畜牧兽医学报  2023, Vol. 54 Issue (2): 520-533. DOI: 10.11843/j.issn.0366-6964.2023.02.010    PDF    
大型迪庆藏猪不同生长阶段背脂与腹脂脂质代谢差异基因及调控网络分析
王琳1, 马黎2, 张博3, 邓俊4, 张浩3, 欧阳晓芳2, 严达伟1, 董新星1     
1. 云南农业大学动物科学技术学院,昆明 650201;
2. 云南农业职业技术学院,昆明 650212;
3. 中国农业大学动物科学技术学院,北京 100193;
4. 云南省畜牧总站,昆明 650224
摘要:旨在筛选大型迪庆藏猪不同生长阶段、不同部位脂质代谢差异的关键基因。本研究选择胎次相同、出生日期相近、体重10 kg左右的大型迪庆藏猪36头,随机分为3组,相同条件育肥,分别在平均体重达40、80和120 kg时屠宰,测定胴体性能,每组采集3头猪的背脂和腹脂进行高通量转录组测序,测序数据经拼接、比对,筛选与脂质代谢相关的显著差异基因并进行GO、KEGG分析、基因互作网络分析。结果表明,40、80和120 kg大型迪庆藏猪腹脂vs.背脂分别筛到486、765和339个差异表达显著基因,随机挑选的EGR2、SOD3等5个差异表达显著基因的qPCR结果与转录组测序结果一致,差异表达显著基因主要富集在肌肉收缩、细胞黏附、间充质细胞增殖正调节等GO条目,心肌收缩、PI3K-Akt信号通路、Hippo信号通路等KEGG通路;40 kg组EGR2、RARRES2、TMOD4和SFRP2基因位于网络核心,EGR2、RARRES2、SFRP2在腹脂上调,TMOD4下调;80 kg组THBS1、PPARANRIP1和LPL基因位于网络核心,4个核心基因均在腹脂上调;120 kg组HTRA1、TSHRLRRK2、STC2、SHOX2和SOD3基因位于网络核心,LRRK2、TSHR在腹脂上调,SHOX2、SOD3、STC2、HTRA1下调。结果提示,EGR2、THBS1、TSHR等14个基因作为核心基因精细调控大型迪庆藏猪不同生长阶段背脂与腹脂脂质代谢,10~40 kg,EGR2等4个基因位于核心,促进脂肪细胞分化、增殖的基因在腹脂上调,脂肪合成的开关基因下调;40~80 kg,THBS1等4个基因位于核心,促进甘油三酯合成、胆固醇形成、脂质积累的基因在腹脂上调;80~120 kg,LRRK2等6个基因位于核心,促进甘油三酯积累、脂肪酸氧化的基因在腹脂上调,抑制脂肪分解、脂滴形成的基因下调。本试验结果可为解析地方猪不同部位脂质差异性沉积的调控机制提供基础数据,为迪庆藏猪的靶向选育提供参考。
关键词迪庆藏猪    脂肪差异沉积    功能基因    基因互作网络    
Key Genes and Regulatory Network Analysis of Lipid Metabolism Differences between Back Fat and Abdominal Fat of Large Diqing Tibetan Pigs at Different Growth Stages
WANG Lin1, MA Li2, ZHANG Bo3, DENG Jun4, ZHANG Hao3, OUYANG Xiaofang2, YAN Dawei1, DONG Xinxing1     
1. College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China;
2. Yunnan Vocational and Technical College of Agriculture, Kunming 650212, China;
3. College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
4. Yunnan Province Animal Husbandry Station, Kunming 650224, China
Abstract: The aim of this study was to screen the key genes of lipid metabolism differences in back fat and abdominal fat of large Diqing Tibetan pigs (TPs) at different growth stages by transcriptome sequencing. In this study, 36 TPs with the same parity, birth date and weight of about 10 kg were randomly divided into 3 groups for fattening experiment under the same conditions. The pigs were slaughtered at the weight of 40, 80 and 120 kg, respectively, and carcass perfor-mance was measured. Back fat (BF) and abdominal fat (AF) of 3 pigs in each group were collected for high-throughput transcriptome sequencing. The sequencing data were spliced and compared to screen for genes with significant differences related to lipid metabolism, and then GO, KEGG analysis and gene interaction network analysis were performed. The results showed that 486, 765 and 339 differentially expressed genes (DEGs) were screened from AF vs. BF of large Diqing Tibetan pigs weighing 40, 80 and 120 kg, respectively. The qPCR results of randomly selected 5 significantly DEGs such as EGR2 and SOD3 were consistent with the transcriptome sequencing results. These DEGs were mainly enriched in GO items such as muscle contraction, cell adhesion and positive regulation of mesenchymal cell proliferation, and KEGG pathways such as cardiac muscle contraction, PI3K-Akt signaling pathway, and Hippo signaling pathway. In 40 kg group, EGR2, RARRES2, TMOD4 and SFRP2 genes were located in the network core, EGR2, RARRES2 and SFRP2 were up-regulated in abdominal fat, and TMOD4 was down-regulated. In 80 kg group, THBS1, PPARA, NRIP1 and LPL genes were located in the core of the network, and all 4 core genes were up-regulated in AF. In 120 kg group, HTRA1, TSHR, LRRK2, STC2, SHOX2 and SOD3 genes were located in the network core, LRRK2 and TSHR were up-regulated in AF, while SHOX2, SOD3, STC2 and HTRA1 were down-regulated. The results suggested that 14 core genes including EGR2, THBS1 and TSHR finely regulated the lipid metabolism of BF and AF at different growth stages of TPs. 10-40 kg, 4 genes such as EGR2 were located in the network core, the genes promoting adipocyte differentiation and proliferation were up-regulated in AF, and the switch genes for fat synthesis were down-regulated. 40-80 kg, THBS1 and other 3 genes were located in the network core, and the genes promoting triglyceride synthesis, cholesterol formation and lipid accumulation were up-regulated in AF. 80-120 kg, 6 genes such as LRRK2 were located in the network core, the genes promoting triglyceride accumulation and fatty acid oxidation were up-regulated in AF, and the genes inhibiting fat decomposition and fat droplet formation were down-regulated. The results can provide basic data for the analysis of the regulation mechanism of differential fat deposition in different parts of local pigs, and provide reference for the targeted breeding of TPs.
Key words: Diqing Tibetan pigs    differential fat deposition    functional genes    gene interaction networks    

脂肪组织是机体重要的能量储存场所和内分泌器官,对维持机体代谢平衡及能量稳态起重要作用[1-2]。在畜禽生产中,机体每沉积1 g脂肪所需要的能量是肌肉的4倍,脂肪大量沉积会降低饲料转化效率[3]。另外,肌内脂肪含量直接影响肉的嫩度、风味和口感,因此,解析畜禽脂肪沉积的调控机制,对畜禽生产中脂肪的靶向调控以促进畜禽养殖的高质量发展具有重要意义。

脂肪在机体的不同部位以不同的速度在不同时期沉积,导致全身脂肪分布随年龄增长有明显的变化[4],一系列基因、转录因子及信号通路介导脂肪沉积[5],涉及多基因表达、信号转导、网络精细调控等复杂过程[6]。对沙子岭猪和大约克猪的肌肉组织转录组分析发现,糖脂代谢基因(ENO1、ENO3和ATP5B)在不同品种猪中差异表达[7]。不同部位脂肪的基因表达模式、增殖分化潜力也不尽相同,皮下脂肪高表达的基因主要是参与脂质代谢和碳水化合物代谢的基因[8],内脏脂肪高表达的基因不仅参与脂质代谢过程[9],还参与免疫应答相关过程[10]。随着分子生物学技术的发展,C/EBPs[11]SREBP-1c[12]CREB[13]FOXOs[14]KLFs[15]PPAR[16-17]等脂肪沉积的候选基因及转录因子相继被发现。迪庆藏猪是高原型猪种之一,具有沉脂力强、肉质好的特点[18],是解析脂质代谢的理想猪种,目前对迪庆藏猪的报道主要是肌肉生长[19]、胴体性能[20]、低氧适应[21],尚未见迪庆藏猪不同生长阶段腹膜与皮下脂质代谢差异的功能基因及其调控机制的报道。本研究以大型迪庆藏猪为对象,筛选不同阶段背脂和腹脂脂质代谢差异的关键基因并分析其调控网络,为差异化靶向调控猪脂肪沉积奠定基础,为迪庆藏猪的选育利用提供参考。

1 材料与方法 1.1 试验材料

选择胎次相同,出生日期相近、体重10 kg左右、去势后的大型迪庆藏猪36头,随机分为3组(S1组:10~40 kg;S2组:10~80 kg;S3组:10~120 kg),在云南省香格里拉市绿源生态种养专业合作社藏猪养殖基地进行育肥试验,S1组、S2组、S3组分别在体重达40、80、120 kg左右时屠宰,测定胴体性能,每组采集3头猪的背部皮下脂肪和腹膜脂肪,液氮速冻运回实验室,-80 ℃冰箱保存备用。

1.2 方法

1.2.1 表型数据处理   背膘厚等胴体数据用SAS软件(Version 9.2)的GLM过程进行最小二乘分析,结果以“平均值±标准差”表示,所用数学模型为:

$ Y_{i j}=\mu+a_i+e_{i j} $

式中,Yij为性状观测值,μ为群体均数,ai为不同阶段(组合)效应,eij为随机残差。

1.2.2 总RNA提取和质量检测   用TRIzol法提取总RNA,10 g·L-1琼脂糖凝胶电泳检测RNA质量,NanoDropND-2000紫外分光光度计检测RNA浓度和纯度。

1.2.3 cDNA文库构建与RNA测序   取3 μg检测合格的RNA样品,按Illumina TruSeq RNA Library Preparation Kit说明书的方法构建cDNA文库,用Agilent 2100 Bioanalyzer对构建好的cDNA文库进行质检,检测合格的文库在Illumina HiseqTM 2000上机测序。

1.2.4 测序数据处理   对下机的原始测序数据(Raw data)进行质控,去除污染和低质量片段,获得Clean reads,用HISAT2软件将Clean reads与猪参考基因组(Sus scrofa 11.1)比对,用StringTie软件对转录本进行组装和定量,利用DEGseq2软件以log2fold change>1且P<0.05为标准筛选差异表达基因。

1.2.5 差异基因层级聚类分析   依据差异基因表达量,利用R语言的Pheatmap软件包对差异基因进行聚类分析。

1.2.6 差异基因GO和KEGG富集分析   用在线软件DAVID对筛选的差异基因进行GO和KEGG分析,筛选与脂肪代谢相关的差异基因,以富集度count≥2且矫正P<0.05为差异基因显著富集的阈值。

1.2.7 差异基因互作网络分析   以GO和KEGG分析筛选出的与脂肪代谢相关的差异基因的表达量为基础,用R语言的stats程序包计算差异基因间的相关性,用Cytoscape 3.7.1软件构建基因互作网络图。

1.2.8 qPCR   用Primer Premier 5.0软件设计qPCR引物(引物信息见表 1),利用反转录试剂盒将RNA反转录为cDNA,以猪GAPDH基因作为内参,对筛选到的差异基因进行实时荧光定量检测。

表 1 差异表达基因扩增引物 Table 1 The primers amplifying differentially expressed genes
2 结果 2.1 不同体重大型迪庆藏猪的背膘厚和腹脂率比较

表 2可知,平均背膘厚S3组显著高于S2组(P<0.05)、极显著高于S1组(P<0.01),S2组极显著高于S1组(P<0.01);6-7肋间膘厚S3组显著高于S2组(P<0.05)、极显著高于S1组(P<0.01),S2组极显著高于S1组(P<0.01);板油率S3组极显著高于S2组和S1组(P<0.01),S2组极显著高于S1组(P<0.01)。可以看出,随着大型迪庆藏猪阶段性生长,平均背膘厚、6-7肋间膘厚和板油率均随体重增加而显著增加。

表 2 不同体重大型迪庆藏猪背膘厚和腹脂率 Table 2 Backfat thickness and abdominal fat ratio of TPs at different growth stages
2.2 大型迪庆藏猪背脂和腹脂转录组测序数据统计

RNA-Seq测序结果显示(表 3),每个样品Raw reads数均在46 M以上,clean reads比率均在90%以上,clean Q30比例均在94%以上,mapping率均在87%以上,符合生物信息学分析要求。

表 3 RNA-Seq数据统计 Table 3 RNA-Seq data statistics
2.3 大型迪庆藏猪背脂和腹脂差异基因聚类结果

差异基因层级聚类显示(图 1),3个组背脂和腹脂差异基因聚成两个大类,与生物学分组一致,可进行后续分析。

A.S1组背脂和腹脂差异基因聚类热图;B.S2组背脂和腹脂差异基因聚类热图;C.S3组背脂和腹脂差异基因聚类热图 A.Clustering heat map of DEGs between BF and AF in S1 group; B.Clustering heat map of DEGs between BF and AF in S2 group; C.Clustering heat map of DEGs between BF and AF in S3 group 图 1 大型迪庆藏猪背脂和腹脂差异基因聚类热图 Fig. 1 Clustering heat map of DEGs between BF and AF of TPs
2.4 大型迪庆藏猪背脂和腹脂差异表达显著基因筛选

以|log2 fold change|>1且P<0.05为筛选差异表达显著基因的标准,与背脂相比,S1组腹脂差异表达显著基因486个(显著上调基因255个、显著下调基因231个,图 2A),S2组腹脂差异表达显著基因765个(显著上调基因367个、显著下调基因398个,图 2B),S3组腹脂差异表达显著基因339个(显著上调基因173个、显著下调基因166个,图 2C)。

A.S1_BF vs. S1_AF差异表达显著基因火山图;B.S2_BF vs. S2_AF差异表达显著基因火山图;C.S3_BF vs. S3_AF差异表达显著基因火山图 A. The volcano map of significant DEGs in S1_BF vs. S1_AF; B. The volcano map of significant DEGs in S2_BF vs. S2_AF; C. The volcano map of significant DEGs in S3_BF vs. S3_AF 图 2 大型迪庆藏猪腹脂和背脂差异表达显著基因火山图 Fig. 2 Volcano map of significant DEGs between BF and AF of TPs
2.5 背脂和腹脂差异表达显著基因定量验证

随机挑选EGR2、PPARALPLSTC2、SOD3共5个差异表达显著基因进行qPCR验证,5个基因的定量验证结果与RNA-Seq结果一致(图 3)。

图 3 大型迪庆藏猪背脂和腹脂差异表达显著基因qPCR验证 Fig. 3 qPCR verification of significant DEGs between BF and AF of TPs
2.6 不同体重大型迪庆藏猪背脂与腹脂差异表达显著基因功能富集分析

40 kg组,差异基因主要富集于肌肉收缩、调节骨骼肌收缩等GO条目(图 4A),心肌收缩、心肌细胞肾上腺素能信号传导等KEGG通路(图 4B),EGR2、RARRES2、TMOD4、SFRP2基因在以上通路中富集。

A.S1组差异表达显著基因GO分析气泡图;B.S1组差异表达显著基因KEGG分析气泡图 A. GO analysis bubble map of significant DEGs in S1 group; B. KEGG analysis bubble map of significant DEGs in S1 group 图 4 S1组大型迪庆藏猪背脂与腹脂差异表达显著基因GO和KEGG分析气泡图 Fig. 4 GO and KEGG analysis bubble map of significant DEGs between BF and AF in S1 group of TPs

80 kg组,差异基因主要富集于细胞黏附、葡萄糖反应等GO条目(图 5A),PI3K-Akt信号通路、破骨细胞分化等KEGG通路(图 5B),THBS1、PPARANRIP1、LPL基因在以上通路中富集。

A.S2组差异表达显著基因GO分析气泡图;B.S2组差异表达显著基因KEGG分析气泡图 A. GO analysis bubble map of significant DEGs in S2 group; B. KEGG analysis bubble map of significant DEGs in S2 group 图 5 S2组大型迪庆藏猪背脂与腹脂差异表达显著基因GO和KEGG分析气泡图 Fig. 5 GO and KEGG analysis bubble map of significant DEGs between BF and AF in S2 group of TPs

120 kg组,差异基因主要富集于间充质细胞增殖正调节、饥饿的细胞反应等GO条目(图 6A),Hippo信号通路、TGF-beta信号通路等KEGG通路(图 6B),HTRA1、TSHRLRRK2、STC2、SHOX2、SOD3基因在以上通路富集。

A.S3组差异表达显著基因GO分析气泡图;B.S3组差异表达显著基因KEGG分析气泡图 A.GO analysis bubble map of significant DEGs in S3 group; B.KEGG analysis bubble map of significant DEGs in S3 group 图 6 S3组大型迪庆藏猪背脂与腹脂差异表达显著基因GO和KEGG分析气泡图 Fig. 6 GO and KEGG analysis bubble map of significant DEGs between BF and AF in S3 group of TPs
2.7 不同体重大型迪庆藏猪背脂与腹脂差异表达显著基因互作网络分析

2.7.1 S1组差异表达显著基因互作网络   S1组脂肪代谢相关通路差异表达显著基因互作网络图(图 7)显示:EGR2、RARRES2、TMOD4、SFRP2基因位于网络核心,EGR2、RARRES2、SFRP2在腹脂表达上调,TMOD4表达下调。

红色节点表示位于网络核心的基因,蓝色节点表示位于网络外周的基因,下同 Red nodes represent genes located in the core of the network, and blue nodes represent genes located outside the network. The same as below 图 7 大型迪庆藏猪S1组背脂和腹脂差异表达显著基因互作网络 Fig. 7 Interaction network diagram of significant DEGs between BF and AF of TPs in S1 group

2.7.2 S2组差异表达显著基因互作网络   S2组脂肪代谢相关通路差异表达显著基因互作网络图(图 8)显示,THBS1、PPARANRIP1、LPL基因位于网络核心,THBS1、PPARANRIP1、LPL在腹脂表达上调。

图 8 大型迪庆藏猪S2组背脂和腹脂差异表达显著基因互作网络 Fig. 8 Interaction network diagram of significant DEGs between BF and AF of TPs in S2 group

2.7.3 S3组差异表达显著基因互作网络   S3组脂肪代谢相关通路差异表达显著基因互作网络图(图 9)显示,HTRA1、TSHRLRRK2、STC2、SHOX2、SOD3基因位于网络核心,LRRK2、TSHR在腹脂表达上调,SHOX2、SOD3、STC2、HTRA1表达下调。

图 9 迪庆藏猪S3组背脂和腹脂差异表达显著基因互作网络 Fig. 9 Interaction network diagram of significant DEGs between BF and AF of TPs in S3 group
3 讨论 3.1 大型迪庆藏猪S1阶段背脂、腹脂差异的核心基因与脂质代谢

S1阶段,EGR2、RARRES2、SFRP2在腹脂显著上调,TMOD4显著下调。EGR2编码锌指转录因子,是脂肪形成的早期诱导因子,通过诱导成脂转录因子C/EBPβ表达而促进脂肪细胞早期分化[22];在3T3-L1脂肪细胞分化早期,EGR2通过C/EBPβ-PPARγ途径促进脂肪细胞分化[23];过表达EGR2的细胞系,脂肪开始积累时间更早,形成的脂滴更大,脂肪形成标记基因aP2、PPARγ表达量更高[24]RARRES2编码的趋化素蛋白是一种脂肪因子,与G蛋白偶联受体CMKLR1结合,促进Akt/mTOR和ERK1/2磷酸化,进一步激活Akt/mTOR和ERK1/2信号通路而促进前脂肪细胞分化、增殖[25],参与脂肪代谢和能量稳态[26]RARRES2缺失小鼠,皮下脂肪显著增加而内脏脂肪显著降低,进一步研究发现,RARRES2对皮下和内脏脂肪的作用不同是由TIMP1表达差异引起,TIMP1是脂肪形成的负调控因子,主要在巨噬细胞中表达,抑制3T3-L1脂肪细胞分化,RARRES2缺失小鼠通过减少皮下脂肪巨噬细胞浸润,降低TIMP1表达,促进皮下脂肪形成,而RARRES2缺失小鼠内脏脂肪中TIMP1表达增加,抑制脂肪生成[27]SFRP2编码包含一个富含半胱氨酸的结构域循环的可溶性蛋白,与Wnts结合位点同源,Wnts家族分泌蛋白通过降低成脂转录因子PPARγ和C/EBPs表达而抑制脂肪细胞增殖、分化,SFRP2通过结构上有同源的结构域与Wnts的特异性受体竞争性结合而抑制Wnts活性从而减少对成脂转录因子的抑制,促进脂肪细胞增殖、分化[28-29];Crowley等[30]研究表明,内脏脂肪SFRP2的mRNA和蛋白表达量高于皮下脂肪。TMOD4是TMOD家族成员,TMOD4启动子区有脂肪转录因子C/EBPδ和肌细胞分化调控因子MEF2A的结合位点,这2个位点的靶基因分别与肌纤维生长和脂肪分子生成有关,过表达TMOD4可促进PPARγaP2、C/EBPαC/EBPβ等成脂因子表达,促进3T3-L1脂肪细胞脂滴积累,但TMOD4过表达抑制C2C12肌细胞的增殖和分化,表明TMOD4在脂肪合成和骨骼肌发生之间起着开关作用[31]

本研究中,EGR2、RARRES2、SFRP2在腹脂上调,可能促进腹膜脂肪细胞早期分化、增殖;TMOD4下调,提示S1阶段腹膜脂肪沉积的开关尚未开启、脂肪沉积以背部皮下脂肪为主,与S1组板油率最低的结果一致。

3.2 大型迪庆藏猪S2阶段背脂、腹脂差异的核心基因与脂质代谢

S2阶段,THBS1、PPARANRIP1、LPL在腹脂显著上调。THBS1编码一种脂肪来源的基质细胞蛋白,是肥胖、胰岛素抵抗和脂肪组织炎症反应的标志物[32],在人和小鼠内脏脂肪中的表达量显著高于皮下脂肪[33]THBS1缺失小鼠,糖耐受量增加,胰岛素敏感性增加[34]PPARA是脂肪酸氧化关键基因,通过促进脂肪酸β氧化第一限速酶ACOX1和长链脂肪酸β氧化限速酶CPT1表达而促进脂肪酸氧化和脂肪分解[35]。据研究,PPARA激活导致血脂水平降低,并从血浆中去除甘油三酯,导致高密度脂蛋白胆固醇水平升高[36]NRIP1编码核受体相互作用蛋白1通过与核受体、转录因子和其他辅调控因子等相互作用而调控体内代谢、衰老等生理过程[37],在脂肪组织、肝和骨骼肌等代谢旺盛的组织中高表达[38]NRIP1最早被确定为哺乳动物细胞雌激素受体的共抑制因子[39],进一步研究发现其可结合并调节过氧化物酶体增殖物激活受体、甲状腺激素受体和类维生素A受体活性[40],作为共激活因子参与甘油三酯的合成[41]。在间充质干细胞中敲除NRIP1,能延缓间充质干细胞衰老、抑制细胞凋亡、降低FABP4和PPARγ基因表达、抑制间充质干细胞成脂分化[42]。与野生型小鼠相比,敲除NRIP1基因小鼠,脂肪酸氧化和能量消耗相关基因(CPT1BUCP1)表达上调,脂肪酸合成相关基因(ACC1、FASSCD1)和糖异生相关基因(PPARγC/EBPαSREBP1C)表达下调,NRIP1基因敲除小鼠更消瘦,体内脂肪含量更低[43]LPL编码甘油三酯水解的限速酶[44]。在实质细胞中首先合成的是非活性单体,在脂肪酶成熟因子LMF1作用下形成LPL活性二聚体,内皮膜蛋白GPIHBP1与LPL二聚体结合并将其运输至血浆中富含甘油三酯的脂蛋白上,在APCO-Ⅱ和APOA-Ⅴ作用下LPL水解活性被激活,将甘油三酯水解为游离脂肪酸和单酰甘油[45],水解产生的游离脂肪酸在脂肪酸转运蛋白CD36的作用下被脂肪细胞吸收、重新酯化,促进脂肪细胞甘油三酯积累[46]

本研究中,THBS1、PPARANRIP1和LPL在S2阶段腹脂显著上调,协同作用,可能导致胰岛素抵抗、甘油三酯合成、腹膜脂肪组织胆固醇和脂质积累,与S2阶段板油率的增幅大于平均背膘厚和6-7肋间膘厚增幅的结果一致,表明大型迪庆藏猪的脂肪沉积在S2阶段已转入腹脂沉积为主,此阶段是腹脂大量沉积的阶段。

3.3 大型迪庆藏猪S3阶段背脂、腹脂差异的核心基因与脂质代谢

S3阶段,LRRK2、TSHR基因在腹脂显著上调,SHOX2、SOD3、STC2、HTRA1基因显著下调。LRRK2编码蛋白是一种具有激酶、GTP酶和蛋白质相互作用域的多功能蛋白[47],在HepG2细胞中过表达LRRK2,LRRK2通过上调CPT1A加速游离脂肪酸的β氧化而促进脂肪分解[48]。本研究中,LRRK2在腹脂上调,可能促进腹膜脂肪组织脂肪酸氧化分解、脂肪沉积减少,与Khan等[49]的研究结果一致。TSHR是前脂肪细胞分化为成熟脂肪细胞的关键基因,通过cAMP/PKA/PPARA通路激活成脂关键基因SREBP1c,促进甘油三酯积累[50]。在3T3-L1前脂肪细胞中敲除TSHR,成脂关键基因PPARγ表达降低,前脂肪细胞分化受阻[51]。过表达TSHR的小鼠更胖,肝和血清中甘油三酯积累更多[52]TSHR缺失小鼠体温升高,耗氧量增加,能量消耗增加,表明TSHR可能通过减少能量消耗增加脂肪沉积。SHOX2是同源盒基因家族成员,通过与C/EBPα结合抑制C/EBPαADRB3启动子结合,抑制ADRB3表达从而抑制脂肪分解[53]SOD3编码超氧化物歧化酶3。在人脂肪细胞中沉默SOD3,PPARγSREBP1c等成脂基因在脂肪细胞中的表达增加,甘油三酯积累增加,敲除SOD3的小鼠脂肪细胞增大[54]。在高脂饮食(HFD)的C57BL/6小鼠中过表达SOD3,动物体内高水平的SOD3活性上调了肝中CPT1α、CPT1β、PGC1α、PGC1β和UCP2等负责能量消耗的基因表达[55]STC2编码分泌型糖蛋白,在人间充质干细胞中过表达STC2,显著下调PPARγFABP4表达进而抑制间充质干细胞的成脂分化,相反,敲除STC2可上调PPARγFABP4表达,细胞脂滴增大[56]。小鼠肝细胞过表达STC2,可促进STAT3磷酸化而激活STAT3信号通路,抑制SREBP1c表达,抑制脂肪合成,减少肝中甘油三酯积累[57]HTRA1编码蛋白为胰蛋白酶家族成员,是间充质干细胞成骨分化和成脂分化的调节因子。在间充质干细胞中沉默HTRA1,促进成脂标记基因FABP4、PPARγ表达增加,诱导间充质干细胞分化为成熟脂肪细胞[58]HTRA1还可通过上调MAP激酶信号通路,诱导脂肪形成的负调控因子MMP3表达从而抑制脂肪细胞脂滴形成[59]

本研究中,TSHR在腹脂上调而SOD3、STC2和HTRA1下调,这4个基因协同,可能共同促进腹脂脂肪细胞分化、脂肪合成、甘油三酯积累和脂滴变大,LRRK2上调和SHOX2下调可能导致腹膜脂肪组织脂肪酸氧化分解、脂肪沉积减少;TSHRSOD3、STC2和HTRA1可能协同调增腹膜脂质积累,而LRRK2和SHOX2基因协同调减腹脂沉积,最终减缓腹脂增速、防止机体腹脂过度增加而发生代谢功能障碍、降低炎症风险,与S2到S3板油率增幅(52.67%)比S1到S2增幅(133.55%)低的结果一致。

4 结论

EGR2、THBS1、HTRA1等14个基因作为核心基因精细调控大型迪庆藏猪背脂与腹脂脂质代谢,10~40 kg:EGR2、RARRES2、SFRP2和TMOD4基因位于网络核心,促进脂肪细胞分化、增殖的基因在腹脂上调,脂肪合成的开关基因下调;40~80 kg:THBS1、PPARANRIP1和LPL基因位于网络核心,促进甘油三酯合成、胆固醇形成、脂质积累的基因在腹脂上调;80~120 kg:LRRK2、TSHRSHOX2、SOD3、STC2和HTRA1基因位于网络核心,促进甘油三酯积累、脂肪酸氧化的基因在腹脂上调,抑制脂肪分解、脂肪合成、脂滴形成的基因下调。

参考文献
[1]
POULOS S P, HAUSMAN D B, HAUSMAN G J. The development and endocrine functions of adipose tissue[J]. Mol Cell Endocrinol, 2010, 323(1): 20-34. DOI:10.1016/j.mce.2009.12.011
[2]
SCHERER P E. Adipose tissue: from lipid storage compartment to endocrine organ[J]. Diabetes, 2006, 55(6): 1537-1545. DOI:10.2337/db06-0263
[3]
宋倩倩. 肠道微生物与宿主基因互作对肉鸭腹脂沉积的遗传机制研究[D]. 扬州: 扬州大学, 2021.
SONG Q Q. Metagenomics and transcriptomics reveal the genetic mechanism of abdominal fat deposition in duck[D]. Yangzhou: Yangzhou University, 2021. (in Chinese)
[4]
HAUSMAN G J, BERGEN W G, ETHERTON T D, et al. The history of adipocyte and adipose tissue research in meat animals[J]. J Anim Sci, 2018, 96(2): 473-486. DOI:10.1093/jas/skx050
[5]
有文静. GADD45α对动物脂肪细胞分化和代谢的影响及调控机制研究[D]. 杭州: 浙江大学, 2020.
YOU W J. Effects and regulatory mechanisms of GADD45α on differentiation and metabolism of animal adipocyte[D]. Hangzhou: Zhejiang University, 2020. (in Chinese)
[6]
谢光杰, 王永, 许晴, 等. 简州大耳羊肌内脂肪细胞成脂分化差异表达基因的筛选与鉴定[J]. 畜牧兽医学报, 2020, 51(7): 1525-1536.
XIE G J, WANG Y, XU Q, et al. Selection and validation of the differentially expressed genes during the adipogenic differentiation of Jianzhou Da'er goat intramuscular adipocytes[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(7): 1525-1536. (in Chinese)
[7]
YANG H, XU X L, MA H M, et al. Integrative analysis of transcriptomics and proteomics of skeletal muscles of the Chinese indigenous Shaziling pig compared with the Yorkshire breed[J]. BMC Genet, 2016, 17(1): 80. DOI:10.1186/s12863-016-0389-y
[8]
JIN L, TANG Q Z, HU S L, et al. A pig BodyMap transcriptome reveals diverse tissue physiologies and evolutionary dynamics of transcription[J]. Nat Commun, 2021, 12(1): 3715. DOI:10.1038/s41467-021-23560-8
[9]
CHEN C Y, AI H S, REN J, et al. A global view of porcine transcriptome in three tissues from a full-sib pair with extreme phenotypes in growth and fat deposition by paired-end RNA sequencing[J]. BMC Genomics, 2011, 12: 448. DOI:10.1186/1471-2164-12-448
[10]
WANG T, JIANG A A, GUO Y Q, et al. Deep sequencing of the transcriptome reveals inflammatory features of porcine visceral adipose tissue[J]. Int J Biol Sci, 2013, 9(6): 550-556. DOI:10.7150/ijbs.6257
[11]
MERRETT J E, BO T, PSALTIS P J, et al. Identification of DNA response elements regulating expression of CCAAT/enhancer-binding protein (C/EBP) β and δ and MAP kinase-interacting kinases during early adipogenesiss[J]. Adipocyte, 2020, 9(1): 427-442. DOI:10.1080/21623945.2020.1796361
[12]
SHIMOMURA I, BASHMAKOV Y, IKEMOTO S, et al. Insulin selectively increases SREBP-1c mRNA in the livers of rats with streptozotocin-induced diabetes[J]. Proc Natl Acad Sci U S A, 1999, 96(24): 13656-13661. DOI:10.1073/pnas.96.24.13656
[13]
DELGHANDI M P, JOHANNESSEN M, MOENS U. The cAMP signalling pathway activates CREB through PKA, p38 and MSK1 in NIH 3T3 cells[J]. Cell Signal, 2005, 17(11): 1343-1351. DOI:10.1016/j.cellsig.2005.02.003
[14]
HOMAN E P, BRANDÃO B B, SOFTIC S, et al. Differential roles of FOXO transcription factors on insulin action in brown and white adipose tissue[J]. J Clin Invest, 2021, 131(19): e143328. DOI:10.1172/JCI143328
[15]
RAZA S H A, PANT S D, WANI A K, et al. Krüppel-like factors family regulation of adipogenic markers genes in bovine cattle adipogenesis[J]. Mol Cell Probes, 2022, 65: 101850. DOI:10.1016/j.mcp.2022.101850
[16]
LI D, ZHANG F, ZHANG X, et al. Distinct functions of PPARγ isoforms in regulating adipocyte plasticity[J]. Biochem Biophys Res Commun, 2016, 481(1-2): 132-138. DOI:10.1016/j.bbrc.2016.10.152
[17]
李优磊. PPAR信号通路在调控猪皮下脂肪与肌内脂肪差异沉积中的作用及机制研究[D]. 杨凌: 西北农林科技大学, 2018.
LI Y L. The differential function and mechanism of PPAR signaling in regulation of porcine subcutaneous and intramuscular fat depositon[D]. Yangling: Northwest A&F University, 2018. (in Chinese)
[18]
严达伟, 赵桂英, 苟潇, 等. 迪庆藏猪肉质特性的研究[J]. 云南农业大学学报, 2007, 22(1): 86-91.
YAN D W, ZHAO G Y, GOU X, et al. Study on characteristics of Diqing Tibetan Pig's meat quality[J]. Journal of Yunnan Agricultural University, 2007, 22(1): 86-91. DOI:10.3969/j.issn.1004-390X.2007.01.020 (in Chinese)
[19]
聂靖茹, 张博, 马黎, 等. 大型迪庆藏猪不同生长阶段肌肉生长差异基因及其调控通路分析[J]. 中国农业大学学报, 2022, 27(6): 132-144.
NIE J R, ZHANG B, MA L, et al. Screening of differential genes for muscle growth and regulatory pathways analysis in large Diqing Tibetan pig at different growth stages[J]. Journal of China Agricultural University, 2022, 27(6): 132-144. (in Chinese)
[20]
聂靖茹, 马黎, 鲁绍雄, 等. 迪庆藏猪与野猪×迪庆藏猪生长、胴体及肉质性能比较[J]. 云南农业大学学报: 自然科学, 2021, 36(5): 805-810.
NIE J R, MA L, LU S X, et al. Comparison of growth, carcass and meat quality traits between Diqing Tibetan pig and wild boar×Diqing Tibetan pig[J]. Journal of Yunnan Agricultural University (Natural Science), 2021, 36(5): 805-810. (in Chinese)
[21]
易胜男, 孔小艳, 钱锦花, 等. 藏猪EPAS1基因低氧适应相关位点与表达量研究[J]. 家畜生态学报, 2020, 41(6): 19-24.
YI S N, KONG X Y, QIAN J H, et al. Related loci and expression level of EPAS1 gene on hypoxia adaptation in Tibetan pigs[J]. Journal of Domestic Animal Ecology, 2020, 41(6): 19-24. DOI:10.3969/j.issn.1673-1182.2020.06.004 (in Chinese)
[22]
KURI-HARCUCH W, VELEZ-DELVALLE C, VAZQUEZ-SANDOVAL A, et al. A cellular perspective of adipogenesis transcriptional regulation[J]. J Cell Physiol, 2019, 234(2): 1111-1129. DOI:10.1002/jcp.27060
[23]
PENG Y D, XIANG H, CHEN C, et al. MiR-224 impairs adipocyte early differentiation and regulates fatty acid metabolism[J]. Int J Biochem Cell Biol, 2013, 45(8): 1585-1593. DOI:10.1016/j.biocel.2013.04.029
[24]
CHEN Z, TORRENS J I, ANAND A, et al. Krox20 stimulates adipogenesis via C/EBPβ-dependent and -independent mechanisms[J]. Cell Metab, 2005, 1(2): 93-106. DOI:10.1016/j.cmet.2004.12.009
[25]
JIANG Y Q, LIU P, JIAO W L, et al. Gax suppresses chemerin/CMKLR1-induced preadipocyte biofunctions through the inhibition of Akt/mTOR and ERK signaling pathways[J]. J Cell Physiol, 2018, 233(1): 572-586. DOI:10.1002/jcp.25918
[26]
CATALÁN V, GÓMEZ-AMBROSI J, RODRÍGUEZ A, et al. Increased levels of chemerin and its receptor, chemokine-like receptor-1, in obesity are related to inflammation: tumor necrosis factor-α stimulates mRNA levels of chemerin in visceral adipocytes from obese patients[J]. Surg Obes Relat Dis, 2013, 9(2): 306-314. DOI:10.1016/j.soard.2011.11.001
[27]
HUANG C L, XIAO L L, XU M, et al. Chemerin deficiency regulates adipogenesis is depot different through TIMP1[J]. Genes Dis, 2021, 8(5): 698-708. DOI:10.1016/j.gendis.2020.04.003
[28]
EHRLUND A, MEJHERT N, LORENTE-CEBRIÁN S, et al. Characterization of the Wnt inhibitors secreted frizzled-related proteins (SFRPs) in human adipose tissue[J]. J Clin Endocrinol Metab, 2013, 98(3): E503-E508. DOI:10.1210/jc.2012-3416
[29]
BOLAMPERTI S, SIGNO M, SPINELLO A, et al. GH prevents adipogenic differentiation of mesenchymal stromal stem cells derived from human trabecular bone via canonical Wnt signaling[J]. Bone, 2018, 112: 136-144. DOI:10.1016/j.bone.2018.04.014
[30]
CROWLEY R K, O'REILLY M W, BUJALSKA I J, et al. SFRP2 is associated with increased adiposity and VEGF expression[J]. PLoS One, 2016, 11(9): e0163777. DOI:10.1371/journal.pone.0163777
[31]
ZHAO X, HUANG Z, LIU X H, et al. The switch role of the Tmod4 in the regulation of balanced development between myogenesis and adipogenesis[J]. Gene, 2013, 532(2): 263-271. DOI:10.1016/j.gene.2013.08.088
[32]
MATSUO Y, TANAKA M, YAMAKAGE H, et al. Thrombospondin 1 as a novel biological marker of obesity and metabolic syndrome[J]. Metabolism, 2015, 64(11): 1490-1499. DOI:10.1016/j.metabol.2015.07.016
[33]
RAMIS J M, HAL N L W F V, KRAMER E, et al. Carboxypeptidase E and thrombospondin-1 are differently expressed in subcutaneous and visceral fat of obese subjects[J]. Cell Mol Life Sci, 2002, 59(11): 1960-1971. DOI:10.1007/PL00012518
[34]
LI Y Z, TONG X P, RUMALA C, et al. Thrombospondin1 deficiency reduces obesity-associated inflammation and improves insulin sensitivity in a diet-induced obese mouse model[J]. PLoS One, 2011, 6(10): e26656. DOI:10.1371/journal.pone.0026656
[35]
TIAN X, RU Q, XIONG Q, et al. Catalpol attenuates hepatic steatosis by regulating lipid metabolism via AMP-activated protein kinase activation[J]. BioMed Res Int, 2020, 2020: 6708061.
[36]
SUN H J, ZHU X X, CAI W W, et al. Hypaphorine attenuates lipopolysaccharide-induced endothelial inflammation via regulation of TLR4 and PPAR-γ dependent on PI3K/Akt/mTOR signal pathway[J]. Int J Mol Sci, 2017, 18(4): 844. DOI:10.3390/ijms18040844
[37]
AUGEREAU P, BADIA E, CARASCOSSA S, et al. The nuclear receptor transcriptional coregulator RIP140[J]. Nucl Recept Signal, 2006, 4: e024.
[38]
DE MARINIS Y, SUN J M, BOMPADA P, et al. Regulation of nuclear receptor interacting protein 1 (NRIP1) gene expression in response to weight loss and exercise in humans[J]. Obesity (Silver Spring), 2017, 25(8): 1400-1409. DOI:10.1002/oby.21899
[39]
CAVAILLÈS V, DAUVOIS S, DANIELIAN P S, et al. Interaction of proteins with transcriptionally active estrogen receptors[J]. Proc Natl Acad Sci U S A, 1994, 91(21): 10009-10013. DOI:10.1073/pnas.91.21.10009
[40]
NAUTIYAL J. Transcriptional coregulator RIP140:an essential regulator of physiology[J]. J Mol Endocrinol, 2017, 58(3): R147-R158. DOI:10.1530/JME-16-0156
[41]
ZSCHIEDRICH I, HARDELAND U, KRONES-HERZIG A, et al. Coactivator function of RIP140 for NFκB/RelA-dependent cytokine gene expression[J]. Blood, 2008, 112(2): 264-276. DOI:10.1182/blood-2007-11-121699
[42]
HU Y, ZHU Y, GERBER S D, et al. Deletion of Nrip1 delays skin aging by reducing adipose-derived mesenchymal stem cells (ADMSCs) senescence, and maintaining ADMSCs quiescence[J]. Geroscience, 2021, 43(4): 1815-1833. DOI:10.1007/s11357-021-00344-y
[43]
LEONARDSSON G, STEEL J H, CHRISTIAN M, et al. Nuclear receptor corepressor RIP140 regulates fat accumulation[J]. Proc Natl Acad Sci U S A, 2004, 101(22): 8437-8442. DOI:10.1073/pnas.0401013101
[44]
NIMONKAR A V, WELDON S, GODBOUT K, et al. A lipoprotein lipase-GPI-anchored high-density lipoprotein-binding protein 1 fusion lowers triglycerides in mice: implications for managing familial chylomicronemia syndrome[J]. J Biol Chem, 2020, 295(10): 2900-2912. DOI:10.1074/jbc.RA119.011079
[45]
OLIVECRONA G. Role of lipoprotein lipase in lipid metabolism[J]. Curr Opin Lipidol, 2016, 27(3): 233-241. DOI:10.1097/MOL.0000000000000297
[46]
HE P P, JIANG T, OUYANG X P, et al. Lipoprotein lipase: biosynthesis, regulatory factors, and its role in atherosclerosis and other diseases[J]. Clin Chim Acta, 2018, 480: 126-137. DOI:10.1016/j.cca.2018.02.006
[47]
SEOL W, NAM D, SON I. Rab GTPases as physiological substrates of LRRK2 kinase[J]. Exp Neurobiol, 2019, 28(2): 134-145. DOI:10.5607/en.2019.28.2.134
[48]
LIN C W, PENG Y J, LIN Y Y, et al. LRRK2 regulates CPT1A to promote β-oxidation in HepG2 cells[J]. Molecules, 2020, 25(18): 4122. DOI:10.3390/molecules25184122
[49]
KHAN S, CHAN Y T, REVELO X S, et al. The immune landscape of visceral adipose tissue during obesity and aging[J]. Front Endocrinol (Lausanne), 2020, 11: 267. DOI:10.3389/fendo.2020.00267
[50]
YAN F, WANG Q, LU M, et al. Thyrotropin increases hepatic triglyceride content through upregulation of SREBP-1c activity[J]. J Hepatol, 2014, 61(6): 1358-1364. DOI:10.1016/j.jhep.2014.06.037
[51]
LU S M, GUAN Q B, LIU Y T, et al. Role of extrathyroidal TSHR expression in adipocyte differentiation and its association with obesity[J]. Lipids Health Dis, 2012, 11(1): 17. DOI:10.1186/1476-511X-11-17
[52]
ZHANG J M, WU H X, MA S Z, et al. TSH promotes adiposity by inhibiting the browning of white fat[J]. Adipocyte, 2020, 9(1): 264-278. DOI:10.1080/21623945.2020.1783101
[53]
LEE K Y, YAMAMOTO Y, BOUCHER J, et al. Shox2 is a molecular determinant of depot-specific adipocyte function[J]. Proc Natl Acad Sci U S A, 2013, 110(28): 11409-11414. DOI:10.1073/pnas.1310331110
[54]
GAO D, HU S J, ZHENG X W, et al. SOD3 is secreted by adipocytes and mitigates high-fat diet-induced obesity, inflammation, and insulin resistance[J]. Antioxid Redox Signal, 2020, 32(3): 193-212. DOI:10.1089/ars.2018.7628
[55]
CUI R, GAO M, QU S, et al. Overexpression of superoxide dismutase 3 gene blocks high-fat diet-induced obesity, fatty liver and insulin resistance[J]. Gene Ther, 2014, 21(9): 840-848. DOI:10.1038/gt.2014.64
[56]
MA B C, XU X Y, HE S, et al. STC2 modulates ERK1/2 signaling to suppress adipogenic differentiation of human bone marrow mesenchymal stem cells[J]. Biochem Biophys Res Commun, 2020, 524(1): 163-168. DOI:10.1016/j.bbrc.2020.01.060
[57]
ZHAO J J, JIAO Y, SONG Y P, et al. Stanniocalcin 2 ameliorates hepatosteatosis through activation of STAT3 signaling[J]. Front Physiol, 2018, 9: 873. DOI:10.3389/fphys.2018.00873
[58]
TIADEN A N, BREIDEN M, MIRSAIDI A, et al. Human serine protease HTRA1 positively regulates osteogenesis of human bone marrow-derived mesenchymal stem cells and mineralization of differentiating bone-forming cells through the modulation of extracellular matrix protein[J]. Stem Cells, 2012, 30(10): 2271-2282. DOI:10.1002/stem.1190
[59]
TIADEN A N, BAHRENBERG G, MIRSAIDI A, et al. Novel function of serine protease HTRA1 in inhibiting adipogenic differentiation of human mesenchymal stem cells via MAP kinase-mediated MMP upregulation[J]. Stem Cells, 2016, 34(6): 1601-1614. DOI:10.1002/stem.2297

(编辑   郭云雁)