对0~10日龄乳鸽的饲喂效果[J]. 中国畜牧杂志, 2001, 37(1): 24-26.
XIE Q M, BI Y Z, CHEN Z X, et al. Feeding effects of different artificial pigeon milk on 0~10 day old squabs[J]. Chinese Journal of Animal Science, 2001, 37(1): 24-26. DOI:10.3969/j.issn.0258-7033.2001.01.010 (in Chinese)
[10]
胡文娥, 陈益填, 江玉云, 等. 不同粗蛋白水平对乳鸽生长后期增重的影响[J]. 广东畜牧兽医科技, 2006, 31(4): 19-21.
HU W E, CHEN Y T, JIANG Y Y, et al. Influence of different dietary crude protein level on latter weigh gain in young pigeon[J]. Guangdong Journal of Animal and Veterinary Science, 2006, 31(4): 19-21. DOI:10.3969/j.issn.1005-8567.2006.04.006 (in Chinese)
[11]
杜正智, 岳炳辉, 杜建国, 等. 乳鸽哺喂不同能量蛋白质饲料的效果[J]. 甘肃畜牧兽医, 1993, 23(2): 7-8.
DU Z Z, YUE B H, DU J G, et al. Effects of feeding pigeons with different energy protein feeds[J]. Gansu Animal Husbandry and Veterinary, 1993, 23(2): 7-8. (in Chinese)
[12]
张丽英. 饲料分析及饲料质量检测技术[M]. 3版. 北京: 中国农业大学出版社, 2007.
ZHANG L Y. Feed analysis and feed quality testing technology[M]. 3rd ed. Beijing: China Agricultural University Press, 2007. (in Chinese)
[13]
马静, 葛熙, 昌增益. 蛋白质功能研究: 历史、现状和将来[J]. 生命科学, 2007, 19(3): 294-300.
MA J, GE X, CHANG Z Y. Protein function studies: history, current status and future trends[J]. Chinese Bulletin of Life Sciences, 2007, 19(3): 294-300. DOI:10.3969/j.issn.1004-0374.2007.03.008 (in Chinese)
[14]
王晓慧. 日粮粗蛋白质水平对乳鸽生产性能及种鸽繁殖性能的影响[D]. 广州: 华南农业大学, 2016.
WANG X H. Effect of dietary crude protein levels on production performance of squabs and reproductive performance of breeding pigeons[D]. Guangzhou: South China Agricultural University, 2016. (in Chinese)
[15]
王修启, 刘松慧, 罗庆斌, 等. 肉鸽养殖"2+4"生产模式人工孵化技术研究[J]. 养禽与禽病防治, 2009(2): 43-44.
WANG X Q, LIU S H, LUO Q B, et al. Research on artificial hatching technology of meat pigeon breeding "2+4" production mode[J]. Poultry Husbandry and Disease Control, 2009(2): 43-44. (in Chinese)
[16]
朱丽慧, 肖长峰, 侯浩宾, 等. 不同蛋白质水平对天山雪乳鸽生长性能、屠宰性能及肉品质的影响[J]. 中国畜牧杂志, 2021, 57(4): 173-178.
ZHU L H, XIAO C F, HOU H B, et al. Effects of different protein levels on growth performance, slaughter performance and meat quality of Tianshan snow pigeons[J]. Chinese Journal of Animal Science, 2021, 57(4): 173-178. (in Chinese)
[17]
YANG M C, VOHRA P. Protein and metabolizable energy requirements of hand-fed squabs from hatching to 28 days of age[J]. Poult Sci, 1987, 66(12): 2017-2023. DOI:10.3382/ps.0662017
[18]
OSPINA-ROJAS I C, MURAKAMI A E, DUARTE C R A, et al. Valine, isoleucine, arginine and glycine supplementation of low-protein diets for broiler chickens during the starter and grower phases[J]. Brit Poultry Sci, 2014, 55(6): 766-773.
[19]
林厦菁, 周桂莲, 蒋守群, 等. 22~63日龄快大型黄羽肉鸡粗蛋白质营养需要量[J]. 动物营养学报, 2014, 26(6): 1453-1466.
LIN X J, ZHOU G L, JIANG S Q, et al. Crude protein requirement of fast-growing yellow broilers aged from 22 to 63 days[J]. Chinese Journal of Animal Nutrition, 2014, 26(6): 1453-1466. (in Chinese)
[20]
NAHASHON S N, ADEFOPE N, AMENYENU A, et al. Effects of dietary metabolizable energy and crude protein concentrations on growth performance and carcass characteristics of French guinea broilers[J]. Poult Sci, 2005, 84(2): 337-344.
[21]
吴曼, 麻贺鹏, 俞凤燕, 等. 不同粗蛋白水平的饲料对信鸽营养代谢率的影响[J]. 国外畜牧学(猪与禽), 2008, 28(6): 68-69.
WU M, MA H P, YU F Y, et al. Effects of feeds with different crude protein levels on the nutritional metabolic rate of carrier pigeons[J]. Pigs and Poultry, 2008, 28(6): 68-69. (in Chinese)
[22]
李蕴玉, 耿田田, 李佩国, 等. 中药超微粉对雏鸡生长及免疫器官指数的影响[J]. 中国兽医杂志, 2019, 55(7): 48-51.
LI Y Y, GENG T T, LI P G, et al. Effect of ultrafine powder of Chinese medicine on the growth and immune organ index in chicken[J]. Chinese Journal of Veterinary Medicine, 2019, 55(7): 48-51. (in Chinese)
[23]
李垚, 单安山, 李焕江, 等. 表皮生长因子和胰岛素样生长因子-Ⅰ对21日龄断奶仔猪胃和小肠发育的作用[J]. 动物营养学报, 2005, 17(3): 44-49.
LI Y, SHAN A S, LI H J, et al. Effect of epidermal growth factor and insulin-like growth factor-Ⅰ on gaster and small intestine of weaned piglets at 21 day of age[J]. Acta Zoonutrimenta Sinica, 2005, 17(3): 44-49. (in Chinese)
[24]
HEDEMANN M S, KNUDSEN KE B. Resistant starch for weaning pigs — Effect on concentration of short chain fatty acids in digesta and intestinal morphology[J]. Livest Sci, 2007, 108(1-3): 175-177.
[25]
VAN NGUYEN T, BUNCHASAK C. Effects of dietary protein and energy on growth performance and carcass characteristics of Betong chicken at early growth stage[J]. Songklanakarin Journal of Science & Technology, 2005, 27(6): 1171-1178.
[26]
成令忠, 钟翠平, 蔡文琴. 现代组织学[M]. 上海: 上海科学技术文献出版社, 2003: 786-828.
CHENG L Z, ZHONG C P, CAI W Q. Contemporary histology[M]. Shanghai: Shanghai Scientific and Technological Literature Publishing House, 2003: 786-828. (in Chinese)
[27]
GU X, LI D. Effect of dietary crude protein level on villous morphology, immune status and histochemistry parameters of digestive tract in weaning piglets[J]. Anim Feed Sci Technol, 2004, 114(1-4): 113-126.
[28]
OPAPEJU F O, RADEMACHER M, BLANK G, et al. Effect of low-protein amino acid-supplemented diets on the growth performance, gut morphology, organ weights and digesta characteristics of weaned pigs[J]. Animal, 2008, 2(10): 1457-1464.
[29]
郝瑞荣, 岳文斌, 范志勇, 等. 日粮蛋白质水平对断奶仔猪肠道发育的影响[J]. 激光生物学报, 2009, 18(3): 383-388.
HAO R R, YUE W B, FAN Z Y, et al. Effects of dietary protein content on intestinal development of early-weaned pigs[J]. Acta Laser Biology Sinica, 2009, 18(3): 383-388. (in Chinese)
[30]
CASTILLO C, HERNáNDEZ J, VALVERDE I, et al. Plasma malonaldehyde (MDA) and total antioxidant status (TAS) during lactation in dairy cows[J]. Res Vet Sci, 2006, 80(2): 133-139.
[31]
MUTWAKIL M Z. Meat spoilage mechanisms and preservation techniques: A critical review[J]. Am J Agric Biol Sci, 2011, 6(4): 486-510.
[32]
JIANG S G, PAN N X, CHEN M J, et al. Effects of dietary supplementation with DL-methionine and DL-methionyl-DL-methionine in breeding pigeons on the carcass characteristics, meat quality and antioxidant activity of squabs[J]. Antioxidants (Basel), 2019, 8(10): 435.

(编辑   范子娟)