畜牧兽医学报  2023, Vol. 54 Issue (4): 1370-1380. DOI: 10.11843/j.issn.0366-6964.2023.04.003    PDF    
FecB基因在绵羊繁殖性能上的研究进展
杨初蕾1,2, 张译元2, 唐红2, 郭延华2, 任秀美奥2, 王立民1,2, 周平1,2     
1. 石河子大学动物科技学院, 石河子 832000;
2. 新疆农垦科学院, 省部共建绵羊遗传改良与健康养殖国家重点实验室, 石河子 832000
摘要:绵羊的繁殖性能是一种十分重要的经济性状,绵羊产羔数与每次的排卵数直接相关,绵羊卵子的生长发育受到卵巢内分泌及旁分泌的相互作用。FecB基因是羊上首个被发现的多胎主效基因,携带该基因的绵羊卵巢中BMP信号通路受到损害而活性降低,TGF-β家族部分成员失活,抑制GCs增殖并提高FSH的敏感性,有效提高绵羊的排卵率和产羔率,有利于扩大养殖规模,提高经济效益。本文对FecB基因的发现、作用机制及其对卵泡发育、繁殖能力和后代生长发育的影响,以及育种方面的应用进行综述,以期为绵羊繁殖性能提升的机理研究和育种工作等提供参考和借鉴。
关键词绵羊    FecB    繁殖性能    
Research Progress of FecB Gene on Reproductive Performance of Sheep
YANG Chulei1,2, ZHANG Yiyuan2, TANG Hong2, GUO Yanhua2, REN Xiumeiao2, WANG Limin1,2, ZHOU Ping1,2     
1. College of Animal Science and Technology, Shihezi University, Shihezi 832000, China;
2. State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China
Abstract: The reproductive performance of sheep is a very important economic trait. The number of lambs is directly related to the number of ovulation each time, and the growth and development of ovum is influenced by the interaction of ovarian endocrine and paracrine. FecB gene is the first multifetal major gene discovered in sheep. The BMP signaling pathway in the ovary of sheep carrying this gene is damaged and the activity is reduced, and some members of TGF-β family are inactivated, which inhibits the proliferation of GCs and improves the sensitivity of FSH, effectively improves ovulation rate and lambing rate of sheep, which is conducive to expanding the breeding scale and improving economic benefits. In this paper, the discovery of FecB gene, its action mechanism, its effect on follicular development, reproductive ability and offspring growth and development, as well as its application in breeding were reviewed, in order to provide reference for the mechanism research and breeding work of improving sheep reproductive performance.
Key words: sheep    FecB    reproductive performance    

绵羊是我国重要的经济动物之一,其繁殖性能是衡量其经济性状的重要指标之一。为提高绵羊的繁殖能力,人们除了加强饲养管理,预防疾病发生之外还常常采用同期发情处理、人工授精(artificial insemination,AI)、超数排卵(multiply ovulation and embryo transfer,MOET)等方法。除人工干涉之外,研究人员发现部分绵羊品种中存在多胎基因,对绵羊繁殖性能有显著的增强作用。直至目前,国内外研究报道的与母羊多胎性状相关的共有16个基因,20个突变,其中骨形态发生蛋白受体-1B(bone morphogenetic protein receptor 1B,BMPR-1B)中的FecB基因突变是研究最早也是研究最为广泛的一个基因[1-2]。本文将从FecB基因的发现及其对母羊的卵泡发生、产羔数以及后代生长发育的影响,在育种方面的应用等方面进行综述,有助于进一步探明FecB基因对绵羊繁殖性能的影响机制,以期为国内多胎基因研究和育种繁殖实践提供借鉴。

1 FecB基因的发现

FecB基因首次发现于澳大利亚布鲁拉(Booroola)美利奴羊的体内,是由Piper和Bindon[3]在1980年首次提出,随后Davis等[4]在1982年依据排卵记录确定布鲁拉美利奴羊群体中存在多胎主效基因。1989年国际绵羊和山羊遗传命名委员会正式将该突变命名为FecB(fecundity booroola,FecB)。FecB基因位于绵羊6号染色体上BMPR-1B基因第8外显子,且位于蛋白激酶功能结构域上,FecB基因导致BMPR-1B基因编码序列的第746位碱基发生错义突变(A746G),使第249位的氨基酸从谷氨酰胺变为精氨酸(Q249R),从不带电的中性氨基酸变为带负电的碱性氨基酸,从而导致BMPR-1B蛋白质空间结构发生改变,突变区域从向外开口变为向内偏[5-7]FecB基因主要包含3种基因型,即纯合型(BB)、杂合型(B+)以及野生型(++),其基因型与母羊卵泡直径相关,卵泡液中部分氨基酸代谢物与排卵数显著相关[8]FecB基因对母羊卵泡发育有加性作用,能够增加排卵数,从而提高母羊产羔数[9]。经研究发现,在澳大利亚布鲁拉美利奴羊群体中,与野生型相比杂合型母羊排卵次数增加2.8(+ 85%),纯合型母羊排卵次数增加4.6~9.7(+(204%~439%))[4-6, 10]。并且FecB基因还能导致绵羊初情期提前,BB型早于B+型早于++型[11]。据目前文献报道所了解,国内外携带FecB基因的羊群如表 1所示。

表 1 携带FecB基因的绵羊品种 Table 1 Sheep breeds carrying the FecB mutation
2 FecB基因对母羊产羔数的影响

FecB基因在对母羊产羔数方面表现为部分显性遗传效应(图 1),只在雌性中表达。由于FecB基因明显提高了母羊的排卵数,因此产羔数量也随之提高。有研究发现,含有一个FecB基因B等位基因的母羊(B+)排卵数增多1.50~1.65个,产羔数增加0.9~1.2个;含有两个FecB基因B等位基因的母羊(BB)排卵数增多2.7~3.0个,产羔数增加1.1~1.7个,含有FecB基因的母羊平均每胎产羔超过1只[25]。郭立宏[26]对东北细毛羊的FecB多胎基因型进行检测后研究发现,BB和B+两种基因型的母羊产羔数分别为每胎2.00只和1.97只,++型母羊产羔数为每胎1.00只,说明FecB基因能够控制东北细毛羊的多羔性状。张也等[27]对湖羊×湖羊、白头杜泊羊×湖羊、白头杜泊羊×F1代(白头杜泊羊×湖羊)杂交后代羊羔的FecB基因进行检测分析后发现,随着杂交代数增加杜湖杂交后代的B等位基因频率逐渐降低,产羔率也随之降低,且与基因型相关。马丽娜和于洋[28]为进一步有效提高滩羊的产羔率,加快其高繁殖品系的建立,利用TaqMan探针对373只滩羊FecB基因进行SNP分型研究,得到3种不同基因型滩羊的平均产羔数分别为XX(87%)2.01只、XY(12%)2.44只、YY(1%)3.81只,以此来说明FecB基因可作为滩羊多胎性选育的分子标记。

图中标示了性别、年龄、产羔性能、基因型信息。矩形代表公羊,圆形代表母羊 The gender, age, lambing performance, and FecB genotypes are marked. The rectangles represent the males, the circles represent the females 图 1 巴音布鲁克羊高产群的谱系图[23] Fig. 1 The pedigree chart of the high-prolificacy flock of Bayanbulak sheep[23]
3 FecB基因对母羊生殖激素的调控作用

FecB基因是绵羊繁殖性能遗传控制的一个关键候选基因,是BMPR-1B基因上的一个突变点,其编码的BMPR-IB蛋白在绵羊卵巢、输卵管、子宫等繁殖相关的组织和器官中均有表达,在下丘脑-垂体-卵巢轴(hypothalamic-pituitary-ovarian,HPO)中起到重要作用,而该轴是调节绵羊发情、排卵的重要系统。垂体受到下丘脑调节分泌卵泡刺激素(follicle-stimulating hormone,FSH)和促黄体生成素(luteinizing hormone,LH),直接影响绵羊卵巢中卵泡的发育、成熟和排卵,决定母羊的产羔数。FSH能够选择卵巢中的优势卵泡并刺激其发育为成熟卵泡,LH则能刺激优势卵泡完成黄体化过程,对卵泡的生长发育起到重要的调节作用。研究人员在对多胎绵羊的研究过程中发现,下丘脑合成并分泌的促性腺激素释放激素(gonadotropin-releasing hormore,GnRH)在不同FecB基因型的绵羊中表达无明显差异,携带FecB基因母羊血清中FSH的浓度在特定的生理期会明显高于野生型母羊,而LH的分泌不存在明显差异[29-31],这说明FecB基因能够影响垂体对FSH的分泌,高浓度的FSH能够促使BB型绵羊高产。在最新的研究报道中,与++型绵羊相比,携带BB型的绵羊具有更高水平的雌二醇(estradiol,E2)和FSH[32]FecB基因能够引起卵巢内LH升高的同时促进抗缪勒管激素(anti-mullerian hormone,AMH)对FSH的表达,且两者相互抑制,从而能够通过对FSH和LH进行调控参与卵巢中优势卵泡的选择[33]。有研究人员在携带FecB基因的母羊中,使用BMP4诱导颗粒细胞(granular cells,GCs)产生的AMH受到损伤,并设计了一个模型,在该模型中,更多的卵泡与减少的AMH结合,能够提高FSH和LH的敏感性,从而使卵泡能够以更小的直径和更多的数量成熟[34]。此外,在早期的研究中也已证明FecB基因会参与调节卵巢的促性腺激素反应性,这些促性腺激素受体mRNA表达水平的变化可能决定卵泡对促性腺激素的反应,从而诱发排卵反应和释放卵子[35-36]。Goyal等[37]发现,FSH受体(FSH receptor,FSHR)和黄体激素受体(LHCG receptor,LHCGR)的转录本在FecB基因携带母羊的卵巢和卵巢卵泡中的表达相对较高,其表达也受到FecB基因的影响。还有研究表明,FecB基因与下丘脑的信号转导变化之间存在一定关系,参与内分泌系统的基因,例如卵巢类固醇生成途中的前列腺素内氧化合成酶2(PTGS2)在杂合型绵羊的卵巢中表达程度更高[38]

4 FecB基因对母羊卵泡发育、排卵和颗粒细胞的影响

绵羊卵泡的生长发育除了受到生殖激素调控之外,转化生长因子(transforming growth factor-β,TGF-β)、骨形态发生蛋白(bone morphogenetic protein,BMPs)、生长分化因子9(growth diffrentiation factor 9,GDF9)等通过自分泌和旁分泌在卵泡的形成和发育过程中也发挥着重要作用。BMPR三种基因型(BMPR-1A、BMPR-1B及BMPR-2)作为TGF-β超家族信号分子的受体,参与TGF-β/BMP和TGF-β/SMAD信号通路,调空哺乳动物的生殖发育,其中BMPR-1B编码的ALK-6/BMPR-1B是一种重要的跨膜蛋白[2, 39]。FecB作为BMPR-1B基因上一个单一的常染色体突变,会引起TGF-β/BMP信号通路的抑制,导致绵羊排卵次数增加[40]。BMP15和GDF9均属于TGF-β超家族的成员,在卵母细胞中表达,通过旁分泌对周围体细胞产生影响,包括颗粒细胞、卵丘细胞以及卵泡膜细胞[41-43]。并且BMP15和GDF9的突变体均能提高绵羊的繁殖性能,但是当发生纯合突变时反而会导致母羊不孕不育[12, 44]BMP15和GDF9都是通过与I型和II型受体的丝氨酸/苏氨酸激酶区域结合,组装成异源四聚体的复合受体发出信号,虽然具有相同的Ⅱ型受体,即BMPR-2,但两者的Ⅰ型受体有所差异,分别为ALK-6/BMPR-1B以及ALK-5/TGF-βRI或ACVR-1B/ALK-4[45-47]。BMP15对BMPR-1B有较高的亲和力,因此BMPR-1B能够作为BMP15的有效受体参与信号转导过程,调节胚胎发育[48]。因此,尽管二者使用的信号通路有所不同,但在GCs增殖、抑制素产生和孕酮分泌等方面相互协作,从而起到了良好的作用效果[49]

绵羊卵泡生长发育受到中枢神经与卵巢之间复杂内分泌以及卵巢自身各种旁分泌的调节,是以顺序的方式(图 2)进行并产生分层的卵泡生长模式,即每个生殖周期在不同阶段的有腔卵泡存在差异,这种差异即便是超数排卵也无法改变[50-52]。这种卵泡生长选择模式是雌性生殖功能的关键,若这一过程当中发生改变,将可能导致无卵泡或多个排出,不孕或多胎[45]

图 2 卵泡发育过程[50] Fig. 2 Development process of follicle[50]

FecB基因在卵巢的作用是为了提高卵巢对FSH和LH的敏感性,能够参与GCs分化、卵泡发育成熟等调控,这是FecB基因引起母羊排卵率增加的关键。与野生型母羊相比,携带FecB基因的母羊其大量窦状卵泡会提前成熟从而引起排卵数增加,而且其排出的卵母细胞直径较小(BB型 < B+型 < ++型),导致母羊产生的黄体(corpus luteum, CL)个体更小,并且卵泡中所含的GCs显著减少,但母羊总的GCs数量不变[53-54]。在卵泡发育过程中,FecB基因通过抑制BMP信号通路,使BMP信号系统的活性降低,导致BMP抑制GCs增殖并对FSH有较高的敏感性,从而来调节GCs和卵母细胞对FSH和LH的反应,导致发情前卵泡的加速成熟和排卵[40, 55]。Fabre等[55]曾认为,在携带FecB基因的母羊和不携带FecB基因的母羊群体中,E2对GnRH分泌的正反馈是由相同的E2阈值引起的,从而使携带FecB基因的母羊有大量成熟的LH反应卵泡排卵和黄体化。同时,BMP15和GDF9作为关键的调节因子参与卵巢的各项功能,例如能够促进卵母细胞成熟、GCs增殖以及排卵前GCs对E2的合成与分泌等[56-57]。然而FecB基因的突变能够抑制BMP15对GCs增殖的促进作用,使绵羊卵泡内的GCs数量减少[58]。在卵泡GCs中存在雌激素受体(estrogen receptor,ER),包含ERα和ERβ两种亚型,是由ER1和ER2基因mRNA翻译得到,在哺乳动物的卵巢内发挥重要作用[59-60]。郭晓飞等[61]通过测定3种不同基因型小尾寒羊的成熟卵泡GCs的ERαERβ基因表达水平发现其表达量的提升将有利于绵羊的外部发情表型和排卵提前开始。因此,在携带FecB基因的母羊中,每个卵泡所携带的GCs较少,从而产生较少的E2和抑制素,但总量与未携带该基因的母羊一致,FecB基因母羊的成熟卵泡即便小于未携带母羊,仍旧可以依赖LH进行排卵并完成黄体化过程。

FecB基因的作用下BB型母羊的个体初级卵泡具有更大的直径,更多的线粒体、光滑内质网和核糖体以及和GCs的物理连接[62]。携带FecB基因母羊的卵泡GCs在直径较小的卵泡中对LH刺激敏感,与野生型相比,携带FecB基因母羊卵泡GCs中LHCGR的mRNA水平更高[10, 63-34]。而LHCGR作为卵泡成熟的标志物,FecB基因能够导致LHCGR表达时间提前,从而影响绵羊卵泡大小[8]。曾有报道,FecB基因在绵羊卵母细胞和GCs中都有表达,这与母羊的高产性能有关[6]。但随着研究的新进展进一步表明,在携带FecB基因母羊中,BMPR-1B会部分失活从而导致GCs的提前分化和排卵卵泡的提前成熟[5]。Goyal等[37]的研究结果也支持早期的报告,发现BMPR-1A和BMPR-1B转录物的水平有显著差异,在高产的母羊中BMPR-1B在卵巢卵泡中的表达上调,而在卵巢其他组织中的表达变化不明显。此外,Kumar等[65]分析了BB型和++型GMM(Garole x Malpura x Malpura)绵羊两者GCs的BMP/SMAD信号通路的mRNA表达和类固醇生成相关基因,发现FecB基因显著上调了BMP2、BMP6和StAR基因的表达而下调了BMP4的表达。FecB基因的突变导致其相关的BMPR-1B蛋白对BMP4和GDF5的敏感性降低,携带该基因的母羊对GCs分泌孕酮有促进作用,加速GCs分化,导致母羊排卵数增加[1]

5 FecB基因对后代羔羊生长发育的影响

对于携带FecB基因的母羊所产后代的影响近年来也不断有研究人员进行研究,但结果并不统一,大多数研究人员认为FecB基因会对后代羔羊的体重、体尺等方面产生不利影响。崔绪奎等[66]报道了FecB基因对杜×寒杂交肉羊后代生长发育的影响,其中B+型羔羊的初生体重、体尺及3月龄断奶体重均小于++型羔羊,母羔的差异尤为明显。Sejian等[67]对Garole×Malpura杂交羊的研究认为,FecB基因显著降低了母羊体重、胸围、体宽和体长,但所产羔羊的出生体重高于非FecB携带母羊所产羔羊。Oraon等[15]以印度Choranagpuri羊进行研究,结果发现在羊52周龄时,BB型和B+型羔羊体重极显著低于++型羔羊。Qi等[9]研究了FecB基因在使用人工激素的辅助繁殖下对绵羊繁殖性能的影响,结果表明B等位基因的存在对人工授精后的产羔数有加成作用,但它不影响发情同步和多次排卵的参数,并且携带B等位基因母羊所表现的较高繁殖力与后代出生和断奶时的体重下降有关。不同的是,张也等[27]研究发现,FecB基因对杜泊羊×湖羊所产羔羊初生体重和体尺有不利影响,但在羔羊3月龄时FecB基因对羔羊初生体重和体尺无显著影响。绵羊是一个高度多样化的物种,其生理遗传效应机制复杂,因此推测在母羊生长发育相关的基因当中存在与FecB连锁的基因,其可能导致后代羔羊的体重和体尺等普遍较小。Chu等[68]已经从BMPR-1B、GDF9和BMP15基因表达的遗传模式中发现了影响胎儿大小的突变。此外,还推测导致多胎后代体型小于单胎的另一原因是因为母羊所能提供的营养是一定的,由于产羔数量增多导致后代羔羊所能获得的营养较单胎羔羊降低,使其生长发育受到不利影响,而非FecB基因作用。

6 FecB基因在绵羊育种中的应用

FecB基因在绵羊的繁殖性能方面有着重要意义,广泛应用于提高绵羊生殖效应上。近年来,不断有研究人员通过杂交等方式将FecB基因导入繁殖力较低的羊群,以期提高群体的繁殖性能,从而提高经济效益。例如,王伟霞等[69]以不含有FecB基因的德国肉用美利奴羊为父本,以小尾寒羊公羊与东北细毛羊母羊级进杂交生产的F2代羊为母本进行三元杂交,结果发现FecB基因对提升德国肉用美利奴羊×小尾寒羊×东北细毛羊杂交羊群的产羔性能有重要作用。张也等[27]以白头杜泊羊为父本,以湖羊和杜湖杂交母羊为母本进行杂交,结果表明FecB基因对杜湖一代和二代母羊的产羔率有影响。罗生金[70]用含有BB型的湖羊(小尾寒羊)公羊与当地的哈萨克母羊进行杂交,将FecB基因导入哈萨克羊中并进行检测,初步培育出哈萨克羊多胎类型,建立了新的育种群。于洋等[71]通过将基因型为B+型的绵羊相互交配、筛选可以显著改善滩羊的FecB基因的基因型结构和基因频率,从而提高群体的产羔数量。此外,Zhou等[72]首次利用腺嘌呤碱基编辑(adenine base editors,ABE)技术最新版本ABEmax高效生成具有FecB基因的绵羊。于振兴等[73]从湖羊上提取FecB基因利用转基因技术成功导入新疆细毛羊体内,为培育高繁殖率的新疆细毛羊奠定了基础。

7 问题与展望

绵羊繁殖力的提高能够大幅提高养殖户及养殖企业的经济效益,增加农民收入,加快我国畜牧业发展,因此,将FecB基因导入繁殖力低的绵羊群体,是一个能够有效提高绵羊繁殖力的途径[31]。除BMPR-1B基因中的FecB基因以外,研究人员还发现了BMP15基因、GDF9基因、生殖激素相关基因等16个基因共20个突变与绵羊多胎效应相关[1-2, 74-76]。部分纯合型突变基因能够导致母羊不育,例如FecXH、FecXI、FecGH、FecTT、FecGV等,但也有部分纯合型突变基因,如FecGE、FecGF能够使母羊排卵数增加[1-2]。但目前对于多胎基因引起绵羊多胎性状的现象没有一个完全清晰的机理,FecB基因对绵羊后代生长发育影响的遗传效应机制也没有一个统一的认知。关于多胎后代羔羊的体重和体型普遍小于单胎后代羔羊这一点还需进一步的深入研究,若是因为基因连锁导致后代羔羊生长发育受到影响,是否能够通过一些技术,例如基因编辑技术等对相关基因进行修饰,来打破这一连锁效应,消除不利影响。综上所述,FecB基因总体上对绵羊繁殖性能产生良性影响,能够增加绵羊的排卵数和产羔数,有利于绵羊多胎品系的建立,扩大养殖规模,提高牧民的经济收入。

近年来不断有研究人员对绵羊包括FecB基因在内的多胎主效基因进行探索,但仍有部分生理机制未涉及到,期望本文能够对研究人员进一步深入开展绵羊繁殖性能研究以及育种等工作有所帮助。

参考文献
[1]
吴翠玲, 赵卓, 赵云辉, 等. 母羊多胎基因研究进展[J]. 黑龙江畜牧兽医, 2018(11): 68-71.
WU C L, ZHAO Z, ZHAO Y H, et al. Research progress of fecundity genes in ewe[J]. Heilongjiang Animal Science and Veterinary Medicine, 2018(11): 68-71. DOI:10.13881/j.cnki.hljxmsy.2017.07.0151 (in Chinese)
[2]
南景东, 陈国旺, 张建胜, 等. 绵羊多胎基因研究现状[J]. 现代畜牧兽医, 2022(11): 75-78.
NAN J D, CHEN G W, ZHANG J S, et al. Research status of prolificacy gene in sheep[J]. Modern Journal of Animal Husbandry and Veterinary Medicine, 2022(11): 75-78. (in Chinese)
[3]
PIPER L R, BINDON B M. The Booroola Merino and the performance of medium Non-Peppin crosses at Armidale[J]. Wool Technol Sheep Breed, 1982, 31(1): 14-19, 33.
[4]
DAVIS G H, MONTGOMERY G W, ALLISON A J, et al. Segregation of a major gene influencing fecundity in progeny of Booroola sheep[J]. New Zealand J Agric Res, 1982, 25(4): 525-529. DOI:10.1080/00288233.1982.10425216
[5]
MULSANT P, LECERF F, FABRE S, et al. Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation rate in Booroola Mérino ewes[J]. Proc Natl Acad Sci U S A, 2001, 98(9): 5104-5109. DOI:10.1073/pnas.091577598
[6]
WILSON T, WU X Y, JUENGEL J L, et al. Highly prolific Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells[J]. Biol Reprod, 2001, 64(4): 1225-1235. DOI:10.1095/biolreprod64.4.1225
[7]
SOUZA C J, MACDOUGALL C, CAMPBELL B, et al. The Booroola (FecB) phenotype is associated with a mutation in the bone morphogenetic receptor type 1 B (BMPR1B) gene[J]. J Endocrinol, 2001, 169(2): R1-R6. DOI:10.1677/joe.0.169r001
[8]
郭晓飞. FecB基因影响小尾寒羊繁殖力的分子机制研究[D]. 北京: 中国农业大学, 2018.
GUO X F. Study on molecular mechanism of FecB gene for fecundity in small tail Han sheep[D]. Beijing: China Agricultural University, 2018. (in Chinese)
[9]
QI M Y, XU L Q, ZHANG J N, et al. Effect of the Booroola fecundity (FecB) gene on the reproductive performance of ewes under assisted reproduction[J]. Theriogenology, 2020, 142: 246-250. DOI:10.1016/j.theriogenology.2019.10.038
[10]
MCNATTY K P, HEATH D A, CLARK Z, et al. Ovarian characteristics in sheep with multiple fecundity genes[J]. Reproduction, 2017, 153(2): 233-240. DOI:10.1530/REP-16-0587
[11]
王雨曈. 不同BMPR-IB基因型对绵羊初情期生殖激素及生长发育的影响[D]. 石河子: 石河子大学, 2020.
WANG Y T. Effects of different BMPR-IB genotypes on reproductive hormones, growth and development in puberty of sheep[D]. Shihezi: Shihezi University, 2020. (in Chinese)
[12]
DAVIS G H, GALLOWAY S M, ROSS I K, et al. DNA tests in prolific sheep from eight countries provide new evidence on origin of the Booroola (FecB) mutation[J]. Biol Reprod, 2002, 66(6): 1869-1874. DOI:10.1095/biolreprod66.6.1869
[13]
KUMAR S, MISHRA A K, KOLTE A P, et al. Screening for Booroola (FecB) and Galway (FecXG) mutations in Indian sheep[J]. Small Rumin Res, 2008, 80(1-3): 57-61. DOI:10.1016/j.smallrumres.2008.09.007
[14]
ROY J, POLLEY S, DE S, et al. Polymorphism of fecundity genes (FecB, FecX, and FecG) in the Indian Bonpala sheep[J]. Anim Biotechnol, 2011, 22(3): 151-162. DOI:10.1080/10495398.2011.589239
[15]
ORAON T, SINGH D K, GHOSH M, et al. Allelic and genotypic frequencies in polymorphic Booroola fecundity gene and their association with multiple birth and postnatal growth in Chhotanagpuri sheep[J]. Vet World, 2016, 9(11): 1294-1299. DOI:10.14202/vetworld.2016.1294-1299
[16]
MAHDAVI M, NANEKARANI S, HOSSEINI S D. Mutation in BMPR-IB gene is associated with litter size in Iranian Kalehkoohi sheep[J]. Anim Reprod Sci, 2014, 147(3-4): 93-98. DOI:10.1016/j.anireprosci.2014.04.003
[17]
WANG X Y, GUO X F, HE X Y, et al. Effects of FecB mutation on estrus, ovulation, and endocrine characteristics in Small Tail Han sheep[J]. Front Vet Sci, 2021, 8: 709737. DOI:10.3389/fvets.2021.709737
[18]
喇永富, 李发弟, 杨勤, 等. FecB基因在5个中国地方绵羊品种中的多态性及其与产羔数的关联分析[J]. 中国草食动物科学, 2020, 40(2): 12-17.
LA Y F, LI F D, YANG Q, et al. Genetic polymorphism of FecB gene and effect in five Chinese local sheep breeds[J]. China Herbivore Science, 2020, 40(2): 12-17. DOI:10.3969/j.issn.2095-3887.2020.02.003 (in Chinese)
[19]
杨华, 杨永林, 刘守仁, 等. 绵羊BMPR-IB基因单核苷酸多态性分析[J]. 西北农业学报, 2010, 19(9): 7-11.
YANG H, YANG Y L, LIU S R, et al. Analysis of single nucleotide polymorphism of BMPR-IB gene in sheep[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2010, 19(9): 7-11. DOI:10.3969/j.issn.1004-1389.2010.09.002 (in Chinese)
[20]
柏雪梅, 薛亚欣, 邢凤, 等. 策勒黑羊和多浪羊FecB基因多态性及其与产羔数的相关性研究[J]. 黑龙江畜牧兽医, 2020(1): 7-10.
BAI X M, XUE Y X, XING F, et al. Association of FecB gene polymorphism with litter size in Cele Black sheep and Duolang sheep[J]. Heilongjiang Animal Science and Veterinary Medicine, 2020(1): 7-10. (in Chinese)
[21]
牛志刚, 王珊, 阿克达尔, 等. 洼地绵羊FecB基因多态性及与产羔数的相关性[J]. 黑龙江畜牧兽医, 2016(13): 103-105.
NIU Z G, WANG S, AKEDAER, et al. Polymorphism of FecB gene and its correlation with litter size in Wadi sheep[J]. Heilongjiang Animal Science and Veterinary Medicine, 2016(13): 103-105. (in Chinese)
[22]
王勇, 马丽娜, 梁小军. 绵羊FecB基因的基因分型检测[J]. 宁夏农林科技, 2020, 61(10): 43-44, 51.
WANG Y, MA L N, LIANG X J. The detection genotyping of FecB gene in sheep[J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2020, 61(10): 43-44, 51. DOI:10.3969/j.issn.1002-204x.2020.10.015 (in Chinese)
[23]
ZUO B Y, QIAN H G, WANG Z Y, et al. A study on BMPR-IB genes of Bayanbulak sheep[J]. Asian-Australas J Anim Sci, 2013, 26(1): 36-42. DOI:10.5713/ajas.2012.12238
[24]
王琼, 马海玉, 刘玲玲, 等. GDF9、BMPR1BBMP15基因在和田羊群体的遗传特征分析[J]. 草食家畜, 2020(4): 1-8.
WANG Q, MA H Y, LIU L L, et al. Analysis on the genetic characteristics of GDF9, BMPR1B and BMP15 gene in Hotan sheep population[J]. Grass-Feeding Livestock, 2020(4): 1-8. (in Chinese)
[25]
杨华, 陈新华, 李爱芳, 等. 多胎主效基因在绵羊育种和生产实践中的应用[J]. 新疆农垦科技, 2010, 33(3): 42-43.
YANG H, CHEN X H, LI A F, et al. Application of multiple major genes in sheep breeding and production practice[J]. Xinjiang Farm Research of Science and Technology, 2010, 33(3): 42-43. DOI:10.3969/j.issn.1001-361X.2010.03.024 (in Chinese)
[26]
郭立宏. 应用SSCP标记对东北细毛羊多胎基因(FecB)型检测的研究[J]. 黑龙江畜牧兽医, 2017(5): 95-97.
GUO L H. Study on the detection of multiple fetal gene (FecB) type by SSCP marker in Northeast fine wool sheep[J]. Heilongjiang Animal Science and Veterinary Medicine, 2017(5): 95-97. (in Chinese)
[27]
张也, 艾日夏提·地里夏提, 刘志强, 等. FecB基因对杜泊羊和湖羊杂交后代产羔率与生长性能的影响[J]. 中国草食动物科学, 2021, 41(2): 69-72.
ZHANG Y, AIRIXIATI·DILIXIATI, LIU Z Q, et al. Effect of FecB gene on lambing percentage and growth performance of cross offspring of Doper and Hu sheep[J]. China Herbivore Science, 2021, 41(2): 69-72. DOI:10.3969/j.issn.2095-3887.2021.02.014 (in Chinese)
[28]
马丽娜, 于洋. 滩羊多胎基因(FecB)TaqMan探针SNP分型与产羔数的关联研究[J]. 畜牧与饲料科学, 2017, 38(3): 20-22.
MA L N, YU Y. Correlation analysis between fecundity gene (FecB) SNP genotyping by TaqMan probe and litter size in Tan sheep[J]. Animal Husbandry and Feed Science, 2017, 38(3): 20-22. DOI:10.3969/j.issn.1672-5190.2017.03.005 (in Chinese)
[29]
MCNATTY K P, HUDSON N L, LUN S, et al. Gonadotrophin-releasing hormone and the control of ovulation rate by the FecB gene in Booroola ewes[J]. J Reprod Fertil, 1993, 98(1): 97-105. DOI:10.1530/jrf.0.0980097
[30]
ISAACS K L, MCNATTY K P, CONDELL L, et al. Plasma FSH, LH and immunoreactive inhibin concentrations in FecBB/FecBB and FecB+/FecB+ Booroola ewes and rams from birth to 12 months of age[J]. J Reprod Fertil, 1995, 103(1): 89-97. DOI:10.1530/jrf.0.1030089
[31]
周明亮, 庞倩, 陈明华, 等. 我国绵羊FecB基因的研究进展[J]. 草学, 2021(4): 68-72.
ZHOU M L, PANG Q, CHEN M H, et al. Research progress of FecB gene in sheep in China[J]. Journal of Grassland and Forage Science, 2021(4): 68-72. DOI:10.3969/j.issn.2096-3971.2021.04.013 (in Chinese)
[32]
AKHATAYEVA Z, CAO C N, HUANG Y M, et al. Newly reported 90-bp deletion within the ovine BMPRIB gene: Does it widely distribute, link to the famous FecB (p.Q249R) mutation, and affect litter size?[J]. Theriogenology, 2022, 189: 222-229. DOI:10.1016/j.theriogenology.2022.06.020
[33]
陶林, 郭晓飞, 文禹粱, 等. FecB突变对小尾寒羊卵泡发育及AMHAMHR2基因表达的影响[J]. 农业生物技术学报, 2019, 27(4): 684-691.
TAO L, GUO X F, WEN Y L, et al. Effects of FecB mutation on follicular development and expression of AMH and AMHR2 genes in Small Tail Han sheep (Ovis aries)[J]. Journal of Agricultural Biotechnology, 2019, 27(4): 684-691. (in Chinese)
[34]
ESTIENNE A, PIERRE A, DI CLEMENTE N, et al. Anti-Müllerian hormone regulation by the bone morphogenetic proteins in the sheep ovary: deciphering a direct regulatory pathway[J]. Endocrinology, 2015, 156(1): 301-313. DOI:10.1210/en.2014-1551
[35]
MAZERBOURG S, BONDY C A, ZHOU J, et al. The insulin-like growth factor system: a key determinant role in the growth and selection of ovarian follicles?A comparative species study[J]. Reprod Domest Anim, 2003, 38(4): 247-258. DOI:10.1046/j.1439-0531.2003.00440.x
[36]
JUENGEL J L, MCNATTY K P. The role of proteins of the transforming growth factor-β superfamily in the intraovarian regulation of follicular development[J]. Hum Reprod Update, 2005, 11(2): 143-160.
[37]
GOYAL S, AGGARWAL J, DUBEY P K, et al. Expression analysis of genes associated with prolificacy in FecB carrier and noncarrier Indian sheep[J]. Anim Biotechnol, 2017, 28(3): 220-227. DOI:10.1080/10495398.2016.1262869
[38]
TIAN D H, LIU S J, TIAN F, et al. Comparative transcriptome of reproductive axis in Chinese indigenous sheep with different FecB genotypes and prolificacies[J]. Anim Reprod Sci, 2020, 223: 106624. DOI:10.1016/j.anireprosci.2020.106624
[39]
王雪, 张景萍, 郭丽丽, 等. TGF-β/SMAD信号通路在哺乳动物卵巢发育调控中的作用研究进展[J]. 中国畜牧杂志, 2023, 59(3): 61-69.
WANG X, ZHANG J P, GUO L L, et al. Research progress on the regulation of TGF-β/Smad signaling pathway in mammalian ovarian development[J]. Chinese Journal of Animal Science, 2023, 59(3): 61-69. (in Chinese)
[40]
FABRE S, PIERRE A, MULSANT P, et al. Regulation of ovulation rate in mammals: contribution of sheep genetic models[J]. Reprod Biol Endocrinol, 2006, 4: 20. DOI:10.1186/1477-7827-4-20
[41]
CLARKE H J. Regulation of germ cell development by intercellular signaling in the mammalian ovarian follicle[J]. WIREs Dev Biol, 2018, 7(1): e294.
[42]
TONG B, WANG J P, CHENG Z X, et al. Novel variants in GDF9 gene affect promoter activity and litter size in Mongolia sheep[J]. Genes (Basel), 2020, 11(4): 375. DOI:10.3390/genes11040375
[43]
D'OCCHIO M J, CAMPANILE G, BARUSELLI P S. Transforming growth factor-β superfamily and interferon-τ in ovarian function and embryo development in female cattle: review of biology and application[J]. Reprod Fertil Dev, 2020, 32(6): 539-552. DOI:10.1071/RD19123
[44]
晁哲, 邢漫萍, 黄丽丽, 等. 海南黑山羊GDF9和BMP15基因多态性与初胎产羔数间的关系[J]. 畜牧与兽医, 2021, 53(11): 14-20.
CHAO Z, XING M P, HUANG L L, et al. Correlation between genetic polymorphisms of the GDF9 and BMP15 genes and the litter size of the first parity of Hainan black goats[J]. Animal Husbandry & Veterinary Medicine, 2021, 53(11): 14-20. (in Chinese)
[45]
GARCIA-GUERRA A, WILTBANK M C, BATTISTA S E, et al. Mechanisms regulating follicle selection in ruminants: lessons learned from multiple ovulation models[J]. Anim Reprod, 2018, 15(S1): 660-679.
[46]
LI Q L, AGNO J E, EDSON M A, et al. Transforming growth factor β receptor type 1 is essential for female reproductive tract integrity and function[J]. PLoS Genet, 2011, 7(10): e1002320. DOI:10.1371/journal.pgen.1002320
[47]
PENG J, LI Q L, WIGGLESWORTH K, et al. Reply to Mottershead et al. : GDF9: BMP15 heterodimers are potent regulators of ovarian functions[J]. Proc Natl Acad Sci U S A, 2013, 110(25): E2258.
[48]
张筱艳. 绵羊BMPR1B基因SNP和血液BMPR1B蛋白与繁殖性能的相关性研究[D]. 兰州: 甘肃农业大学, 2020.
ZHANG X Y. Study of the effects of BMPR1B gene SNP and the quantity of BMPR1B protein in blood on reproductive performance of sheep[D]. Lanzhou: Gansu Agricultural University, 2020. (in Chinese)
[49]
MCNATTY K P, JUENGEL J L, READER K L, et al. Bone morphogenetic protein 15 and growth differentiation factor 9 co-operate to regulate granulosa cell function[J]. Reproduction, 2005, 129(4): 473-480. DOI:10.1530/rep.1.0511
[50]
赵金. BMP15通过BMPR1B调控陕北白绒山羊卵泡颗粒细胞功能的分子机制[D]. 杨凌: 西北农林科技大学, 2021.
ZHAO J. The molecular mechanism of BMP15 regulates the function of follicular granulosa cells through BMPR1B in Shanbei White Cashmere Goat[D]. Yangling: Northwest A&F University, 2021. (in Chinese)
[51]
SAWYER H R, SMITH P, HEATH D A, et al. Formation of ovarian follicles during fetal development in sheep[J]. Biol Reprod, 2002, 66(4): 1134-1150. DOI:10.1095/biolreprod66.4.1134
[52]
MCNATTY K P, JUENGEL J L, PITMAN J L. Oocyte-Somatic cell interactions and ovulation rate: effects on oocyte quality and embryo yield[J]. Reprod Biol Insights, 2014, 7: 1-8. DOI:10.4137/RBI.S12146
[53]
BAIRD D T, CAMPBELL B K. Follicle selection in sheep with breed differences in ovulation rate[J]. Mol Cell Endocrinol, 1998, 145(1-2): 89-95. DOI:10.1016/S0303-7207(98)00174-9
[54]
CAMPBELL B K, BAIRD D T, SOUZA C J, et al. The FecB (Booroola) gene acts at the ovary: in vivo evidence[J]. Reproduction, 2003, 126(1): 101-111. DOI:10.1530/rep.0.1260101
[55]
FABRE S, PIERRE A, MULSANT P, et al. Regulation of ovulation rate in mammals: contribution of sheep genetic models[J]. Reprod Biol Endocrinol, 2006, 4: 20.
[56]
BELLI M, SHIMASAKI S. Molecular aspects and clinical relevance of GDF9 and BMP15 in ovarian function[J]. Vitam Horm, 2018, 107: 317-348.
[57]
STANKIEWICZ T, BŁASZCZYK B. Relationship between the concentration of bone morphogenetic protein-15 (BMP-15) and growth differentiation factor-9 (GDF-9) in pre-ovulatory follicles, ovarian cysts and serum in sows[J]. Anim Prod Sci, 2016, 56(1): 141-146.
[58]
种玉晴. 绵羊产羔数性状的分子遗传机理研究[D]. 武汉: 华中农业大学, 2021.
ZHONG Y Q. Study on molecular genetic mechanism of litter size in sheep[D]. Wuhan: Huazhong Agricultural University, 2021. (in Chinese)
[59]
郑宇新, 张妮娜, 崔亚娟, 等. 雌激素受体在卵泡发育中作用的研究进展[J]. 黑龙江畜牧兽医, 2018(1): 60-62.
ZHENG Y X, ZHANG N N, CUI Y J, et al. Progress of estrogen receptors effect on follicular development[J]. Heilongjiang Animal Science and Veterinary Medicine, 2018(1): 60-62. (in Chinese)
[60]
LIU W, XIN Q L, WANG X, et al. Estrogen receptors in granulosa cells govern meiotic resumption of pre-ovulatory oocytes in mammals[J]. Cell Death Dis, 2017, 8(3): e2662.
[61]
郭晓飞, 王翔宇, 张金龙, 等. FecB突变对绵羊发情表型及格拉夫卵泡颗粒细胞中ESR1和ESR2基因表达的影响[J]. 黑龙江畜牧兽医, 2020(9): 39-43.
GUO X F, WANG X Y, ZHANG J L, et al. Effect of FecB mutation on ovine estrus and expression of ESR1 and ESR2 genes in Graafian follicle granule cells in sheep[J]. Heilongjiang Animal Science and Veterinary Medicine, 2020(9): 39-43. (in Chinese)
[62]
READER K L, HAYDON L J, LITTLEJOHN R P, et al. Booroola BMPR1B mutation alters early follicular development and oocyte ultrastructure in sheep[J]. Reprod Fertil Dev, 2012, 24(2): 353-361.
[63]
JUENGEL J L, FRENCH M C, QUIRKE L D, et al. Differential expression of CART in ewes with differing ovulation rates[J]. Reproduction, 2017, 153(4): 471-479.
[64]
MCNATTY K P, HEATH D A, HUDSON N L, et al. Gonadotrophin-responsiveness of granulosa cells from bone morphogenetic protein 15 heterozygous mutant sheep[J]. Reproduction, 2009, 138(3): 545-551.
[65]
KUMAR S, RAJPUT P K, BAHIRE S V, et al. Differential expression of BMP/SMAD signaling and ovarian-associated genes in the granulosa cells of FecB introgressed GMM sheep[J]. Syst Biol Reprod Med, 2020, 66(3): 185-201.
[66]
崔绪奎, 王金文, 王德芹, 等. FecB基因对杜×寒杂交肉羊产羔数及羔羊生长发育的影响[J]. 山东农业科学, 2010(8): 98-100.
CUI X K, WANG J W, WANG D Q, et al. Effect of FecB gene on litter sice and lamb growth and development of Dorper×Han crossbred sheep[J]. Shandong Agricultural Sciences, 2010(8): 98-100+106. (in Chinese)
[67]
SEJIAN V, MAURYA V P, PRINCE L L L, et al. Effect of FecB status on the allometric measurements and reproductive performance of Garole×Malpura ewes under hot semi-arid environment[J]. Trop Anim Health Prod, 2015, 47(6): 1089-1093.
[68]
CHU M X, LIU Z H, JIAO C L, et al. Mutations in BMPR-IB and BMP-15 genes are associated with litter size in Small Tailed Han sheep (Ovis aries)[J]. J Anim Sci, 2007, 85(3): 598-603.
[69]
王伟霞, 佟桂芝, 刘学峰, 等. 多胎基因FecB对德×寒×细三元杂交羊产羔性能的影响[J]. 畜牧与饲料科学, 2020, 41(4): 32-35, 59.
WANG W X, TONG G Z, LIU X F, et al. Effect of FecB gene on lambing performance of Germany Mutton Merino sheep×Small-tailed Han sheep×Fine-wool Sheep ternary hybrid sheep[J]. Animal Husbandry and Feed Science, 2020, 41(4): 32-35, 59. (in Chinese)
[70]
罗生金. 利用FecB多胎基因导入培育哈萨克羊多羔类型的研究[J]. 黑龙江动物繁殖, 2017, 25(2): 7-10, 12.
LUO S J. Study on Breeding multiple lambs type of Kazakh sheep by FecB polyfetal gene introduction[J]. Heilongjiang Journal of Animal Reproduction, 2017, 25(2): 7-10, 12. (in Chinese)
[71]
于洋, 梁小军, 马吉锋, 等. 滩湖F2代FecB基因的多态性检测[J]. 上海畜牧兽医通讯, 2018(4): 44-45.
YU Y, LIANG X J, MA J F, et al. Polymorphism detection of FecB gene in the F2 generation of Hybrid Tan sheep and Hu sheep[J]. Shanghai Journal of Animal Husbandry and Veterinary Medicine, 2018(4): 44-45. (in Chinese)
[72]
ZHOU S W, DING Y G, LIU J, et al. Highly efficient generation of sheep with a defined FecBB mutation via adenine base editing[J]. Genet Sel Evol, 2020, 52(1): 35.
[73]
于振兴, 贺志锐, 吾热力哈孜, 等. 湖羊FecB基因在新疆细毛羊胎儿成纤维细胞中的表达[J]. 动物医学进展, 2012, 33(6): 99-102.
YU Z X, HE Z R, WURELI H Z, et al. Expression of Hu sheep FecB gene in fetal fibroblasts of Xinjiang Fine-wool sheep[J]. Progress in Veterinary Medicine, 2012, 33(6): 99-102. (in Chinese)
[74]
NAGDY H, MAHMOUD K G M, KANDIEL M M M, et al. PCR-RFLP of bone morphogenetic protein 15 (BMP15/FecX) gene as a candidate for prolificacy in sheep[J]. Int J Vet Sci Med, 2018, 6(S1): S68-S72.
[75]
TONG B, WANG J P, CHENG Z X, et al. Novel variants in GDF9 gene affect promoter activity and litter size in Mongolia sheep[J]. Genes (Basel), 2020, 11(4): 375.
[76]
梁永厚, 王贵, 梅步俊. 绵羊多胎基因研究进展[J]. 当代畜牧, 2018(36): 17-23.
LIANG Y H, WANG G, MEI B J. Research progress of sheep Poly-embryonal gene[J]. Contemporary Animal Husbandry, 2018(36): 17-23. (in Chinese)

(编辑   郭云雁)