畜牧兽医学报  2023, Vol. 54 Issue (4): 1429-1440. DOI: 10.11843/j.issn.0366-6964.2023.04.008    PDF    
PDCD4对奶山羊乳腺上皮细胞的凋亡及β-酪蛋白和TG合成的影响
朱俊儒1, 韦唯2, 裴党帅3, 张芬鹊4, 段瑜5, 郭永峰6, 江悦1, 夏树立7, 韩静7, 侯金星8, 安小鹏1     
1. 西北农林科技大学动物科技学院, 杨凌 712100;
2. 渭南市动物疫病预防控制中心, 渭南 714000;
3. 渭南市动物卫生工作站, 渭南 714000;
4. 渭南市农产品质量安全检验检测中心, 渭南 714000;
5. 渭南市农业技术推广中心, 渭南 714000;
6. 黄骅市农业农村局, 黄骅 061100;
7. 天津市农业科学院畜牧兽医研究所, 天津 300112;
8. 杨凌职业技术学院, 杨凌 712100
摘要:旨在探究奶山羊程序性细胞死亡因子4(programmed cell death 4,PDCD4)对乳腺上皮细胞(goat mammary epithelial cells,GMECs)凋亡及乳成分的调控作用。本研究通过双荧光素酶报告试验验证miR-21-5p与PDCD4的靶向关系,通过RT-qPCR、Western blot试验检测miR-21-5p对PDCD4的调控作用;将PDCD4干扰小RNA(si-PDCD4)与PDCD4过表达载体(pc3.1-PDCD4)转染进GMECs以探究PDCD4对GMECs的影响,通过EdU、CCK-8试验检测转染后对GMECs增殖的影响,利用流式细胞术检测转染后对GMECs凋亡的影响;利用ELISA试剂盒检测转染后GMECs中β-酪蛋白和甘油三酯(TG)的分泌情况;最后通过Western blot试验检测转染后GMECs中PI3K、mTOR、S6K、ERK、Bcl-2、Bax等蛋白的表达。双荧光素酶报告试验结果表明,PDCD4与miR-21-5p靶向结合;EdU、CCK-8及流式细胞术试验结果表明,过表达PDCD4后GMECs活力显著降低(P < 0.01),即PDCD4抑制GMECs增殖并促进GMECs凋亡(P < 0.01),干扰PDCD4的表达后GMECs活力显著提高(P < 0.01),GMECs的凋亡水平显著降低(P < 0.01);ELISA试验结果表明,过表达PDCD4后GMECs中β-酪蛋白和TG的分泌量显著降低(P < 0.01),降低PDCD4的表达后GMECs中β-酪蛋白和TG的分泌量显著上升(P < 0.01);Western blot试验结果表明,与对照组相比,过表达PDCD4后磷酸化的PI3K、mTOR、S6K、ERK蛋白表达显著降低(P < 0.05),Bax蛋白表达被显著上调(P < 0.01),Bcl-2蛋白表达水平被显著下调(P < 0.01);降低PDCD4的表达后,PI3K、mTOR、S6K、ERK的磷酸化蛋白表达显著提高(P < 0.05),Bax的表达则显著下降(P < 0.05),同时显著上调了Bcl-2的表达(P < 0.05)。本研究结果表明,PDCD4通过激活ERK/Bcl-2/Bax信号通路促进奶山羊乳腺上皮细胞的凋亡,并通过抑制PI3K/mTOR/S6K信号通路降低奶山羊乳腺上皮细胞中β-酪蛋白和TG的分泌,miR-21-5p在GMECs中与PDCD4靶向结合并调控其表达。
关键词PDCD4    miR-21-5p    奶山羊    凋亡    β-酪蛋白    TG    
Effects of PDCD4 on the Apoptosis of Dairy Goat Mammary Epithelial Cells and the Synthesis of β-casein and TG
ZHU Junru1, WEI Wei2, PEI Dangshuai3, ZHANG Fenque4, DUAN Yu5, GUO Yongfeng6, JIANG Yue1, XIA Shuli7, HAN Jing7, HOU Jinxing8, AN Xiaopeng1     
1. College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China;
2. Weinan Animal Disease Prevention and Control Center, Weinan 714000, China;
3. Weinan Animal Health Workstation, Weinan 714000, China;
4. Weinan Agricultural Product Quality and Safety Inspection and Testing Center, Weinan 714000, China;
5. Weinan Agricultural Technology Promotion Center, Weinan 714000, China;
6. Huanghua Municipal Bureau of Agriculture and Rural Affairs, Huanghua 061100, China;
7. Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agriculture Sciences, Tianjin 300112, China;
8. Yangling Vocational Technical College, Yangling 712100, China
Abstract: The aim of this study was to investigate the regulatory effects of programmed cell death 4 (PDCD4) on the apoptosis of mammary epithelial cells (GMECs) and milk composition in goat. In this study, the dual luciferase reporter assay was used to verify the targeting relationship between miR-21-5p and PDCD4, and the regulatory effects of miR-21-5p on PDCD4 was detected by RT-qPCR and Western blot. The PDCD4 small interfering RNA (si-PDCD4) and PDCD4 overexpression vector (pc3.1-PDCD4) were transfected into GMECs to explore the effect of PDCD4. EdU and CCK-8 tests were used to detect the effect of PDCD4 on the proliferation of GMECs, flow cytometry was chosen to detect its effect on apoptosis of GMECs. After transfection, the ELISA kit was used to detect the secretion of β-casein and triglyceride (TG) in GMECs. Finally, the Western blot tests was used to detect the protein expression of PI3K, mTOR, S6K, ERK, Bcl-2, Bax in GMECs. The results of the dual luciferase reporter assay showed that PDCD4 was one of the target genes of miR-21-5p. The results of the EdU, CCK-8 and flow cytometry tests showed that the activity of GMECs was significantly decreased after overexpression of PDCD4 (P < 0.01), indicated that PDCD4 inhibited the proliferation of GMECs and promoted the apoptosis of GMECs (P < 0.01); the activity of GMECs was significantly increased after interfering PDCD4 (P < 0.01), the pro-apoptotic level of GMECs was significantly reduced (P < 0.01). The results of the ELISA kit test showed that the secretion of β-casein and TG in GMECs was significantly decreased after overexpression of PDCD4 (P < 0.01), and they were significantly increased after interfering PDCD4 (P < 0.01). The results of the Western blot test showed that, compared with the control group, the protein expressions of phosphorylated PI3K, mTOR, S6K and ERK were significantly decreased after overexpression PDCD4 (P < 0.05), the protein expression of Bax was significantly up-regulated (P < 0.01), and the protein expression of Bcl-2 was significantly down-regulated (P < 0.01). After interfering PDCD4, the protein expression of phosphorylated PI3K, mTOR, S6K and ERK were significantly increased (P < 0.05), the protein expression of Bax was significantly decreased (P < 0.05), and the expression of Bcl-2 was significantly up-regulated (P < 0.05). This study indicates that PDCD4 promotes the apoptosis of dairy goat mammary epithelial cells by activating the ERK/Bcl-2/Bax signaling pathway, and decreases the secretion of β-casein and TG in dairy goat mammary epithelial cells by inhibiting PI3K/mTOR/S6K signaling pathway. And miR-21-5p targets PDCD4 and can regulate its expression in GMECs.
Key words: PDCD4    miR-21-5p    milk goat    apoptosis    beta-casein    TG    

羊奶营养价值丰富,营养比例与人母乳相近,富含人体所需的乳糖、脂肪、蛋白质、微量元素及功能性营养素[1-4]。羊奶中酪蛋白占所有蛋白质的近80%,富含A2型β-酪蛋白,不仅有丰富的必需氨基酸(如亮氨酸、缬氨酸和异亮氨酸等)为人体提供营养,而且拥有更低的免疫原性[5-6],不会刺激HMC-1细胞释放组胺和TNF-α,可以作为牛奶蛋白的优质替代品[7-9]。而除了羊奶蛋白的营养价值外,羊奶也比牛奶含有更多中链甘油三酯和更小的脂肪颗粒[10]。研究表明,这些脂质使羊奶更好消化[11-12],并且有促进大脑发育和提高人体免疫力的潜力[13-15]。因此,如何调控提高羊奶产量及羊奶成分逐渐成为研究热点。

乳汁由哺乳动物的乳腺上皮细胞合成,因此,乳腺的泌乳能力很大程度上取决于有功能的乳腺上皮细胞的数量和效率。乳腺上皮细胞的增殖和凋亡受到多个重要功能基因的共同调控。PDCD4是一种肿瘤抑制基因,1995年在小鼠体内被发现,在调控细胞周期与细胞凋亡过程中发挥着重要作用[16-17]PDCD4通过与真核翻译起始因子eIF4A结合抑制RNA解旋酶活性,从而阻碍mRNA甲基化脱帽过程和蛋白质翻译,进而促进细胞凋亡[18-19]。Li等[20]报道,SKP2通过抑制乳腺癌中PDCD4表达促进细胞增殖、抑制细胞凋亡并增强对DNA损伤的反应。以上研究均表明,PDCD4抑制细胞增殖,促进细胞凋亡。此外还有研究表明,在脂多糖刺激的巨噬细胞中,miR-21可以靶向PDCD4通过TLR4和NF-κB通路调节脂质积聚[21]。然而,该基因在乳腺发育及泌乳方面的作用研究较少。

本课题组前期研究表明,miR-21-5p在奶山羊泌乳前期及泌乳高峰期差异表达,生物信息学网站预测到PDCD4为miR-21-5p的潜在靶基因,因此本研究干扰PDCD4及构建PDCD4过表达载体后检测了其对于乳腺上皮细胞增殖、凋亡及PI3K/mTOR/S6K和ERK/Bcl-2/Bax信号通路相关基因表达的影响,为进一步阐释PDCD4调控奶山羊乳腺发育及泌乳的分子机理提供理论基础。

1 材料与方法 1.1 材料

1.1.1 样品采集   本试验所用奶山羊来自西北农林科技大学北校区附近关中奶山羊养殖场,乳腺组织采集自1只2岁龄的健康泌乳母羊,将乳腺组织用生理盐水冲洗3次,置于含有双抗的PBS溶液中迅速带回细胞间,尽量去除脂肪组织、结缔组织后,将乳腺组织块剪成1 mm3大小,用组织块培养法培养乳腺上皮细胞(GMECs)。

1.1.2 主要试剂   反转录试剂盒、荧光定量试剂盒、pMD19-T Vector、RNAiso Plus均购自TaKaRa公司;琼脂糖凝胶回收试剂盒、普通质粒小提试剂盒、DH5α感受态细胞均购自天根生化科技有限公司;氨苄青霉素溶液AMP购自Solarbio公司。Opti-MEMⅠ、胰蛋白酶、胎牛血清、双抗(青霉素,链霉素)、DMEM/F12培养基、DPBS和谷氨酰胺均为Gibco产品。

1.2 方法

1.2.1 乳腺上皮细胞培养及转染   乳腺上皮细胞在培养液中培养,配方为DMEM培养基,10%的胎牛血清,5 mg·mL-1胰岛素,100 U·mL-1链霉素和100 U·mL-1青霉素。环境条件为37 ℃,5% CO2。在细胞培养至70%~80%时进行转染,将miR-21-5p mimics、NC、miR-21-5p inhibitors、inhibitor NC(上海吉玛)转染进乳腺上皮细胞,细胞培养箱中培养24 h后进行后续试验。

1.2.2 双荧光素酶活性检测试验   扩增得到包含miR-21-5p结合位点的PDCD4基因序列(引物序列为F: CACTCGAGTGAGGGTGTAAAGGAGGGACA;R: ATGCGGCCGCAACAGCAGCAGCCAACATGG,引物由生工生物工程公司合成),将扩增片段插入psiCHECK-2载体的XhoⅠ和NotⅠ两个酶切位点之间,构建野生型PDCD4载体(psiCHECK-2+PDCD4-WT),并使用突变试剂盒构建突变型载体(psiCHECK-2+PDCD4-MU)。将psiCHECK-2+PDCD4-WT或(psiCHECK-2+PDCD4-MU)质粒分别用miR-21-5p模拟物或抑制剂共转染到GMECs中。继续培养24 h,用双荧光荧光素酶系统(Promega,美国)检测结果。每个试验进行3次重复。

1.2.3 PDCD4过表达载体构建及干扰小RNA合成   根据NCBI中山羊PDCD4序列(XM_018041277.1),设计PDCD4 CDS区特异性引物(F: CTTAAGCTTATGGATGTAGAAAATGAGCAGATACTG;R: AGACTCGAGTCAGTAGCT-CTCTGGTTTAAGACG,引物由生工生物工程公司合成),扩增CDS区全长,并插入到pcDNA3.1载体中,得到PDCD4过表达载体。干扰小RNA由吉玛公司合成,si-PDCD4序列为F: GCGGAAAUGCUAAGAGAUUTT; R: AAUCUCUUAGCAUUUCCGCTT。

1.2.4 RT-qPCR   TRIzol方法提取乳腺上皮细胞总RNA,使用反转录试剂盒(TaKaRa)反转录得到cDNA,通过Primer 5.0设计定量引物,以β-actin为内参进行实时定量试验,实时定量引物见表 1

表 1 实时定量PCR引物序列 Table 1 Primers sequence for RT-qPCR

1.2.5 Western blot   转染48 h后,向细胞中加入含有蛋白酶抑制剂和磷酸酶抑制剂的RIPA蛋白裂解液(Biotek,北京,中国),裂解30 min后,离心10 min后取上清即为总蛋白,然后加入蛋白上样缓冲液,98 ℃加热10 min得到蛋白上样液。取30 μg上样至SDS-PAGE蛋白胶孔中进行电泳,然后将蛋白转移到PVDF膜上,分别孵育一抗和二抗。使用β-actin作为内参,并使用ECL发光液使蛋白条带成像。每个指标的Western blot试验重复3次以得到可信结果。

1.2.6 细胞活力及增殖检测   采用CCK-8法检测GMECs细胞活力,将GMECs均匀地铺在96孔板中,每个试验组设置3个重复,转染24 h后,每孔加入10 μL CCK-8溶液,置于37 ℃、5% CO2的细胞培养箱中孵育4 h,检测450 nm处的吸光度值。

采用EdU试验检测GMECs增殖情况,将GMECs均匀铺在96孔板中,每个试验组设置3个重复,转染24 h后按照购买的BeyoClick EdU-488细胞增殖检测试剂盒(碧云天,上海)说明书进行EdU检测。

1.2.7 细胞凋亡检测   转染24 h后,用胰酶消化收集细胞,然后用PBS缓冲液清洗以去除细胞沉淀中的EDTA,然后按照凋亡检测试剂盒(七海复泰生物科技有限公司,上海)中的说明书进行操作,用流式细胞仪检测细胞凋亡情况。

1.2.8 ELISA检测   本试验采用ELISA酶联免疫吸附试验测定乳腺上皮细胞中β-酪蛋白、甘油三酯(TG)的含量。测定方法参照试剂盒提供的说明书进行,转染24 h后,收集细胞培养液于2 mL离心管,12 000 r·min-1离心20 min,吸取上清液为待测样品。使用前将板条室温平衡20 min,标准孔中加入不同浓度的标准品50 μL,待测样品孔先加待测样本10 μL,再加样本稀释液40 μL,每个样品孔设置3个重复。之后按照说明书分别加入辣根过氧化物酶标记的检测抗体、底物A、底物B、终止液,然后在450 nm波长处测定各孔的吸光度值。

1.2.9 数据统计学分析   利用SPSS 25.0分析试验数据,并通过T检验和单向方差分析方法分析数据的差异显著性,*表示P<0.05,**表示P<0.01。

2 结果 2.1 PDCD4与miR-21-5P靶向关系验证

通过生物信息学软件及miRNA种子序列与靶基因反向互补配对原则,预测出miR-21-5p靶基因PDCD4,如图 1A所示构建野生型PDCD4载体(psiCHECK-2+PDCD4-WT)及突变型载体(psiCHECK-2+PDCD4-MT)。将miR-21-5p mimics、NC、miR-21-5p inhibitor、inhibitor NC分别与psiCHECK-2+PDCD4-WT和psiCHECK-2+PDCD4-MT共转染到GMECs中,检测荧光素酶活性。结果如图 1B所示,miR-21-5p mimics能显著下调野生型PDCD4载体的双荧光素酶活性,对突变型载体无显著影响。初步验证PDCD4为miR-21-5p的靶基因。

A.野生型载体与突变型载体设计图。其中红色为miR-21-5p与PDCD4的结合位点,蓝色为该位点突变后的序列。B.双荧光素酶活性检测结果。C.转染miR-21-5p mimics、NC、miR-21-5p inhibitor、NCH后,RT-qPCR检测PDCD4 mRNA表达情况。D.转染miR-21-5p mimics、NC、miR-21-5p inhibitor、NCH后,Western blot检测PDCD4蛋白表达情况(*.P < 0.05;**.P < 0.01,下同) A. Design drawing of wild-type vector and mutant vector. The red nucleotide sequence is the original binding site sequence of PDCD4 and miR-21-5p, and the blue one is the mutation nucleotide sequence of the original binding site of PDCD4 and miR-21-5p. B. The results of double luciferase activity test. C. RT-qPCR detection of PDCD4 mRNA expression after transfection with miR-21-5p mimics, NC, miR-21-5p inhibitor and NCH. D. After transfection of miR-21-5p mimics, NC, miR-21-5p inhibitor and NCH, Western blot detected PDCD4 protein expression(*.P < 0.05;**.P < 0.01, the same as below) 图 1 miR-21-5p对靶基因PDCD4的调控 Fig. 1 miR-21-5p regulated the target gene PDCD4

为了进一步验证miR-21-5p对PDCD4的调控作用,将miR-21-5p mimics、NC、miR-21-5p inhibitor、inhibitor NC转染进乳腺上皮细胞中,通过RT-qPCR和Western blot检测PDCD4的mRNA和蛋白表达水平。结果如图 1CD所示,转染miR-21-5p mimics后,PDCD4在乳腺上皮细胞中mRNA和蛋白表达水平均显著降低。

2.2 PDCD4干扰和过表达载体的构建

为了研究miR-21-5p通过靶基因PDCD4对乳腺上皮细胞调控的机理,构建了pc3.1-PDCD4过表达载体,并采用siRNA技术对miR-21-5p的靶基因PDCD4进行干扰,合成PDCD4的siRNA,即si-PDCD4,分别将NC、si-PDCD4、pc3.1、pc3.1-PDCD4转染进乳腺上皮细胞,通过RT-qPCR和Western blot方法检测PDCD4 mRNA及蛋白表达水平。结果表明,干扰PDCD4可以显著抑制PDCD4基因的mRNA及蛋白水平(P<0.01)(图 2AC),而过表达的PDCD4可以显著提高PDCD4的mRNA及蛋白水平(P<0.01) (图 2BD)。

A.干扰后PDCD4 mRNA表达量;B.过表达后PDCD4 mRNA表达量;C.干扰后PDCD4蛋白表达量;D.过表达后PDCD4蛋白表达量 A. PDCD4 mRNA expression after interference; B. PDCD4 mRNA expression after over-expression; C.PDCD4 protein expression after interference; D. PDCD4 protein expression after over-expression 图 2 PDCD4过表达及干扰效率检测 Fig. 2 Detection of PDCD4 over-expression and interference efficiency
2.3 PDCD4对GMECs增殖的影响

为了研究PDCD4是否对奶山羊乳腺上皮细胞的增殖有影响,将NC、si-PDCD4、pc3.1、pc3.1-PDCD4转染进乳腺上皮细胞中,通过CCK-8和EdU法检测乳腺上皮细胞增殖的变化情况。CCK-8结果如图 3AB所示,与pc3.1相比,pc3.1-PDCD4组极显著的降低了细胞活力(P<0.01); 与NC组相比,si-PDCD4组显著增加了细胞活力(P<0.01)。EdU结果显示,与pc3.1相比,pc3.1-PDCD4组极显著的抑制了细胞增殖(图 3CDP<0.01);与NC组相比,si-PDCD4组显著促进了细胞增殖(图 3EFP<0.01), 与CCK-8检测结果一致。

A.过表达PDCD4后,CCK-8法检测细胞活力;B.干扰PDCD4后,CCK-8检测细胞活力;C.过表达PDCD4后,EdU试验检测细胞增殖情况;D.EdU结果柱状图;E干扰PDCD4后,EdU试验检测细胞增殖情况;F.EdU结果柱状图 A. After overexpression of PDCD4, the cell viability was detected by CCK-8 method; B. After interfering with PDCD4, CCK-8 detected the cell viability; C. After overexpression of PDCD4, the cell proliferation was detected by EdU test; D. Histogram of EdU results; E. After interfering with PDCD4, EdU assay was used to detect cell proliferation; F. EdU result histogram 图 3 PDCD4对GMECs增殖的影响 Fig. 3 Effects of PDCD4 on proliferation of GMECs
2.4 PDCD4对GMECs凋亡的影响

为了研究PDCD4对奶山羊乳腺上皮细胞凋亡的影响,分别将NC、si-PDCD4、pc3.1、pc3.1-PDCD4转染乳腺上皮细胞,采用流式细胞术检测PDCD4基因对乳腺上皮细胞凋亡的影响。结果如图 4显示,与对照组相比,过表达PDCD4后GMECs凋亡水平显著升高(图 4ABP<0.01),而干扰DPCD4后凋亡水平则显著降低(图 4CDP<0.01)。

Q1.坏死细胞;Q2.晚期凋亡细胞;Q3.早期凋亡细胞;Q4.正常活细胞 Q1. Dead cells; Q2. Late stage apoptotic cells; Q3. Early apoptotic cells; Q4. Normal living cell 图 4 PDCD4对GMECs凋亡的影响 Fig. 4 Effects of PDCD4 on apoptosis of GMECs
2.5 PDCD4对GMECs分泌β-酪蛋白和TG的影响

将NC、si-PDCD4、pc3.1、pc3.1-PDCD4转染进乳腺上皮细胞中,通过ELISA法检测乳腺上皮细胞中β-酪蛋白的合成情况。如图 5AC所示,结果表明,抑制PDCD4后β-酪蛋白的浓度显著升高(P<0.01),而过表达PDCD4后,乳腺上皮细胞中β-酪蛋白的浓度显著降低(P<0.01)。

图 5 PDCD4对β-酪蛋白和TG合成的影响 Fig. 5 Effects of PDCD4 on synthesis of β-casein and TG

将NC、si-PDCD4、pc3.1、pc3.1-PDCD4转染进乳腺上皮细胞中,通过ELISA法检测乳腺上皮细胞中TG的合成情况。如图 5BD所示,结果表明,过表达PDCD4后,乳腺上皮细胞中TG的浓度显著降低(P<0.01),而抑制PDCD4后TG的浓度显著升高(P<0.01)。

2.6 PDCD4对PI3K/mTOR/S6K和ERK/Bcl-2/Bax信号通路的影响

将NC、si-PDCD4、pc3.1、pc3.1-PDCD4转染进乳腺上皮细胞中,通过Western blot检测PI3K/mTOR/S6K和ERK/Bcl-2/Bax信号通路相关蛋白的表达水平。如图 6所示,结果表明,过表达PDCD4能显著下调p-PI3K/PI3K、p-mTOR/mTOR、p-S6K/S6K、p-ERK/ERK、Bcl-2/β-actin的表达水平、上调Bax/β-actin表达水平(P<0.05),而抑制PDCD4表达能显著上调p-PI3K/PI3K、p-mTOR/mTOR、p-S6K/S6K、p-ERK/ERK、Bcl-2/β-actin的表达水平,下调Bax/β-actin表达水平(P<0.05)。

A.过表达PDCD4对PI3K/mTOR/S6K和ERK/Bax/Bcl-2信号通路的影响;B.干扰PDCD4对PI3K/mTOR/S6K和ERK/Bax/Bcl-2信号通路的影响 A. The effect of over-expression of PDCD4 on the PI3K/mTOR/S6K and ERK/Bax/Bcl-2 signaling pathways; B. The effect of interfering with PDCD4 on the PI3K/mTOR/S6K and ERK/Bax/Bcl-2 signaling pathways 图 6 PDCD4调控PI3K/mTOR/S6K和ERK/Bax/Bcl-2信号通路 Fig. 6 PDCD4 regulated PI3K/mTOR/S6K and ERK/Bax/Bcl-2 signaling pathways
3 讨论

奶山羊乳腺是可重复性生长、功能性分化、退化的外分泌器官,主要功能在于泌乳。乳腺上皮细胞的增殖凋亡受到多种基因的共同调控。Shibahara等[22]从小鼠cDNA文库中扩增出PDCD4, 经研究发现PDCD4广泛存在于各种凋亡细胞中,后又被发现在心脏组织中低表达[23]PDCD4被认为是一种新型的抑癌因子,具有抑制细胞生长、肿瘤侵袭、转移和诱导细胞凋亡的多种功能[24-27]。研究表明,在人和鼠心肌细胞、人骨肉瘤细胞、糖氧剥夺细胞模型中miR-21均靶向PDCD4从而调控细胞凋亡[28-31]。最近一项研究表明,在多囊卵巢综合征模型中CiRS-126靶向miR-21-PDCD4-ROS轴抑制卵巢颗粒细胞的增殖[32],目前还尚未见有关于miR-21靶向PDCD4调控奶山羊乳腺上皮细胞凋亡以及泌乳的相关报道。本研究首先通过双荧光素酶活性检测初步确定了PDCD4和miR-21-5p的靶向关系,后又通过RT-qPCR和Western blot试验证明miR-21确实可以负调控奶山羊乳腺上皮细胞中PDCD4 mRNA及蛋白水平的表达。

ERK-Bax/Bcl-2是细胞凋亡相关信号通路,其中Bax发挥促凋亡作用,Bcl-2则起到抗凋亡的作用,二者的表达量决定着对细胞凋亡抑制程度的强弱,当Bcl-2蛋白含量高于Bax时细胞凋亡被抑制,反之则促进细胞的凋亡[33-34]。本研究在GMECs中探究PDCD4是否调控ERK-Bax/Bcl-2信号通路,Western blot试验结果表明,过表达PDCD4后Bcl-2蛋白表达量显著下调,Bax蛋白则显著上升,si-PDCD4处理后结果与过表达相反。上述结果表明,过表达PDCD4时促进了奶山羊乳腺上皮细胞的凋亡,这与流式细胞分选试验检测结果相符,而miR-21则可以负调控PDCD4从而部分减轻细胞的凋亡。

已有研究表明,S6KAKT参与调控PDCD4的磷酸化,从而调控蛋白质翻译和细胞生长[35],PDCD4蛋白通过EGF激活PI3K-Akt-mTOR-S6k1信号通路磷酸化,并在蛋白酶体系统中被降解[36]。在糖尿病心肌病大鼠模型中miR-21-PDCD4已经被证明可以激活PI3K/mTOR/S6K信号通路[37],Samant和Sylvester[38]研究表明,β-酪蛋白和TG的合成受到PI3K/mTOR/S6K信号通路的调控,先前的研究也在GMECs中证明了这一点[39-40]。本研究继续探究PDCD4对PI3K/mTOR/S6K信号通路的调控作用,结果表明干扰PDCD4能显著上调PI3K、mTOR、S6K的磷酸化水平,激活PI3K/mTOR/S6K信号通路,进而调控GMECs中TG和β-酪蛋白的分泌,同时ELISA试剂盒检测结果与Western blot结果一致,si-PDCD4可显著促进GMECs中TG和β-酪蛋白的分泌。

4 结论

本研究证明了在奶山羊乳腺上皮细胞中PDCD4为miR-21的靶基因,且miR-21能够负调控PDCD4的表达,PDCD4通过激活ERK/Bcl-2/Bax信号通路促进奶山羊乳腺上皮细胞凋亡, si-PDCD4通过激活PI3K/mTOR/S6K信号通路促进GMECs中β-酪蛋白和TG的分泌。

参考文献
[1]
DHASMANA S, DAS S, SHRIVASTAVA S. Potential nutraceuticals from the casein fraction of goat's milk[J]. J Food Biochem, 2022, 46(6): e13982.
[2]
PROSSER C G. Compositional and functional characteristics of goat milk and relevance as a base for infant formula[J]. J Food Sci, 2021, 86(2): 257-265. DOI:10.1111/1750-3841.15574
[3]
MUÑOZ-SALINAS F, ANDRADE-MONTEMAYOR H M, DE LA TORRE-CARBOT K, et al. Comparative analysis of the protein composition of goat milk from French Alpine, Nubian, and Creole breeds and Holstein Friesian cow milk: implications for early infant nutrition[J]. Animals, 2022, 12(17): 2236. DOI:10.3390/ani12172236
[4]
LIU Y F, CAI J N, ZHANG F X. Influence of goat colostrum and mature milk on intestinal microbiota[J]. J Funct Foods, 2021, 86: 104704. DOI:10.1016/j.jff.2021.104704
[5]
ELLIOTT R B, HARRIS D P, HILL J P, et al. Type I (insulin-dependent) diabetes mellitus and cow milk: casein variant consumption[J]. Diabetologia, 1999, 42(3): 292-296. DOI:10.1007/s001250051153
[6]
LI X, SPENCER G W K, ONG L, et al. Beta casein proteins-A comparison between caprine and bovine milk[J]. Trends Food Sci Technol, 2022, 121: 30-43. DOI:10.1016/j.tifs.2022.01.023
[7]
JUNG T H, HWANG H J, YUN S S, et al. Hypoallergenic and physicochemical properties of the A2 β-casein fraction of goat milk[J]. Korean J Food Sci Anim Resour, 2017, 37(6): 940-947.
[8]
JAISWAL L, WORKU M. Recent perspective on cow's milk allergy and dairy nutrition[J]. Crit Rev Food Sci Nutr, 2022, 62(27): 7503-7517. DOI:10.1080/10408398.2021.1915241
[9]
DUAN C C, MA L, CAI L, et al. Comparison of allergenicity among cow, goat, and horse milks using a murine model of atopy[J]. Food Funct, 2021, 12(12): 5417-5428. DOI:10.1039/D1FO00492A
[10]
李文斐, 张磊, 宋宇轩, 等. 绵羊、山羊和牛乳的营养成分比较分析[J]. 食品工业科技, 2020, 41(24): 286-291.
LI W F, ZHANG L, SONG Y X, et al. Comparative analysis of nutrients in sheep, goat and cow milk[J]. Science and Technology of Food Industry, 2020, 41(24): 286-291. DOI:10.13386/j.issn1002-0306.2020110282 (in Chinese)
[11]
ZHAO L L, WANG J, MAO X Y. Composition and interfacial properties play key roles in different lipid digestion between goat and cow milk fat globules in vitro[J]. Food Chem, 2022, 374: 131538. DOI:10.1016/j.foodchem.2021.131538
[12]
PAN Y, XIA Y, YU X X, et al. Comparative analysis of lipid digestion characteristics in Human, Bovine, and Caprine milk based on simulated in vitro infant gastrointestinal digestion[J]. J Agric Food Chem, 2021, 69(35): 10104-10113. DOI:10.1021/acs.jafc.1c02345
[13]
GALLIER S, TOLENAARS L, PROSSER C. Whole goat milk as a source of fat and milk fat globule membrane in infant formula[J]. Nutrients, 2020, 12(11): 3486. DOI:10.3390/nu12113486
[14]
KAURA S, PARLE M, INSA R, et al. Neuroprotective effect of goat milk[J]. Small Ruminant Res, 2022, 214: 106748. DOI:10.1016/j.smallrumres.2022.106748
[15]
GARCÍA-BURGOS M, MORENO-FERNANDEZ J, DíAZ-CASTRO J, et al. Fermented goat's milk modulates immune response during iron deficiency anemia recovery[J]. J Sci Food Agric, 2022, 102(3): 1114-1123. DOI:10.1002/jsfa.11448
[16]
OZPOLAT B, AKAR U, STEINER M, et al. Programmed cell death-4 tumor suppressor protein contributes to retinoic acid-induced terminal granulocytic differentiation of human myeloid leukemia cells[J]. Mol Cancer Res, 2007, 5(1): 95-108. DOI:10.1158/1541-7786.MCR-06-0125
[17]
JING X, REN D D, GAO F, et al. Gene deficiency or pharmacological inhibition of PDCD4-mediated FGR signaling protects against acute kidney injury[J]. Acta Pharm Sin B, 2021, 11(2): 394-405. DOI:10.1016/j.apsb.2020.10.024
[18]
EL-KADI S W, CHEN Y, MCCAULEY S R, et al. Decreased abundance of eIF4F subunits predisposes low birth weight neonatal pigs to reduced muscle hypertrophy[J]. J Appl Physiol, 2018, 125(4): 1171-1182. DOI:10.1152/japplphysiol.00704.2017
[19]
LI R, WEN Y X, GENG Y Q, et al. miR-21a inhibits decidual cell apoptosis by targeting Pdcd4[J]. Genes Dis, 2021, 8(2): 171-180. DOI:10.1016/j.gendis.2019.09.013
[20]
LI C, DU L T, REN Y D, et al. SKP2 promotes breast cancer tumorigenesis and radiation tolerance through PDCD4 ubiquitination[J]. J Exp Clin Cancer Res, 2019, 38(1): 76. DOI:10.1186/s13046-019-1069-3
[21]
FENG J, LI A T, DENG J Y, et al. miR-21 attenuates lipopolysaccharide-induced lipid accumulation and inflammatory response: potential role in cerebrovascular disease[J]. Lipids Health Dis, 2014, 13(1): 27. DOI:10.1186/1476-511X-13-27
[22]
SHIBAHARA K, ASANO M, ISHIDA Y, et al. Isolation of a novel mouse gene MA-3 that is induced upon programmed cell death[J]. Gene, 1995, 166(2): 297-301. DOI:10.1016/0378-1119(95)00607-9
[23]
ONISHI Y, HASHIMOTO S, KIZAKI H. Cloning of the TIS gene suppressed by topoisomerase inhibitors[J]. Gene, 1998, 215(2): 453-459. DOI:10.1016/S0378-1119(98)00313-8
[24]
MONTERO J C, PANDIELLA A. PDCD4 limits prooncogenic neuregulin-ErbB signaling[J]. Cell Mol Life Sci, 2021, 78(4): 1799-1815. DOI:10.1007/s00018-020-03617-5
[25]
SAXENA A, SHOEB M, RAMANA K V, et al. Aldose reductase inhibition suppresses colon cancer cell viability by modulating microRNA-21 mediated programmed cell death 4(PDCD4) expression[J]. Eur J Cancer, 2013, 49(15): 3311-3319. DOI:10.1016/j.ejca.2013.05.031
[26]
CAI Q, YANG H S, LI Y C, et al. Dissecting the roles of PDCD4 in breast cancer[J]. Front Oncol, 2022, 12: 855807. DOI:10.3389/fonc.2022.855807
[27]
FERRIS W F. The role and interactions of programmed cell death 4 and its regulation by microRNA in transformed cells of the gastrointestinal tract[J]. Front Oncol, 2022, 12: 903374. DOI:10.3389/fonc.2022.903374
[28]
XIAO J, PAN Y, LI X H, et al. Cardiac progenitor cell-derived exosomes prevent cardiomyocytes apoptosis through exosomal miR-21 by targeting PDCD4[J]. Cell Death Dis, 2016, 7(6): e2277. DOI:10.1038/cddis.2016.181
[29]
XUE J H, LIU J J, XU B, et al. miR-21-5p inhibits inflammation injuries in LPS-treated H9c2 cells by regulating PDCD4[J]. Am J Transl Res, 2021, 13(10): 11450-11460.
[30]
GUAN K, LIU S Z, DUAN K K, et al. Hsa_circ_0008259 modulates miR-21-5p and PDCD4 expression to restrain osteosarcoma progression[J]. Aging (Albany NY), 2021, 13(23): 25484-25495.
[31]
WANG J C, ZHAO Y, TANG Y F, et al. The role of lncRNA-MEG/miR-21-5p/PDCD4 axis in spinal cord injury[J]. Am J Transl Res, 2021, 13(2): 646-658.
[32]
LU J F, XUE Y, WANG Y H, et al. Retraction note to: CiRS-126 inhibits proliferation of ovarian granulosa cells through targeting the miR-21-PDCD4-ROS axis in a polycystic ovarian syndrome model[J]. Cell Tissue Res, 2021, 386(1): 213. DOI:10.1007/s00441-021-03484-x
[33]
RAMALINGAM M, KIM S J. Insulin involved Akt/ERK and Bcl-2/Bax pathways against oxidative damages in C6 glial cells[J]. J Recept Signal Transduct Res, 2016, 36(1): 14-20. DOI:10.3109/10799893.2014.970276
[34]
SPITZ A Z, GAVATHIOTIS E. Physiological and pharmacological modulation of BAX[J]. Trends Pharmacol Sci, 2022, 43(3): 206-220. DOI:10.1016/j.tips.2021.11.001
[35]
DORRELLO N V, PESCHIAROLI A, GUARDAVACCARO D, et al. S6K1- and βTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth[J]. Science, 2006, 314(5798): 467-471. DOI:10.1126/science.1130276
[36]
MATSUHASHI S, MANIRUJJAMAN M, HAMAJIMA H, et al. Control mechanisms of the tumor suppressor PDCD4:expression and functions[J]. Int J Mol Sci, 2019, 20(9): 2304. DOI:10.3390/ijms20092304
[37]
ZHANG J, ZHANG M, YANG Z, et al. PDCD4 deficiency ameliorates left ventricular remodeling and insulin resistance in a rat model of type 2 diabetic cardiomyopathy[J]. BMJ Open Diabetes Res Care, 2020, 8(1): e001081. DOI:10.1136/bmjdrc-2019-001081
[38]
SAMANT G V, SYLVESTER P W. γ-tocotrienol inhibits ErbB3-dependent PI3K/Akt mitogenic signalling in neoplastic mammary epithelial cells[J]. Cell Proliferat, 2006, 39(6): 563-574. DOI:10.1111/j.1365-2184.2006.00412.x
[39]
ZHU C, WANG L L, ZHU J R, et al. OGR1 negatively regulates β-casein and triglyceride synthesis and cell proliferation via the PI3K/AKT/mTOR signaling pathway in goat mammary epithelial cells[J]. Anim Biotechnol, 2021, 32(5): 627-636. DOI:10.1080/10495398.2020.1737099
[40]
ZHU C, JIANG Y, ZHU J R, et al. CircRNA8220 sponges MiR-8516 to regulate cell viability and milk synthesis via Ras/MEK/ERK and PI3K/AKT/mTOR pathways in goat mammary epithelial cells[J]. Animals, 2020, 10(8): 1347. DOI:10.3390/ani10081347

(编辑   郭云雁)