畜牧兽医学报  2023, Vol. 54 Issue (3): 1124-1134. DOI: 10.11843/j.issn.0366-6964.2023.03.024    PDF    
不同体重四川白鹅消化生理、免疫和肠道微生物的比较分析
袁岩聪1, 何航2, 刘安芳1, 万堃1, 章杰1     
1. 西南大学动物科学技术学院, 重庆 402460;
2. 重庆三峡职业学院动物科技学院, 重庆 404155
摘要:旨在比较分析不同体重四川白鹅消化生理、免疫和肠道微生物的差异。随机选取400只70日龄四川白鹅的体重数据进行正态分布分析,筛选出高体重(HW)、低体重(LW)鹅各24只,然后测定免疫和消化相关指标,并利用16S rRNA测序技术检测肠道微生物。结果显示:HW组平均日增重显著高于LW组(P < 0.05),而初始体重无差异(P>0.05);HW组淀粉酶活性、肌胃、腺胃、回肠指数、十二指肠和空肠黏膜厚度、空肠和回肠绒毛高度、绒隐比均显著高于LW组(P < 0.05),但回肠隐窝深度显著低于LW组(P < 0.05);HW组IgA、IgM、IgG、溶菌酶含量及胸腺、法氏囊指数显著高于LW组(P < 0.05);HW和LW组肠道微生物α多样性无显著差异(P>0.05),而β多样性组间差异显著(R2=0.25, P=0.02);门水平上,主要由Bacteroidetes(HW:43.50%;LW:53.69%)和Firmicutes(HW:39.24%;LW:26.47%)组成;属水平上,相对丰度占比1%以上的共有菌有BacteroidesDesulfovibrioOscillibacter等7种;共有25种(HW:18,LW:7)优势细菌标志物在HW和LW组之间存在显著差异(P < 0.05),其中HW组的优势菌为Fusobacteriales、Clostridiales、Acholeplasmatales,而LW组的优势菌为Bacteroidales。结果提示:四川白鹅体重与其消化生理、免疫和肠道微生物密切相关,良好的消化和免疫功能能够提高营养物质的消化吸收和抵抗疾病的能力,有益菌丰度的升高促进体重的增加。
关键词体重    四川白鹅    消化生理    免疫    肠道微生物    
Comparative Analysis of Digestive Physiology, Immunity and Gut Microbiota of Sichuan White Goose with Different Body Weight
YUAN Yancong1, HE Hang2, LIU Anfang1, WAN Kun1, ZHANG Jie1     
1. College of Animal Science and Technology, Southwest University, Chongqing 402460, China;
2. College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing 404155, China
Abstract: The aim of this study was to comparatively analyze the differences in digestive physiology, immunity and gut microbiota in Sichuan white goose with different body weight. Normal distribution analysis was performed on the body weight of 400 Sichuan white geese at 70-day-old, and 24 high weight (HW) and 24 low weight (LW) geese were selected. The immune and digestive indexes were determined, and the gut microbiota was detected by 16S rRNA sequencing technology. The results showed that the average daily gain (ADG) of HW group was significantly higher than that of LW group (P < 0.05), while there was no difference in initial body weight (P>0.05). The amylase activity, organ indexes of muscle stomach, glandular stomach and ileal, mucosal thickness of duodenum and jejunum, villus height and villus height/crypt depth of jejunum and ileum were significantly higher in HW group than those of the LW group (P < 0.05), but crypt depth of ileum was significantly lower than that of LW group(P < 0.05). The IgA, IgM, IgG, lysozyme content, organ indexes of thymus and bursa were significantly higher in HW group than those of the LW group (P < 0.05). There was no significant difference in gut microbial α-diversity between HW and LW groups (P>0.05), while β-diversity differed significantly between the two groups (R2=0.25, P=0.02). At the phylum level, it was mainly composed of Bacteroidetes (HW: 43.50%; LW: 53.69%) and Firmicutes (HW: 39.24%; LW: 26.47%). At the genus level, seven kinds of common bacteria, including Bacteroides, Desulfovibrio and Oscillibacter etc., respectively accounted for more than 1% of the relative abundance. A total of 25 (HW: 18, LW: 7) dominant bacterial markers were significantly different between the HW and LW groups (P < 0.05). The dominant bacteria in the HW group were Fusobacteriales, Clostridiales and Acholeplasmatales, while the dominant bacteria in the LW group were Bacteroidales. The results suggested that the body weight of Sichuan white geese was closely related to its digestion, immune performance and gut microbiota. Good digestion and immune function can improve the digestion and absorption of nutrients and the ability to resist diseases, as well as elevated abundance of beneficial bacteria to promote weight gain.
Key words: body weight    Sichuan white goose    digestive physiology    immunity    gut microbiota    

畜禽体重反映了动物机体生长发育和健康状况,是用来间接衡量饲养管理效果的重要指标。目前,通过对畜禽体重的监测来评估个体和群体的生长性能、生理机能、抗病性能、环境适应能力等,对育种工作具有重要意义,与经济效益的高低有直接关系。研究表明,不同体重状态下畜禽动物的生长、繁殖、屠宰、胴体和肉品质等性状存在明显差异。比如,Galiot等[1]指出,与低出生重相比,高出生重仔猪日增重显著升高,且料重比、腹泻率和死亡率显著降低。高体重育肥猪屠宰率、瘦肉率、背膘厚、板油重、眼肌面积、肌纤维面积、消化器官指数均显著高于低体重者[2-4],对山羊、绵羊羔羊等的研究也得到类似结果[5-6]。在新西兰白雄兔上的研究表明,高体重雄兔精液量、繁殖力低于低体重组[7],在牛上的研究结果与之类似[8]。此外,高体重猪的肌肉脂肪含量、红度、滴水损失、不饱和脂肪酸含量显著高于低体重猪,但总氨基酸、必需氨基酸和鲜味氨基酸含量却显著低于后者[9-10]。在荷斯坦公牛上的研究也表明,高体重者肌肉脂肪、灰分和胆固醇含量较高[11]。家禽上,Chen等[12]研究指出,高孵化重雏鸡血液总蛋白、球蛋白、白蛋白、肝谷胱甘肽和氧化型谷胱甘肽含量显著高于低孵化重雏鸡。与低体重育成鸡相比,高体重的鸡采食量好、蛋重高、鸡蛋质量更高[13]。高体重鸡比低体重鸡的精液量高,但精子活力、精子浓度和活精子数低于低体重鸡[14]。综上所述,前人研究主要集中于对不同体重背景下畜禽动物宏观经济性状的分析,但对引起体重差异的潜在原因鲜有报道。

2020年,世界肉鹅出栏量约7.4亿只,与2019年相比增长约17.5%,作为世界肉鹅出栏量最多的国家,中国商品鹅2020年出栏6.39亿只,较2019年增长5.34%[15]。四川白鹅作为我国地方优良的保护品种,具有生长快、繁殖性能好、适应性好等特点,不仅具有较高的产蛋产绒性能,而且是理想的育种素材[16]。因此,本研究从群体中筛选出不同体重状态的四川白鹅,分析其消化生理、免疫和肠道微生物的差异。

1 材料与方法 1.1 试验动物

选取7日龄体况健康的四川白鹅,采用网上平养方式饲养,按照常规免疫程序进行免疫接种,自由采食和饮水,每日饲喂3次(7:30、14:30、20:30)。70日龄时,空腹(8 h)称重并记录数据。试验期饲养环境平均温度为(27.92±0.17)℃,相对湿度为(84.47±0.49)%。参照美国NCR(1994)鹅的营养需要配置基础饲粮,其组成及营养水平见表 1

表 1 基础饲粮组成及营养水平(风干基础) Table 1 Composition and nutrient levels of the basal diet (air-dry basis)  
1.2 鹅的筛选

随机选取400只鹅的70日龄(公∶母≈ 1∶1)体重数据进行正态分布分析,根据结果分别筛选出高体重(HW)、低体重(LW)鹅24只,并追溯其7日龄体重,计算平均日增重。

1.3 指标测定

1.3.1 血清免疫指标   称重后,使用真空采血管(不含抗凝剂)采集颈静脉血液10 mL,3 500 r·min-1离心10 min后取上清液待测。溶菌酶活性采用比浊法测定,以溶酶小球菌体细胞为底物;免疫球蛋白A(IgA)、免疫球蛋白G (IgG)、免疫球蛋白M (IgM)活性采取单克隆抗体免疫比浊法测定。

1.3.2 器官指数   屠宰后迅速分离出肝、胰腺、肌胃、腺胃、脾、胸腺和法氏囊,清除表面附着物并用滤纸吸干水分,称重计算器官指数(器官指数=器官鲜重/活体重×100%);分离十二指肠、空肠和回肠后,轻轻挤出各肠段内容物,用生理盐水将肠段冲洗干净,滤纸吸干水分,称重并测量长度。

1.3.3 酶活性   采集约5 g十二指肠样本置于液氮中低温冷冻,带回实验室-80 ℃保存待用。胰蛋白酶、淀粉酶和脂肪酶活性采用商业分析试剂盒(索莱宝,中国北京)进行测定。

1.3.4 肠道形态   肠道形态采用经典苏木精 & 伊红染色法进行测定:用Tris缓冲盐水冲洗采集的肠段,4%多聚甲醛中固定,包埋进石蜡,切成5 μm厚的切片,染色后在22倍放大镜下拍照,采用Image Pro Plus 6.0对绒毛高度、隐窝深度和黏膜厚度进行测量,并计算绒隐比。

1.3.5 肠道微生物   屠宰后迅速取出盲肠并结扎,75%酒精擦拭外表后转移至无菌超净台,剪开盲肠后用无菌生理盐水冲洗内壁,冲洗干净后,用灭菌手术刀片轻轻刮取肠道黏膜,每4个样本再合并为一个样本,收集于冻存管中,-80 ℃保存备用。使用QIAamp DNA Stool Mini Kit (Qiagen,德国)提取微生物总DNA,扩增16S rRNA V3-V4区(338F:5′-ACTC CTACGGGAGGCAGCAG-3′,5′端带条形码标记;806R:5′-GGACTACHVGG GTWTCTAAT-3′)。PCR扩增产物用QuantiFluorTM-ST蓝色荧光定量系统检测,根据测序量要求按比例混合构建文库进行Miseq测序。对双端序列数据进行拼接、筛选、质控、过滤等一系列处理后,在97%相似度下利用Usearch 7.1对序列聚类,得到分类操作单元(OTUs),然后用RDP Classifer将OTUs代表序列与数据库Silva进行比对(置信度阈值:0.6)。

1.4 统计分析

α多样性以物种丰富度指数(Chao和Ace)和多样性指数(Shannon和Simpson)表示;β多样性通过计算加权的UniFrac距离矩阵,用主坐标分析(PCoA)进行可视化;LEfSe分析首先采用非参数因子Kruskal-Wallis秩和检验检测组间丰度差异显著的物种,然后进行成对Wilcoxon秩和检验,通过线性判别分析(LDA)进行降维和评估差异显著的物种。高、低体重组数据比较分析使用SPSS 21.0(IBM,NY,USA)软件进行Student’s t-test,以P < 0.05作为差异显著性判断标准。数据以“平均值±标准差”表示。

2 结果 2.1 体重分析

图 1A所示,400只70日龄四川白鹅体重基本符合正态分布的规律。筛选出的HW和LW组四川白鹅的体重和平均日增重均差异显著(图 1B1CP < 0.05)。此外,追溯HW和LW组四川白鹅7日龄体重,数据显示两者差异不显著(图 1DP>0.05)。

A. 400只70日龄四川白鹅体重分布;B. 70日龄体重;C. 平均日增重;D. 7日龄体重 A. Body weight distribution of the 400 70-day-old Sichuan white geese; B. Body weight at 70 days old; C. Average daily gain (ADG); D. Body weight at 7 days old 图 1 四川白鹅体重分析 Fig. 1 Body weight analysis of Sichuan white geese
2.2 消化酶及消化器官指数比较

表 2所示,HW组淀粉酶活性以及肌胃、腺胃和回肠指数显著高于LW组(P < 0.05),其余消化性能指标两组间无显著差异(P>0.05)。

表 2 不同体重四川白鹅消化酶及器官指数比较 Table 2 Comparison of digestive enzymes and organ index in Sichuan white geese with different body weight
2.3 肠道形态比较

表 3所示,HW组十二指肠和空肠黏膜厚度显著高于LW组(P < 0.05);HW组空肠和回肠绒毛高度和绒隐比显著高于LW组(P < 0.05);HW组回肠隐窝深度显著低于LW组(P < 0.05)。

表 3 不同体重四川白鹅肠道形态比较 Table 3 Comparison of intestinal morphology of Sichuan white geese with different body weight
2.4 免疫球蛋白及免疫器官指数比较

表 4所示,HW组IgA、IgM、IgG、溶菌酶含量及胸腺、法氏囊指数显著高于LW组(P < 0.05)。

表 4 不同体重四川白鹅血清免疫球蛋白及免疫器官指数比较 Table 4 Comparison of serum immunoglobulin and immune organ index in Sichuan white geese with different body weight
2.5 肠道微生物比较

HW和LW组测序序列文库覆盖率均达到了99.85%,比对后分别得到642(485-536)和645(438-498)个OTUs,其中共享588个(84.12%),特有54和57个(图 2A)。α多样性分析表明HW和LW组无显著差异(P>0.05),但HW组Ace、Chao和Simpson指数高于LW组(图 2B)。β多样性分析显示肠道微生物群落结构根据体重明显聚类(80.95%,图 2C),且组间差异显著(R2=0.25, P=0.02)。分类结果显示,HW组有14门83属,LW组有14门91属。门水平上,主要由Bacteroidetes(HW:43.50%;LW:53.69%)、Firmicutes(HW:39.24%;LW:26.47%)、Proteobacteria(HW:13.00%;LW:12.51%)、Synergistetes(HW:0.89%;LW:0.41%)、Actinobacteria(HW:0.76%;LW:0.23%)、Fusobacteria(HW:0.44%;LW:0.002%)和Lentisphaerae(HW:0.07%;LW:0.03)组成;属水平上,不同处理组相对丰度占比1%以上的共有细菌有BacteroidesDesulfovibrioOscillibacterFlavonifractorCoprobacterFaecalibacteriumAlistipes(图 2D)。LEfSe结果表明,在五个不同分类水平上,共有25种(HW:18,LW:7;图 2F)优势细菌标志物在不同体重组之间存在显著差异(P < 0.05),其中HW组的优势菌为Fusobacteriales、Clostridiales、Acholeplasmatales,而LW组的优势菌为Bacteroidales。

A. 基于OTU的Venn图;B. α多样性分析;C. β多样性分析;D. 菌群组成(门、属);E. LEfSe分析;F. LDA分析 A. Venn diagram based on OTU; B. α-diversity analysis; C. β-diversity analysis; D. Flora composition (phylum, genus); E. LEfSe analysis; F. LDA analysis 图 2 不同体重四川白鹅肠道微生物分析: Fig. 2 Gut microbiota analysis of Sichuan white geese with different body weight
3 讨论 3.1 不同体重四川白鹅消化生理

消化器官作为畜禽动物机体生长发育的重要组成,其生长发育指数在一定程度上能反映机体的消化性能和健康状况[17]。胃、肠道直接参与饲料摄入和消化吸收,而肝、胰腺则是在营养物质消化或代谢中起间接支持作用[18]。本试验中,HW组肌胃、腺胃和回肠指数显著高于LW组,表明直接参与饲料摄入和消化吸收的器官可能对体重有直接的影响作用。肌胃指数高意味着动物拥有强大的肌胃压力,在辅助型“消化器官”沙砾的协助下,可有效崩解、破坏植物细胞壁,加强细胞内营养物质与酶及微生物的有效结合,提高营养物质吸收利用率。腺胃指数的增加能提高其盐酸和酶的分泌量,也有助于营养物质分解利用。此外,本研究中不同体重组肝脏指数虽然无显著差异,但章杰等[19]研究指出,不同体重四川白鹅肝的分子调控模式存在显著差异,表明肝影响鹅体重并不是通过器官指数的增减来实现,而是从深层次的分子表达变化来进行调控。何余湧等[20]研究显示,不同体重哺乳仔猪的肝脏指数差异显著,而胃指数差异不显著,这可能与试验动物品种、年龄、遗传背景、饲料组成及环境等因素有关,具体机制有待进一步研究。

消化酶是肠道化学屏障的一部分,能促进畜禽饲料的消化及营养物质的吸收[21]。淀粉酶、脂肪酶和胰蛋白酶可将碳水化合物、脂肪和蛋白质分解为小分子物质进入体内循环,维持新陈代谢运行[22]。酶活性高低取决于水解底物的种类和含量[23]。本试验中HW组十二指肠淀粉酶含量显著高于LW组,可能是由于HW组肠道形态结构发育更完善、健康,酶分泌能力更强,如HW组空肠和回肠绒毛高度显著高于LW组,导致HW组能更有效的水解淀粉,吸收和氧化衍生的葡萄糖,促进胰岛素分泌和脂肪积累,最终影响体重。马雪连等[24]研究也指出,高体重组羔羊十二指肠麦芽糖酶、乳糖酶、蔗糖酶和淀粉酶均显著高于低体重组。

3.2 不同体重四川白鹅肠道形态

肠道作为重要的消化器官,其形态结构决定了畜禽动物对营养物质的消化与吸收情况。绒毛高度和隐窝深度是衡量小肠消化吸收能力的重要指标,其中绒毛是营养物质与消化系统的重要媒介,不仅决定了营养物质的吸收面积,也与酶分泌紧密相关,其高度反映了肠细胞到达顶端的时间和酶分泌能力[25]。本研究发现,HW组空肠和回肠绒毛高度显著高于LW组,说明HW组肠道绒毛表面积大,绒毛肠细胞更能有效地主动或被动转运吸收蛋白质、碳水化合物和脂肪[22]。此外,较大的肠道绒毛高度能分泌更多的消化酶,进而提升营养物质的消化和吸收效率。隐窝深度代表肠上皮细胞的分裂增殖能力,隐窝浅表明隐窝细胞向绒毛处分化,替代补充脱落和损伤的绒毛细胞,使绒毛细胞成熟率升高,增强消化吸收能力[26]。同时,隐窝深度还反映肠上皮细胞的迁移率,隐窝深度低表明肠上皮细胞迁移率低,有助于降低能量损失[27]。绒隐比是反映小肠营养消化和吸收能力的标准[28],与消化性能呈正相关关系[29]。本研究显示,HW组回肠隐窝深度显著低于LW组,且空肠和回肠绒隐比前者显著高于后者,说明与LW组相比,HW组从根本上具有对营养物质更强的消化和吸收能力。黏膜厚度增加提示表面积升高,利于对营养物质的消化吸收,且促进黏膜和免疫细胞的生成,使sIgA分泌增加,提高肠道免疫屏障能力[30]。HW组十二指肠和空肠黏膜厚度显著高于LW组,说明HW组具有更好的肠道消化和免疫功能。

3.3 不同体重四川白鹅机体免疫

免疫球蛋白是机体介导体液免疫的主要抗体,能在一定水平反映机体对疾病的抵抗能力[31]。IgA主要由肠、胃淋巴组织合成,是防止病原体侵入的第一道屏障[32],而淋巴组织与消化结构和功能的发育紧密相关[33]。本研究中,HW组IgA含量显著高于LW组,这与肠道形态的结果一致,表明HW组肠道淋巴组织发育较好。IgM主要由B细胞合成,是初次体液免疫应答时最先分泌、释放的抗体[34]。IgG主要由中枢免疫器官的浆细胞合成,具有抵抗病菌对机体侵袭的预防作用[35]。溶菌酶是机体内具有杀菌和免疫调节功能的非特异性免疫分子[36]。本试验结果显示,HW组IgM、IgG和溶菌酶含量显著高于LW组,表明体重与体液免疫密切正相关。钟翔[37]研究指出,低出生重的仔猪血浆中IgG含量显著降低,且IgM也有降低的趋势。

免疫器官指数反映了免疫器官的发育情况,其大小代表免疫系统成熟度与免疫功能强弱,是目前利用器官重量评判机体免疫性能的常用方法之一。脾作为最大的外周免疫器官含有大量的淋巴和巨噬细胞,是细胞和体液免疫的中心[31]。本研究显示,体重对脾脏指数无显著影响,表明脾在维持基本的正常免疫功能上发挥着重要作用。胸腺是细胞免疫的中枢器官,法氏囊则是禽类特有的体液免疫器官。研究表明,胸腺和法氏囊指数的增加意味着机体免疫性能的提高[38]。本研究显示,HW组胸腺和法氏囊指数显著高于LW组,进一步证实高体重具有较强的免疫性能。Cromi等[39]研究指出,低出生重的新生动物胸腺器官发生了萎缩现象。此外,研究也表明低出生重的动物体液、免疫和肠道免疫能力是有所下降的[40-42]

3.4 不同体重四川白鹅肠道微生物

动物肠道内栖息着数量庞大、种类繁多的微生物,通过其代谢产物参与宿主的消化分解、能量代谢、免疫等过程。研究表明,即使饮食和饲养环境完全相同的情况下,动物肠道微生物仍存在差异[43],表明肠道微生物与宿主生理状态密切相关。本试验证实了此结论,在相同条件下四川白鹅体重增长出现分化,比如Fusobacteriales、Clostridiales、Acholeplasmatales、Bacteroidales等优势菌群产生差异,但对肠道微生物多样性无影响,表明四川白鹅盲肠微生物多样性均衡度、稳定性较高。肠道微生物是宿主选择和长期共同进化的结果,微生物之间互相制约,稳定共生,多样性的轻易改变实际上会降低肠道菌群的稳定性,进而影响机体健康[44]。一方面,宿主为了保持特定菌群的互利互动,倾向选择低多样性、高功能性的肠道微生物菌群;另一方面,宿主可能对多样性有一定限制,因为并非所有的微生物都是有益的[45]。研究表明,动物体重与其肠道微生物的相对丰度和均匀度有关,而与多样性无关[44]。同时,其他研究也指出肠道微生物多样性与宿主体重增长呈负相关[46-47],可能与试验动物品种、年龄、性别、生长环境和饮食营养等因素有关。

本研究显示,门水平上拟杆菌和厚壁菌是四川白鹅盲肠的主要菌群,这与前人的研究结果一致[48]。厚壁菌产生的短链脂肪酸(SCFA)可为肠上皮细胞提供能量,并促进能量代谢来维持肠道健康,进而增加体重。Turnbaugh等[49]研究证实,体重的增加与厚壁菌相关,本研究结果与其相似,HW组厚壁菌丰度显著高于LW组。属水平上,HW组梭菌丰度最高,LW组拟杆菌丰度最高,这与LEfSe结果所产生的优势菌群结果一致。研究证实,拟杆菌是瘦肉鸡肠道内最丰富的菌,而梭菌与肥胖或体重增长有关[48, 50]。梭菌能利用复杂的碳水化合物产生SCFA,除了是宿主的能量来源,还能增强上皮屏障功能,调节黏蛋白产生和肥胖相关基因的表达,促进脂肪沉积[51-52],进而增加体重。

4 结论

不同体重四川白鹅的消化生理、免疫和肠道微生物存在显著差异,与低体重组相比,高体重组具有更好的消化和免疫性能,以及更高的有益菌丰度。

参考文献
[1]
GALIOT L, LACHANCE I, LAFOREST J P, et al. Modelling piglet growth and mortality on commercial hog farms using variables describing individual animals, litters, sows and management factors[J]. Anim Reprod Sci, 2018, 188: 57-65. DOI:10.1016/j.anireprosci.2017.11.009
[2]
LATORRE M A, LÁZARO R, VALENCIA D G, et al. The effects of gender and slaughter weight on the growth performance, carcass traits, and meat quality characteristics of heavy pigs[J]. J Anim Sci, 2004, 82(2): 526-533. DOI:10.2527/2004.822526x
[3]
LATORRE M A, GARCÍA-BELENGUER E, ARIÑO L. The effects of sex and slaughter weight on growth performance and carcass traits of pigs intended for dry-cured ham from Teruel (Spain)[J]. J Anim Sci, 2008, 86(8): 1933-1942. DOI:10.2527/jas.2007-0764
[4]
CHOI Y M, OH H K. Carcass performance, muscle fiber, meat quality, and sensory quality characteristics of crossbred pigs with different live weights[J]. Korean J Food Sci Anim Resour, 2016, 36(3): 389-396. DOI:10.5851/kosfa.2016.36.3.389
[5]
KIANI A, FALLAH R. Effects of live weight at slaughter on fatty acid composition of Longissimus dorsi and Biceps femoris muscles of indigenous Lori goat[J]. Trop Anim Health Prod, 2016, 48(1): 67-73. DOI:10.1007/s11250-015-0922-4
[6]
ATTI N, MAHOUACHI M. The effects of diet, slaughter weight and docking on growth, carcass composition and meat quality of fat-tailed Barbarine lambs.A review[J]. Trop Anim Health Prod, 2011, 43(7): 1371-1378. DOI:10.1007/s11250-011-9865-6
[7]
RODRÍGUEZ-DE LARA R, FALLAS-LÓPEZ M, GARCíA-MUNIZ J G, et al. Sexual behavior and seminal characteristics of fertile mature New Zealand White male rabbits of different body weights[J]. Anim Reprod Sci, 2015, 152: 90-98. DOI:10.1016/j.anireprosci.2014.11.005
[8]
SARDER M J U. Effects of age, body weight, body condition and scrotal circumference on sperm abnormalities of bulls used for artificial insemination (AI) programme in Bangladesh[J]. Univ J Zool Rajshah, 2008, 27: 73-78.
[9]
ELLIS M, WEBB A J, AVERY P J, et al. The influence of terminal sire genotype, sex, slaughter weight, feeding regime and slaughter-house on growth performance and carcass and meat quality in pigs and on the organoleptic properties of fresh pork[J]. Anim Sci, 1996, 62(3): 521-530. DOI:10.1017/S135772980001506X
[10]
BA H V, SEO H W, SEONG P N, et al. Live weights at slaughter significantly affect the meat quality and flavor components of pork meat[J]. Anim Sci J, 2019, 90(5): 667-679. DOI:10.1111/asj.13187
[11]
KUL E, ŞAHIN A, AKSOY Y, et al. The effects of slaughter weight on chemical composition, physical properties, and fatty acid profile of musculus longissimus dorsi in Holstein bulls[J]. Trop Anim Health Prod, 2020, 52(1): 159-165. DOI:10.1007/s11250-019-01996-x
[12]
CHEN Y, WEN C, ZHUANG S, et al. The effects of different hatching weights on the early growth and development of broilers, comparative study on immune function and antioxidant function[J]. J Poult Sci, 2015, 52(2): 137-144. DOI:10.2141/jpsa.0140095
[13]
PÉREZ-BONILLA A, NOVOA S, GARCÍA J, et al. Effects of energy concentration of the diet on productive performance and egg quality of brown egg-laying hens differing in initial body weight[J]. Poult Sci, 2012, 91(12): 3156-3166. DOI:10.3382/ps.2012-02526
[14]
BRATTE L, AMATA I A, OMEJE S I, et al. The effects of partial replacement of dietary Maize with seeds of the African pear (Dacryode edulis G.Don, H.J. Lam) on semen characteristics of broiler breeder cocks[J]. Asian J Anim Sci, 2011, 5(1): 71-79.
[15]
侯水生, 刘灵芝. 2020年水禽产业现状、未来发展趋势与建议[J]. 中国畜牧杂志, 2021, 57(3): 235-239.
HOU S S, LIU L Z. Status, future development trends and suggestions of waterfowl industry in 2020[J]. China Animal Husbandry Journal, 2021, 57(3): 235-239. DOI:10.19556/j.0258-7033.20210122-03 (in Chinese)
[16]
国家畜禽遗传资源委员会. 中国畜禽遗传资源志-家禽志[M]. 北京: 中国农业出版社, 2011.
National Livestock and Poultry Genetic Resources Committee. Animal genetic resources in China[M]. Beijing: China Agricultural Press, 2011. (in Chinese)
[17]
LAMOT D M, SAPKOTA D, WIJTTEN P J A, et al. Diet density during the first week of life: Effects on growth performance, digestive organ weight, and nutrient digestion of broiler chickens[J]. Poult Sci, 2019, 98(2): 789-795. DOI:10.3382/ps/pey002
[18]
RODRIGUES I, CHOCT M. The foregut and its manipulation via feeding practices in the chicken[J]. Poult Sci, 2018, 97(9): 3188-3206. DOI:10.3382/ps/pey191
[19]
章杰, 熊子标, 李龙娇, 等. 不同体重鹅肝脏转录组的功能分析[J]. 畜牧兽医学报, 2020, 51(5): 987-996.
ZHANG J, XIONG Z B, LI L J, et al. Functional analysis of liver transcriptomes of goose with different body weight[J]. Acta Veterinaria et Zootechnica Sinica,, 2020, 51(5): 987-996. (in Chinese)
[20]
何余湧, 陆伟, 胡善辉, 等. 不同体重对哺乳仔猪消化道发育及断奶后生产性能的影响[J]. 动物营养学报, 2008, 20(6): 630-635.
HE Y Y, LU W, HU S H, et al. Effects of different body weight on the development of digestive tract and the postweaning performance of suckling piglets[J]. Chinese Journal of Animal Nutrition, 2008, 20(6): 630-635. (in Chinese)
[21]
RAMÍREZ-OTÁROLA N, SABAT P. Are levels of digestive enzyme activity related to the natural diet in passerine birds?[J]. Biol Res, 2011, 44(1): 81-88. DOI:10.4067/S0716-97602011000100011
[22]
DENBOW D M. Gastrointestinal anatomy and physiology[M]//SCANES C G. Sturkie's Avian Physiology. 6th ed. Amsterdam: Academic Press, 2015.
[23]
CORRING T. The adaptation of digestive enzymes to the diet: its physiological significance[J]. Reprod Nutr Dev, 1980, 20(4B): 1217-1235. DOI:10.1051/rnd:19800713
[24]
马雪连, 王金泉, 张晓红, 等. 同日龄不同体重羔羊十二指肠形态功能的比较研究[J]. 中国畜牧兽医, 2015, 42(8): 2091-2097.
MA X L, WANG J Q, ZHANG X H, et al. Study on the morphology and fuction of the duodenum in lambs with same weaning age but different body weight[J]. China Animal Husbandry & Veterinary Medicine, 2015, 42(8): 2091-2097. (in Chinese)
[25]
HEYDARIAN M, EBRAHIMNEZHAD Y, MEIMANDIPOUR A, et al. Effects of dietary inclusion of the encapsulated thyme and oregano essential oils mixture and probiotic on growth performance, immune response and intestinal morphology of broiler chickens[J]. Poult Sci J, 2020, 8(1): 17-25.
[26]
丁鹏, 丁亚南, 曾青华, 等. 发酵饲料桑粉对宁乡花猪抗氧化性能和肠道功能的影响[J]. 动物营养学报, 2019, 31(9): 4303-4313.
DING P, DING Y N, ZENG Q H, et al. Effects of fermented forage mulberry powder on antioxidant performance and intestinal function of Ningxiang pigs[J]. Chinese Journal of Animal Nutrition, 2019, 31(9): 4303-4313. (in Chinese)
[27]
WEISS L. Cell and tissue biology[M]. Baltimore: Urban & Schwarzenberg, 1988.
[28]
MONTAGNE L, PLUSKE J R, HAMPSON D J. A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals[J]. Anim Feed Sci Tech, 2003, 108(1-4): 95-117. DOI:10.1016/S0377-8401(03)00163-9
[29]
韩正康. 家畜营养生理学[M]. 北京: 中国农业出版社, 1991.
HAN Z K. Livestock nutritional physiology[M]. Beijing: China Agriculture Press, 1991. (in Chinese)
[30]
刘起胜, 刘怀, 彭微, 等. 菌群失调腹泻抗生素造模对小鼠肠黏膜的影响[J]. 中国微生态学杂志, 2015, 27(5): 501-504.
LIU Q S, LIU H, PENG W, et al. The influence of antibiotic modeling on intestinal mucosa in dysbacteriotic diarrhea mice[J]. Chinese Journal of Microecology, 2015, 27(5): 501-504. (in Chinese)
[31]
CHENG Y F, CHEN Y P, LI J, et al. Dietary β-sitosterol regulates serum lipid level and improves immune function, antioxidant status, and intestinal morphology in broilers[J]. Poult Sci, 2020, 99(3): 1400-1408. DOI:10.1016/j.psj.2019.10.025
[32]
HÄRTLE S, MAGOR K E, GÖBEL T W, et al. Structure and evolution of avian immunoglobulins[M]//SCHAT K A, KASPERS B, KAISER P. Avian Immunology. Amsterdam: Academic Press, 2022: 101-119.
[33]
GEYRA A, UNI Z, SKLAN D. Enterocyte dynamics and mucosal development in the posthatch chick[J]. Poult Sci, 2001, 80(6): 776-782. DOI:10.1093/ps/80.6.776
[34]
EHRENSTEIN M R, NOTLEY C A. The importance of natural IgM: Scavenger, protector and regulator[J]. Nat Rev Immunol, 2010, 10(11): 778-786. DOI:10.1038/nri2849
[35]
PENG P, GAO Y P, ZHOU Q F, et al. Development of an indirect ELISA for detecting swine acute diarrhoea syndrome coronavirus IgG antibodies based on a recombinant spike protein[J]. Transbound Emerg Dis, 2022, 69(4): 2065-2075. DOI:10.1111/tbed.14196
[36]
RAGLAND S A, CRISS A K. From bacterial killing to immune modulation: recent insights into the functions of lysozyme[J]. PLoS Pathog, 2017, 13(9): e1006512. DOI:10.1371/journal.ppat.1006512
[37]
钟翔. Hsp70介导IUGR仔猪早期免疫功能损伤的机理及谷氨酰胺的营养调控研究[D]. 南京: 南京农业大学, 2010.
ZHONG X. Study on the mechanisms of immune deficiency mediated by Hsp70in neonatal IUGR piglet and nutrional regulation of glutamine[D]. Nanjing: Nanjing Agricultural University, 2010. (in Chinese)
[38]
从光雷, 王强, 肖蕴祺, 等. 饲粮添加橡椀单宁对肉鸡生长性能、屠宰性能、肉品质、抗氧化功能和肠道发育的影响[J]. 动物营养学报, 2020, 32(12): 5948-5957.
CONG G L, WANG Q, XIAO Y Q, et al. Effects of dietary Quercus acutissima carruth tannin on growth performance, slaughter performance, meat quality, antioxidant function and intestinal development of broilers[J]. Chinese Journal of Animal Nutrition, 2020, 32(12): 5948-5957. (in Chinese)
[39]
CROMI A, GHEZZI F, RAFFAELLI R, et al. Ultrasonographic measurement of thymus size in IUGR fetuses: A marker of the fetal immunoendocrine response to malnutrition[J]. Ultrasound Obstet Gynecol, 2009, 33(4): 421-426. DOI:10.1002/uog.6320
[40]
CONTRERAS Y M, YU X, HALE M A, et al. Intrauterine growth restriction alters T-lymphocyte cell number and dual specificity phosphatase 1 levels in the thymus of newborn and juvenile rats[J]. Pediatr Res, 2011, 70(2): 123-129.
[41]
DONG L, ZHONG X, AHMAD H, et al. Intrauterine growth restriction impairs small intestinal mucosal immunity in neonatal piglets[J]. J Histochem Cytochem, 2014, 62(7): 510-518.
[42]
STANLEY D, HUGHES R J, MOORE R J. Microbiota of the chicken gastrointestinal tract: Influence on health, productivity and disease[J]. Appl Microbiol Biotechnol, 2014, 98(10): 4301-4310.
[43]
TOROK V A, OPHEL-KELLER K, LOO M, et al. Application of methods for identifying broiler chicken gut bacterial species linked with increased energy metabolism[J]. Appl Environ Microbiol, 2008, 74(3): 783-791.
[44]
REESE A T, DUNN R R. Drivers of microbiome biodiversity: A review of general rules, feces, and ignorance[J]. mBio, 2018, 9(4): e01294-18.
[45]
NYHOLM S V, MCFALL-NGAI M J. The winnowing: Establishing the squid-vibrio symbiosis[J]. Nat Rev Microbiol, 2004, 2(8): 632-642.
[46]
HAN G G, KIM E B, LEE J, et al. Relationship between the microbiota in different sections of the gastrointestinal tract, and the body weight of broiler chickens[J]. Springerplus, 2016, 5(1): 911.
[47]
OH J K, CHAE J P, PAJARILLO E A B, et al. Association between the body weight of growing pigs and the functional capacity of their gut microbiota[J]. Anim Sci J, 2020, 91(1): e13418.
[48]
HOU Q C, KWOK L Y, ZHENG Y, et al. Differential fecal microbiota are retained in broiler chicken lines divergently selected for fatness traits[J]. Sci Rep, 2016, 6: 37376.
[49]
TURNBAUGH P J, LEY R E, MAHOWALD M A, et al. An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature, 2006, 444(7122): 1027-1031.
[50]
XIANG H, GAN J K, ZENG D S, et al. Specific microbial taxa and functional capacity contribute to chicken abdominal fat deposition[J]. Front Microbiol, 2021, 12: 643025.
[51]
MARTIN-GALLAUSIAUX C, MARINELLI L, BLOTTIÈRE H M, et al. SCFA: Mechanisms and functional importance in the gut[J]. Proc Nutr Soc, 2021, 80(1): 37-49.
[52]
VANGAVETI V, SHASHIDHAR V, JARROD G, et al. Free fatty acid receptors: emerging targets for treatment of diabetes and its complications[J]. Ther Adv Endocrinol Metab, 2010, 1(4): 165-175.

(编辑   范子娟)