畜牧兽医学报  2023, Vol. 54 Issue (2): 451-462. DOI: 10.11843/j.issn.0366-6964.2023.02.004    PDF    
牛体外胚胎冷冻保存的研究进展
冯肖艺1,2, 徐茜1, 张航1, 杨柏高1, 张培培1, 郝海生1, 杜卫华1, 朱化彬1, 崔凯2, 赵学明1     
1. 中国农业科学院北京畜牧兽医研究所,北京 100193;
2. 青岛农业大学动物科技学院,青岛 266000
摘要:体外胚胎冷冻保存技术是胚胎移植技术的重要组成部分,在辅助生殖技术中发挥重要作用,同时对种质资源保存、加强遗传改良和促进优质种源国际交流等方面具有重要意义。然而,体外胚胎冷冻过程中存在脂质含量过高、活性氧水平升高及机械损伤等问题,导致体外胚胎冷冻效率低,这极大地限制了体外胚胎冷冻保存技术的广泛应用。大量研究表明,通过去脂质、优化体外胚胎培养液、人工塌陷囊胚腔和优化冷冻程序等手段,可以有效提高冷冻后胚胎的存活率和发育能力。因此,本文概述了体外胚胎冷冻保存技术的研究进展和胚胎冷冻过程中存在的问题,总结了提高体外胚胎冷冻效率的方法措施,旨在为提高体外胚胎冷冻保存效率提供一定参考。
关键词    体外胚胎    冷冻保存    冷冻效率    
Advances in Cryopreservation of Bovine Embryo in vitro
FENG Xiaoyi1,2, XU Xi1, ZHANG Hang1, YANG Baigao1, ZHANG Peipei1, HAO Haisheng1, DU Weihua1, ZHU Huabin1, CUI Kai2, ZHAO Xueming1     
1. Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
2. College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266000, China
Abstract: In vitro embryo cryopreservation technology is an important part of embryo transfer technology, which plays an important role in assisted reproduction technology, and it is also important for germplasm resource conservation, enhancing genetic improvement and promoting international circulation of high-quality germplasm. However, the high lipid content, elevated levels of reactive oxygen species and mechanical damage in in vitro embryo cryopreservation lead to low efficiency of in vitro embryo cryopreservation, which greatly limits the wide application of in vitro embryo cryopreservation technology. Numerous studies have shown that the survival rate and developmental capacity of frozen embryos can be effectively improved by means of lipid removal, optimization of in vitro embryo culture medium, artificial collapse of blastocyst cavities and optimization of freezing procedures. Therefore, this paper outlines the research progress of in vitro embryo cryopreservation technology and the problems in cryopreservation process, and summarizes the methods that can improve the efficiency of in vitro embryo cryopreservation, aiming to provide the reference for improving the efficiency of in vitro embryo cryopreservation.
Key words: cattle    in vitro embryo    cryopreservation    freezing efficiency    

牛体外胚胎冷冻保存技术是体外胚胎生产体系的重要组成部分,是提高牛的繁殖能力[1]和保护濒危牛品种的重要手段[2-4],并且该技术已成为牛繁殖管理的必要条件[5-6]。目前,每年移植的冻融牛胚胎约占胚胎移植总数的60%,这表明胚胎冷冻技术已占据牛胚胎移植生产的重要地位[5]。此外,体外胚胎冷冻保存技术打破了时间和空间的限制,为国内外优质种源交流提供了条件,使其在全球范围内得到广泛应用[7]。如今,体外胚胎生产(in vitro production,IVP)、冷冻保存和移植已成为家畜生产繁育的常规程序[8]。由此可见,体外胚胎冷冻保存技术在牛养殖产业发展中具有重要的应用价值。

虽然体外胚胎冷冻技术已成功应用于家畜生产和种质资源保护,但体外胚胎在冷冻后的存活率和移植妊娠率始终低于体内胚胎[1, 5, 9-10]。2017年,牛体外胚胎移植的数量首次超过了体内胚胎移植数量[5, 11],但在过去的五年中约80%是新鲜体外胚胎,体外冻融胚胎比例较低[4]。2018年,体外冻融胚胎移植比例进一步下降(33.9% vs. 26.8%)[12]。研究表明,体外胚胎对低温冷冻保存敏感,这不仅与其电子密度高、能量基质代谢过度和热敏感性高有关[10],还与其微绒毛稀疏、脂质代谢异常[11]以及液泡多导致细胞间紧密程度较低、通讯减少[11-13]等特征有关[11]。此外,与体内胚胎相比,体外胚胎改变了与代谢和生长相关的转录本表达[14]。因此,本文简要阐述了体外胚胎冷冻保存方法的研究进展,分析了目前体外胚胎冷冻保存过程中存在的问题,总结了有效提高体外胚胎冷冻效率的一些方法措施,以期为提高牛体外胚胎冷冻保存效率提供参考。

1 体外胚胎冷冻保存方法的研究进展

牛体外胚胎冷冻保存有两种常用方法:常规冷冻和玻璃化冷冻。这两种方法在胚胎移植后妊娠率相似[15],二者各有利弊[4]。目前,玻璃化冷冻比常规冷冻的应用更为广泛[4]

1.1 常规冷冻

常规冷冻使用可编程的冷冻设备控制温度,使温度以可控的速度逐渐降低,进行胚胎冷冻保存[15-16],同时使用甘油、乙二醇等低毒性的冷冻保护剂[6]降低冷冻损伤。此外,常规冷冻保存的胚胎在解冻后可以直接移植,降低生产条件需求,大大节省胚胎移植时间成本[6, 17-18]。许多企业在冷冻牛胚胎时,仍然倾向于常规冷冻而不是玻璃化冷冻,一方面是该方法对操作人员的技术要求不高,另一方面是有研究报道常规冷冻具有更高的胚胎存活率[16]

然而,常规冷冻需要使用昂贵的设备且过程耗时[6],常规冷冻过程中还会产生冰晶[4],导致细胞受到机械损伤[15],以及引起其他损伤,包括脂质过氧化[15]、线粒体变性增加、核膜质膜完整性被破坏、透明带厚度变薄并断裂、细胞器解体和细胞骨架损伤等[17],从而导致胚胎各项指标降低[6, 15],诱导胚胎发生凋亡[15-16]。此外,与未冷冻的胚胎相比,常规冷冻胚胎的孵化率、存活率显著降低,如表 1所示,这表明常规冷冻不利于牛体外胚胎的保存,导致体外胚胎常规冷冻技术的应用受限[19]

1.2 玻璃化冷冻

玻璃化冷冻是一种经济、快速、能够替代常规冷冻的保存方法[4, 19-22]。与常规冷冻相比,玻璃化冷冻不需要昂贵的仪器设备,冷冻所需时间大大缩短[4, 16-17, 19, 23]。此外,玻璃化冷冻使用的冷冻液和冷冻保护剂适用于低温耐受性极低的胚胎[24],其冷却速率高,能够将胚胎快速玻璃化而不会形成冰晶,降低胚胎机械冷冻损伤[6, 15-16, 18, 25],增强体外胚胎的存活能力[15]。大量研究证实,牛体外胚胎玻璃化冷冻比常规冷冻具有更高的囊胚率、孵化率和存活率等[6, 9, 15-16, 19, 22],如表 1所示。研究表明,玻璃化冷冻激活胚胎自身短期保护机制[15],其中内质网应激能够上调HSPA5TBA8基因,下调脂质代谢调节基因和上调细胞存活相关基因,这是胚胎抵抗低温损伤和促进胚胎存活的潜在机制,因此,玻璃化冷冻胚胎冻后存活率更高[15]

表 1 牛体外胚胎玻璃化冷冻和常规冷冻的发育能力 Table 1 Developmental ability of bovine embryos vitrified and conventionally frozen in vitro

然而,玻璃化冷冻时往往使用高浓度的低温冷冻保护剂,其具有高渗透性和毒性作用,使得胚胎遭受毒性损伤[6, 9, 18, 26],导致胚胎渗透性休克[15-16, 26],胚胎存活率降低[6, 16]。此外,玻璃化冷冻胚胎在移植前要在加热溶液中重新膨胀,这导致移植过程非常耗时[16]。尽管玻璃化冷冻胚胎具有较高的存活率,但这并不能提高解冻后胚胎在移植到受体牛体内后的存活率[15]。目前,玻璃化冷冻过程需改善的主要是在解冻过程中防止结晶、减少升温时对胚胎的不良影响[21]和减少高浓度的低温冷冻保护剂对胚胎造成的损伤[26],以提高解冻速率、胚胎的质量和胚胎的耐低温性,增加可移植胚胎的数量[4]

2 体外胚胎冷冻存在的问题 2.1 脂质含量高

在细胞中,脂质起着构成结构膜成分的关键作用,其充当信号分子,并促进能量储存,是影响细胞内部结构和细胞之间相互作用的关键因素[27]。与体内胚胎相比,体外胚胎脂质含量较高[13, 28-34],体外胚胎脂质含量高使其对低温保存更加敏感,这降低了体外胚胎的冷冻效率[35-36]。研究显示,至少有4类脂质影响冷冻保存后胚胎的存活率,包括甘油三酯、游离脂肪酸、胆固醇和磷脂等[28]

研究表明,导致牛体外胚胎脂质含量增加的原因主要是血清和氧化应激。在血清存在的情况下,卵母细胞体外成熟过程中脂质含量会增加,但线粒体数量没有相应的增加,这表明低效率的脂质代谢引起卵母细胞中的脂质积累[7]。同时,血清浓度影响着牛体外胚胎细胞质中脂滴的数量和形状[10, 13]。此外,在体外培养条件下,线粒体功能出现障碍,其通过β-氧化和电子传递链影响脂质代谢,导致体外胚胎脂质含量升高[10, 15]

2.2 活性氧水平高

线粒体在β-氧化合成三磷酸腺苷时涉及电子传递链,电子会丢失与O2结合,导致产生活性氧(reactive oxygen species,ROS)[37-38]。同时,细胞体外成熟(in vitro maturation,IVM)时的氧张力也会导致ROS水平升高[37]。影响线粒体中ROS产生的因素还包括组织和细胞类型、代谢中间体和底物的存在、高比例NADH电子供体的存在、细胞外环境的氧张力、线粒体膜电位以及pH梯度[39]。正常情况下,细胞中的ROS有利于组织再生、细胞内氧化还原调节和胚胎发生[37],并且能够在低浓度下调节细胞存活,在超生理水平下调节细胞死亡[39]

然而,活性氧水平过高会降低体外胚胎的发育能力和耐低温性,从而降低体外胚胎冷冻效率[4]。ROS浓度的增加会从稳定的分子(例如DNA)中隔离电子[40],过量的ROS会氧化细胞分子,改变其功能,并通过脂质过氧化和DNA、蛋白质、线粒体损伤以及细胞凋亡来损害细胞功能和活力[37, 39-44],导致胚胎发育阻滞[38]。此外,ROS以时间依赖性的方式在卵母细胞和胚胎中积累[8, 38],当ROS产生和积累与细胞的抗氧化机制之间失去平衡时会发生氧化应激[15, 40]。氧化应激由抗氧化系统失控引起[43],对卵母细胞、胚胎发育等生殖过程不利[39-41, 45-46],会引起细胞内氧化还原电位失衡[41]、细胞信号传导改变[39]、细胞衰老[38]和凋亡[39]

2.3 细胞骨架损伤

微管和微丝是哺乳动物细胞骨架的主要成分,为染色体运动和细胞分裂提供结构基础[47]。卵母细胞中微管系统的缺陷可导致染色体的丢失,增加成非整倍体以及受精后胚胎发育异常[47]。细胞骨架具有协调细胞器重排、为受精做准备的功能,其中,微管和微丝不仅可以调节内质网分布,还参与调节卵母细胞Ca2+振荡[48]。然而,细胞骨架常常在冷冻保存过程中受损,冷冻保存过程中细胞形状和收缩变化会导致细胞骨架破裂,并且会导致细胞骨架结构发生不可逆转的变化[49]。此外,冷冻保存还会导致GV期卵母细胞纺锤体缺陷,影响细胞解冻后体外成熟期间减数分裂时染色体的分离[49]

牛体外胚胎膜的稳定性也是影响其冷冻敏感性的一个因素[50]。磷脂是细胞膜中最丰富的脂质,决定了细胞膜大部分的理化性质,如流动性、渗透性和热相行为[30]。体外胚胎产生的乳酸是体内的两倍,大量的乳酸引起细胞内pH和胚胎膜的变化,导致胚胎变得更加脆弱,易受低温损伤[31]。体外胚胎冷冻后磷脂含量降低,导致体外胚胎低温敏感性较高和质量较差[30]。此外,冷冻过程中内部冰晶的形成和渗透压冲击也是冷冻时破坏细胞质膜和胞内膜的主要原因[17, 21, 26]

2.4 线粒体损伤

线粒体的数量和质量是体外胚胎成功发育的决定性因素[51]。细胞中的线粒体参与维持多个生物化学过程,涉及降解、生物合成、融合和分裂[46],其重要功能是通过β-氧化途径合成三磷酸腺苷(adenosine triphosphate,ATP)[37-38]。在细胞周期的关键时期,线粒体向高能量消耗区域的运动对于胚胎发育至关重要,因此,线粒体在细胞质的分布模式与胚胎的质量和发育能力有关,是卵母细胞胞质成熟的必要特征[37]

然而,体外胚胎冷冻后会破坏质膜完整性、导致粗面内质网扩张[16]、滋养层细胞微绒毛数量减少和线粒体发生改变等[10, 25-26]。冷冻保存对线粒体造成的损伤包括线粒体肿胀[46]、线粒体质膜功能受损、基质电子密度低[16]和线粒体嵴改变[16],并且还损害了线粒体的功能[51]和DNA完整性,导致解冻后线粒体数量减少[46],ATP含量显著降低[46],最终导致体外胚胎解冻后存活率降低[16, 46]。此外,胚胎冷冻后,其营养物质的吸收和利用普遍减少,与应对氧化应激的线粒体内膜解偶联蛋白活性降低相一致[26]。同时,玻璃化冷冻还改变了胚胎的糖酵解过程,且无法进行补偿[26]

2.5 透明带损伤

体外胚胎透明带(zonal pellucida,ZP)对酶的敏感性较高也是影响其低温敏感性的一个因素[31, 52]。受精后透明带孔的功能是运输、扩散营养物质和病理控制,因此,透明带可以增强或限制胚胎的生长和发育[53]。体外胚胎透明带的特性与其解冻后的生存能力直接相关[53]。ZP起到屏障的作用,在处理病原体时是积极的,但是当营养供应来自外部时,ZP对于胚胎是有害的,特别是对冷冻胚胎[53]。冷冻保存过程中会对体外胚胎透明带造成损伤,从而对牛胚胎进一步的发育能力造成不可逆转的损害[53]

3 改善体外胚胎冷冻效率的研究

如今,体外胚胎冷冻保存技术仍存在着诸多问题,因此需要开发高效的冷冻方法[5],以最大限度地提高解冻后胚胎的存活率[7]、周转率和利用率[4],增加国内外商业贸易机会[4]。牛体外胚胎培养系统不仅是大规模生产胚胎[3]和进行基因改良的必要条件,还是影响体外胚胎低温存活的重要因素[4, 31]。因此,优化培养条件可以显著提高体外卵母细胞质量和体外胚胎质量[10]、增加胚胎产量、增强胚胎对低温的抵抗力[10],并且不会影响冷冻后胚胎的生存能力[4]。目前,通过不断完善,培养系统得到了改进[10],添加各物质对牛体外胚胎冷冻后发育能力的影响见表 2

表 2 不同物质对牛体外胚胎发育能力的影响 Table 2 Effects of different substances on developmental ability of bovine embryos in vitro
3.1 去脂

去脂能够降低胚胎内脂质含量,促进胚胎正常发育[32],可以提高体外胚胎低温耐受性[32, 53]和胚胎冷冻保存后的发育速度,增加胚胎细胞总数[27]。目前,已成功应用显微操作去脂[8]和化学去脂[27]等技术取得了良好效果。

3.1.1 显微操作去脂   从牛体外胚胎中显微操作去除胞质内部分脂质,结果表明去脂组存活率(56.2% vs. 39.8%)、囊胚率(42.1% vs. 39.9%)、孵化率(45.2% vs. 22.4%)和妊娠率(22.2% vs. 10.5%)都显著高于对照组[32]。由此可见,胚胎去脂后有利于其发育[32]。研究表明,去脂还能够提高囊胚阶段的低温耐受性[32]。然而,显微操作后透明带会受到损害,这大大增加了病原体传播的风险[8]

激光微束穿透胚胎透明带的激光辅助孵化(laser-assisted hatching,LAH)技术也可去脂,桑椹胚期LAH和离心后LAH的总细胞数和活细胞数均高于对照组(总细胞数分别为69.4、69.3、53.0;活细胞数分别为56.4、54.7、39.3)[29]。研究表明,通过离心结合LAH使脂质极化明显有利于卵裂球存活和胚胎发育,有效提高冷冻保存胚胎的存活率[29]

3.1.2 化学去脂   大量研究发现,在培养基中添加左旋肉碱、吩嗪乙基硫酸盐、亚油酸、共轭亚油酸等化学物质可以有效降低细胞脂质含量[55],增强脂质代谢,提高体外胚胎的耐低温性[28]和冷冻后存活率[36, 56-60]

左旋肉碱是一种脂质代谢增强剂[21],在脂质代谢中作为β-氧化辅助因子负责将脂肪酸(fatty acid,FA)运输到线粒体生成三磷酸腺苷(ATP),促进脂质代谢过程[28, 42]。左旋肉碱在不影响胚胎发育的情况下,显示了脂质调节活性[28],促进脂质代谢[8],降低胚胎内脂质含量[8, 21, 28, 54-55],从而提高体外胚胎的耐低温性[4, 28, 55]。研究表明,添加左旋肉碱培养的胚胎脂质含量降低(214.78 AFU vs. 266.43 AFU),冷冻后存活率提高(72.32% vs. 42.02%)[54]。同时,添加代谢调节剂组合左旋肉碱、辅酶Q和毛喉素也减少了胚胎中脂质的积累(23.79 AFU vs. 33.41 AFU)[54]。此外,吩嗪乙基硫酸盐(phenazine ethosulfate,PES)具有的代谢调节作用,可以氧化还原型辅酶Ⅱ(NADPH)为NADP+,抑制了脂肪酸合成,有利于磷酸戊糖途径[10]。培养基中添加PES有效降低了胚胎脂质含量[10, 20],提高了冷冻胚胎的存活率(91.9% vs. 84.9%)[20]

Accorsi等[36]在培养基中添加亚油酸,结果有效降低了胚胎脂质含量,提高了胚胎存活率(71.7% vs. 50.0%)[36]。此外,共轭亚油酸在不影响胚胎发育的情况下,显示出了脂质调节活性,降低了编码蛋白脂肪酶基因的表达和脂质含量[28]。Stoecklein等[56]研究发现,在培养期间添加成纤维细胞生长因子2(fibroblast growth factor,FGF2)、白血病抑制因子(leukemia inhibitory factor,LIF)和胰岛素样生长因子1 (insulin like growth factor 1,IGF1),合称为FLI,降低了胚胎的脂质含量,改善了牛体外胚胎植入前的发育[56]。Valente等[60]研究发现在培养基中添加胰岛素-转铁蛋白-亚硒酸钠和表皮生长因子,显著降低了细胞内脂质含量,显著提高了卵裂率、囊胚率和孵化率,从而提高了胚胎的低温耐受性[57, 60]

3.2 抗氧化剂

体外培养系统会影响卵母细胞和胚胎的形态及生理[4, 31]。因此,对体外培养基进行优化,可以提高胚胎质量及其抗低温的能力[18-19, 31, 58-59]。大量研究表明,添加抗氧化剂可以有效提高体外胚胎冷冻效率[60]

抗氧化剂半胱胺对谷胱甘肽(glutathione,GSH)的合成有促进作用,IVM期间GSH水平的升高增强了胚胎的发育能力[61-62]。De Matos等[62]在培养基中添加半胱胺冷冻后囊胚腔再扩张率为95%,而对照组仅为76%[62]。因此,半胱胺的存在为胚胎短期储存及运输提供了希望[61],有利于提高选择强度和缩短世代间隔[41]。Merton等[41]通过活体采卵(ovum pick-up,OPU)技术将卵丘-卵母细胞复合体体外培养,结果表明半胱胺的存在显著提高了囊胚率(34.4% vs. 23.4%)[41]。Balasubramanian和Rho[61]研究也表明, 在IVM培养基中添加半胱胺提高了囊胚率(13.7% vs. 7.2%)和囊胚孵化率(16.8% vs. 12.0%)[61]。此外,抗氧化剂N-乙酰半胱氨酸(N-acetylcysteine,NAC)为GSH的前体,具有强烈的自由基清除作用,改善了线粒体功能和细胞活力,优化了体外成熟和冷冻保存期间的体外条件,减少了细胞凋亡的发生[40]

抗氧化剂褪黑素、透明质酸和川陈皮素能够抑制促凋亡基因(CASP3[45]BAX[45])和氧化应激基因(SOX[63]SOD2[37]CYP51A1[37])的表达,并且增强抗凋亡基因(CAT[45]BCL2[37, 45])的表达。Su等[45]研究表明,褪黑素在IVM期间降低了卵母细胞和胚胎中ROS的水平(降低了58.8%),显著提高了囊胚率和体外受精(in vitro fertilization,IVF)囊胚的总细胞数[45]。含有透明质酸(hyaluronic acid,HA)的培养基具有增加囊胚平均细胞数(129.0 vs. 101.0)[63]、提高胚胎孵化率(12.7% vs. 4.5%)[1]和解冻后存活率、孵化率[63]的效果。Cajas等[37]研究发现,添加川陈皮素的培养基提高了卵裂率(35.3% vs. 25.7%),增加了卵母细胞发育成熟的百分比(89.3% vs. 87.0%),增强了胚胎发育能力,并且川陈皮素是降低牛体外胚胎ROS水平和改善哺乳动物辅助生殖技术的重要物质[37]

Picco等[64]在IVM培养基中加入不同浓度的锌,结果表明卵母细胞的发育能力随锌浓度增加而提高,卵裂率最高为74.05%,囊胚率最高为30.33%[64]。锌的抗氧化作用可显著减少DNA损伤、维持DNA完整性以促进胚胎着床前的发育[64],并且补充锌提高了内细胞团的细胞数量,从而提高了妊娠率[65]。Guyader-Joly等[35]研究发现,卵磷脂的抗氧化作用使胚胎解冻后孵化率显著高于未添加组(52.0% vs. 31.8%),并且解冻后的体外胚胎存活率显著提高[35]。此外,在含氨基酸的SOF培养基(SOFaa)中添加抗氧化剂柠檬酸钠(SOFaaci)改善了培养环境,这是一种适合于牛胚胎体外培养的培养基,可以提高卵裂率和囊胚率[61]

3.3 保护细胞骨架

研究表明,通过保护细胞骨架能够提高牛体外卵母细胞[49]和体外胚胎[1]的耐低温性。细胞松弛素B(cytochalasin B,CB)可以减少因微管和微丝破裂而引起的细胞损伤并增加质膜的柔韧性,增强细胞抵御冷冻损伤的能力[1]。对于牛体外GV期的卵母细胞,CB的松弛作用保留了卵母细胞和颗粒细胞之间的间隙连接功能,从而使冷冻保护液更快、更均匀地渗透;对于牛体外MII期卵母细胞,CB减少了对微管的损伤,在玻璃化冷冻中增强了纺锤体微管的稳定性[49]。培养基中添加CB提高了胚胎再扩张率、解冻后孵化率(29.6% vs. 9.1%)和存活率[1]。此外,研究表明添加3种细胞因子FGF2、LIF和IGF1[56]以及添加细胞松弛素D、秋水仙碱,可以改善牛体外胚胎的植入前发育,提高细胞骨架的完整性和冷冻后的存活率[56]。微管稳定剂紫杉醇的使用也可改善牛体外胚胎解冻后纺锤体的形态[49]

有证据表明,培养基的成分会影响牛胚胎膜的成分和胚胎的冷冻敏感性[5]。亚油酸白蛋白(linoleic acid albumin,LAA)是改善膜脂双层流动性和提高体外胚胎冻融后生存能力的物质之一[5]。添加LAA培养的胚胎解冻后孵化率[5](72.0% vs. 44.0%)和存活率[50](60.0% vs. 32.0%)都显著高于未添加LAA培养的胚胎,这表明在体外胚胎培养基中添加LAA提高了胚胎的耐冷冻性[5]。此外,膜脂肪酸会影响膜脂双层的流动性,从而影响牛体外胚胎的冷冻敏感性[5]。血清作为培养液的补充,不仅可以增加可用脂肪酸的总量,还可以改变胆固醇和磷脂的摩尔比,从而影响双层膜的低温生物物理特性[35],提供能量底物、氨基酸、维生素、生长因子和重金属螯合剂[58]。研究发现,添加胎牛血清(fetal bovine serum,FBS)提高了囊胚率(25.3% vs. 19.7%)[5, 55],FBS浓度直接影响胞质中的脂质含量[10],其有益作用表现在抑制早期卵裂并加速桑椹胚发育到囊胚阶段[13]。Dochi[5]在培养基中添加小牛血清(calf serum,CS),提高了胚胎解冻后的孵化率和囊胚率(29.6% vs. 11.2%),并且在含有CS的培养基中加入LAA,结果显著提高了解冻后胚胎的存活率和耐低温性[5]

3.4 增强线粒体功能

体外胚胎玻璃化冷冻后,恢复其受损的线粒体功能是实现高妊娠率和产生健康后代的对策之一[51, 66]。白藜芦醇是一种多酚类抗氧化剂,具有多种靶蛋白,Sirtuin蛋白是其中之一,它包含一组高度保守的组蛋白脱乙酰酶。组蛋白脱乙酰酶由SIRT1~7等7个成员组成,其中SIRT1是线粒体生物发生和降解的关键调节因子[46, 51]。因此,白藜芦醇可以直接激活SIRT1来增强线粒体功能和生物合成,是线粒体生物发生的化学激活剂[51]

研究表明,白藜芦醇激活线粒体的生物发生和降解对玻璃化冷冻的卵母细胞和胚胎有益[51],其通过去除受损的线粒体,使线粒体从头合成以恢复功能[51],提高了解冻后胚胎的发育能力[67]。白藜芦醇处理增加了解冻后胚胎中线粒体数量[67],提高了解冻后胚胎的质量[67]、存活率(68.2% vs. 52.3%)[46, 51]和孵化率(69.6% vs. 51.9%),并且显著提高了移植后的妊娠率(55.9% vs. 41.8%)[67]。此外,1 μmol·L-1白藜芦醇使胚胎发育至囊胚期的速率最高,而10 μmol·L-1白藜芦醇对胚胎发育有害(未处理组、1 μmol·L-1和10 μmol·L-1白藜芦醇处理的囊胚率分别为47.0%、57.0%和22.0%)[67]

3.5 人工强制塌陷囊胚腔

膨胀的囊胚有一个充满液体的囊胚腔,其会延缓冷冻保护剂的渗透[68-69],并且在冷冻过程中形成冰晶,导致囊胚质量受损[69]。研究表明,通过在冷冻保存前进行人工穿透透明带使囊胚腔塌陷,减少囊胚腔内液体,可以减少冷冻保存期间渗透损伤的发生和冰晶的产生[69]。此外,囊胚腔塌陷后形成的小体积卵裂球可以在玻璃化冷冻过程中更快地平衡[68],并且可以降低平衡过程中冷冻保护剂替换细胞内的液体而引起的细胞毒性[69],从而提高存活率[70]

减少囊胚腔液体有许多不同方法,例如微量移液[70]、微针穿刺[71]和激光脉冲[71]等。通过使用移液管微量移液收缩囊胚腔,对处于扩张阶段的胚胎进行玻璃化冷冻是一种有用且简单的冷冻保存方法[70]。同时,用微针穿刺囊胚腔和激光脉冲瞄准滋养外胚层的细胞连接处以诱导囊胚腔塌陷,使扩张囊胚的囊胚腔立即缩小[71],都提高了玻璃化冷冻囊胚的存活率和妊娠率[71-72]。在玻璃化冷冻前使用激光脉冲法减少囊胚腔液体,解冻后胚胎的植入率和牛的妊娠率都高于使用微针穿刺法[73],因为与激光脉冲形成的小孔相比,针尖会对滋养外胚层细胞造成更多损伤,对后期发育和功能产生不利影响[74]

Min等[6]研究证实,通过在玻璃化冷冻前人工强制塌陷牛囊胚腔(forced blastocoele collapse,FBC)不仅能够提高牛体外胚胎存活率(81.9% vs. 69.8%)和胚胎质量[6],还提高了冷冻后胚胎的存活率(90.5% vs. 71.2%)、孵化率(42.3% vs. 26.4%)和后代比例(35.6% vs. 22.2%),以及增加了胚胎细胞总数(127.4 vs. 117.3)。此外,FBC显著增强了抗凋亡基因BCL-XL的表达,显著降低了促凋亡基因BAX的表达[6]。总之,人工强制塌陷囊胚腔能够减少冷冻保存对体外胚胎的损害,显著提高冷冻后胚胎的质量,使体外胚胎移植后的牛获得更高的妊娠率[6]

3.6 冷冻程序的优化

胚胎玻璃化冷冻方法包括:开放式吸管(open pulled straw,OPS)、Cryoloop、Cryotop和固体表面玻璃化(solid surface vitrification)等,均具有高效性[75]。这些高效的冷冻方法都是基于最小体积冷却的概念[75-76],即通过最小化溶液体积来稳定玻璃化状态并抑制冷却和解冻过程中冰晶的形成,以确保胚胎的高存活率[75-76]。一种新的中空纤维玻璃化(hollow fiber vitrification,HFV)冷冻方法被提出[75-76],该方法是将胚胎保存在一小块中空纤维(三乙酸纤维素)中,并带有少量含有冷冻保护剂的玻璃化溶液[76]。中空纤维可以同时玻璃化冷冻30个以上胚胎[76]。此外,中空纤维也可以应用最小体积冷却原则,这大大提高了冷冻解冻的速率[76-77]

研究表明,采用HFV方法将2~4细胞阶段、8~16细胞阶段和桑椹胚阶段的牛体外胚胎玻璃化冷冻后,体外胚胎存活率都与非玻璃化对照组(82.5% vs. 94.6%)相似,玻璃化冷冻后胚胎发育成囊胚的比率(2~4细胞阶段为66.1%;8~16细胞阶段为66.7%;桑椹胚阶段为82.5 %)也与非玻璃化对照组(分别为74.5%、79.7%和82.5%)相似[75]。牛体外胚胎冷冻保存后的存活率在桑椹胚阶段前通常低于桑椹胚阶段及之后,然而应用HFV方法,2~4细胞阶段和8~16细胞阶段胚胎的玻璃化后存活率并不明显低于桑椹胚期,这表明了HFV方法对冷冻敏感胚胎的有效性[75]

HFV方法的有效性受到所用冷冻保护剂(cryoprotectants,CPAs)的类型、浓度和处理时间的影响[77],因此通过改善玻璃化溶液中CPAs浓度可以达到提高冷冻效率的效果。Kornienko等[77]研究表明,通过提高HFV方法玻璃化溶液中非渗透CPAs蔗糖的浓度,将玻璃化溶液中的蔗糖浓度从0.5 mol·L-1提高到1.0 mol·L-1,结果显著提高了牛体外冷冻卵母细胞的囊胚率(21.1%~23.4% vs. 3.1%~3.5%)[77]。这表明在浸入液氮之前,卵母细胞和其周围的溶液在中空纤维中充分脱水是成功玻璃化的一个重要因素[77]。总之,HFV方法可成功用于牛体外胚胎的冷冻保存[75-77],是一种高效的胚胎冷冻保存方法[75],其简化了冷冻及解冻程序[77]。HFV方法不仅会作为生殖生物学的研究工具,还会作为一种实用技术广泛应用于动物繁殖和育种等多个领域[76]

4 小结

近年来,体外胚胎冷冻保存技术已被广泛应用,提高体外胚胎冷冻效率也成为研究热点。通过去脂、优化培养液、优化冷冻程序和人工干预等措施,已成功提高了体外胚胎囊胚率和存活率,从而提高了体外胚胎冷冻效率,这促进了体外胚胎冷冻保存技术的广泛发展。体外胚胎冷冻保存技术已成为保护濒危、优良品种资源的重要手段。在未来的研究中可以通过已知机制,继续优化常规冷冻、玻璃化冷冻及解冻程序,以及优化冷冻液、解冻液,以提高体外胚胎冷冻效率。

目前,体外胚胎冻融后移植的妊娠率还未达到理想效果,未来还需广泛探究影响冷冻保存效率的机制,进而全方面改善体外胚胎冷冻保存过程,提高冷冻效率,以期推进牛产业和畜牧业的发展,最终为优良品种高效扩繁和新品种创制等提供坚实的技术保障。

参考文献
[1]
FRANCO M, HANSEN P J. Effects of hyaluronic acid in culture and cytochalasin B treatment before freezing on survival of cryopreserved bovine embryos produced in vitro[J]. In Vitro Cell Dev Biol Anim, 2006, 42(1-2): 40-44. DOI:10.1007/s11626-006-0010-1
[2]
GUPTA A, SINGH J, ANZAR M. Effect of cryopreservation technique and season on the survival of in vitro produced cattle embryos[J]. Anim Reprod Sci, 2016, 164: 162-168. DOI:10.1016/j.anireprosci.2015.11.026
[3]
MARINHO L S R, SANCHES B V, ROSA C O, et al. Pregnancy rates to fixed embryo transfer of vitrified IVP Bos indicus, Bos taurus or Bos indicus×Bos taurus embryos[J]. Reprod Domest Anim, 2015, 50(5): 807-811. DOI:10.1111/rda.12591
[4]
FERRÉ L B, KJELLAND M E, TAIYEB A M, et al. Recent progress in bovine in vitro-derived embryo cryotolerance: impact of in vitro culture systems, advances in cryopreservation and future considerations[J]. Reprod Domest Anim, 2020, 55(6): 659-676. DOI:10.1111/rda.13667
[5]
DOCHI O. Direct transfer of frozen-thawed bovine embryos and its application in cattle reproduction management[J]. J Reprod Dev, 2019, 65(5): 389-396. DOI:10.1262/jrd.2019-025
[6]
MIN S H, KIM J W, LEE Y H, et al. Forced collapse of the blastocoel cavity improves developmental potential in cryopreserved bovine blastocysts by slow-rate freezing and vitrification[J]. Reprod Domest Anim, 2014, 49(4): 684-692. DOI:10.1111/rda.12354
[7]
GÓMEZ E, CARROCERA S, MARTÍN D, et al. Efficient one-step direct transfer to recipients of thawed bovine embryos cultured in vitro and frozen in chemically defined medium[J]. Theriogenology, 2020, 146: 39-47. DOI:10.1016/j.theriogenology.2020.01.056
[8]
TAKAHASHI T, INABA Y, SOMFAI T, et al. Supplementation of culture medium with L-carnitine improves development and cryotolerance of bovine embryos produced in vitro[J]. Reprod Fertil Dev, 2013, 25(4): 589-599. DOI:10.1071/RD11262
[9]
高峰, 何琪富, 吴盛辉, 等. 哺乳动物配子冷冻保存并应用于珍稀濒危动物保护的技术策略[J]. 畜牧兽医学报, 2022, 53(8): 2479-2489.
GAO F, HE Q F, WU S H, et al. Mammalian gametes cryopreserved and applied to technical strategies for the protection of rare and endangered animals[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8): 2479-2489. DOI:10.11843/j.issn.0366-6964.2022.08.007 (in Chinese)
[10]
SUDANO M J, PASCHOAL D M, DA SILVA RASCADO T, et al. Lipid content and apoptosis of in vitro-produced bovine embryos as determinants of susceptibility to vitrification[J]. Theriogenology, 2011, 75(7): 1211-1220. DOI:10.1016/j.theriogenology.2010.11.033
[11]
VALENTE R S, MARSICO T V, SUDANO M J. Basic and applied features in the cryopreservation progress of bovine embryos[J]. Anim Reprod Sci, 2022, 239: 106970. DOI:10.1016/j.anireprosci.2022.106970
[12]
VIANA J. 2018 Statistics of embryo production and transfer in domestic farm animals[J]. Embryo Technol Newsl, 2019, 36(4): 7-19.
[13]
SENA-NETTO S B, SPRÍCIGO J F W, LEME L O, et al. The replacement of fetal bovine serum with bovine serum albumin during oocyte maturation and embryo culture does not improve blastocyst quality after slow freezing cryopreservation[J]. Biopreserv Biobank, 2020, 18(3): 171-179. DOI:10.1089/bio.2019.0059
[14]
KASSENS A, HELD E, SALILEW-WONDIM D, et al. Intrafollicular oocyte transfer (IFOT) of abattoir-derived and in vitro-matured oocytes results in viable blastocysts and birth of healthy calves[J]. Biol Reprod, 2015, 92(6): 150.
[15]
ARSHAD U, SAGHEER M, GONZÁLEZ-SILVESTRY F B, et al. Vitrification improves in-vitro embryonic survival in Bos taurus embryos without increasing pregnancy rate post embryo transfer when compared to slow-freezing: a systematic meta-analysis[J]. Cryobiology, 2021, 101: 1-11. DOI:10.1016/j.cryobiol.2021.06.007
[16]
NAJAFZADEH V, BOJSEN-MØLLER SECHER J, PIHL M, et al. Vitrification yields higher cryo-survival rate than slow freezing in biopsied bovine in vitro produced blastocysts[J]. Theriogenology, 2021, 171: 44-54. DOI:10.1016/j.theriogenology.2021.04.020
[17]
CAVUSOGLU T, POPKEN J, GUENGOER T, et al. Ultra-Structural alterations in in vitro produced four-cell bovine embryos following controlled slow freezing or vitrification[J]. Anat Histol Embryol, 2016, 45(4): 291-307. DOI:10.1111/ahe.12197
[18]
MUCCI N, ALLER J, KAISER G G, et al. Effect of estrous cow serum during bovine embryo culture on blastocyst development and cryotolerance after slow freezing or vitrification[J]. Theriogenology, 2006, 65(8): 1551-1562. DOI:10.1016/j.theriogenology.2005.08.020
[19]
DO V H, WALTON S, CATT S, et al. A comparative analysis of the efficacy of three cryopreservation protocols on the survival of in vitro-derived cattle embryos at pronuclear and blastocyst stages[J]. Cryobiology, 2017, 77: 58-63. DOI:10.1016/j.cryobiol.2017.05.007
[20]
BARCELÓ-FIMBRES M, SEIDEL G E. Effects of fetal calf serum, phenazine ethosulfate and either glucose or fructose during in vitro culture of bovine embryos on embryonic development after cryopreservation[J]. Mol Reprod Dev, 2007, 74(11): 1395-1405. DOI:10.1002/mrd.20699
[21]
DO V H, CATT S, KINDER J E, et al. Vitrification of in vitro-derived bovine embryos: targeting enhancement of quality by refining technology and standardising procedures[J]. Reprod Fertil Dev, 2019, 31(5): 837-846. DOI:10.1071/RD18352
[22]
LEVI-SETTI P E, PATRIZIO P, SCARAVELLI G. Evolution of human oocyte cryopreservation: slow freezing versus vitrification[J]. Curr Opin Endocrinol Diabetes Obes, 2016, 23(6): 445-450. DOI:10.1097/MED.0000000000000289
[23]
TOMINAGA K, IWAKI F, HOCHI S. Conventional freezing of in vitro-produced and biopsied bovine blastocysts in the presence of a low concentration of glycerol and sucrose[J]. J Reprod Dev, 2007, 53(2): 443-447. DOI:10.1262/jrd.18083
[24]
TAJIMI H, YAMAZAKI T, OIKE S, et al. Vitrification for bovine embryos with low-quality grade[J]. Anim Sci J, 2018, 89(8): 1194-1200. DOI:10.1111/asj.13024
[25]
WU H, YU X L, GUO X F, et al. Effect of liquid helium vitrification on the ultrastructure and related gene expression of mature bovine oocytes after vitrifying at immature stage[J]. Theriogenology, 2017, 87: 91-99. DOI:10.1016/j.theriogenology.2016.08.010
[26]
KAIDI S, BERNARD S, LAMBERT P, et al. Effect of conventional controlled-rate freezing and vitrification on morphology and metabolism of bovine blastocysts produced in vitro[J]. Biol Reprod, 2001, 65(4): 1127-1134. DOI:10.1095/biolreprod65.4.1127
[27]
PANYABORIBAN S, THARASANIT T, CHANKITISAKUL V, et al. Treatment with chemical delipidation forskolin prior to cryopreservation improves the survival rates of swamp buffalo (Bubalus bubalis) and bovine (Bos indicus) in vitro produced embryos[J]. Cryobiology, 2018, 84: 46-51. DOI:10.1016/j.cryobiol.2018.08.003
[28]
DIAS L R O, LEME L O, SPRÍCIGO J F W, et al. Effect of delipidant agents during in vitro culture on the development, lipid content, gene expression and cryotolerance of bovine embryos[J]. Reprod Domest Anim, 2020, 55(1): 11-20. DOI:10.1111/rda.13579
[29]
PRYOR J H, LOONEY C R, ROMO S, et al. Cryopreservation of in vitro produced bovine embryos: effects of lipid segregation and post-thaw laser assisted hatching[J]. Theriogenology, 2011, 75(1): 24-33. DOI:10.1016/j.theriogenology.2010.07.006
[30]
JANATI IDRISSI S, LE BOURHIS D, LEFEVRE A, et al. Lipid profile of bovine grade-1 blastocysts produced either in vivo or in vitro before and after slow freezing process[J]. Sci Rep, 2021, 11(1): 11618. DOI:10.1038/s41598-021-90870-8
[31]
KHURANA N K, NIEMANN H. Effects of cryopreservation on glucose metabolism and survival of bovine morulae and blastocysts derived in vitro or in vivo[J]. Theriogenology, 2000, 54(2): 313-326. DOI:10.1016/S0093-691X(00)00351-4
[32]
DIEZ C, HEYMAN Y, LE BOURHIS D, et al. Delipidating in vitro-produced bovine zygotes: effect on further development and consequences for freezability[J]. Theriogenology, 2001, 55(4): 923-936. DOI:10.1016/S0093-691X(01)00454-X
[33]
CARRILLO-GONZÁLEZ D F, RODRÍGUEZ-OSORIO N, LONG C R, et al. L-Carnitine supplementation during in vitro maturation and in vitro culture does not affect the survival rates after vitrification and warming but alters INF-T and PTGS2 gene expression[J]. Int J Mol Sci, 2020, 21(16): 5601. DOI:10.3390/ijms21165601
[34]
CARRILLO-GONZÁLEZ D F, MALDONADO-ESTRADA J G. L-carnitine supplementation in culture media improves the pregnancy rate of in vitro produced embryos with sexed semen from Bos taurus indicus cows[J]. Trop Anim Health Prod, 2020, 52(5): 2559-2565. DOI:10.1007/s11250-020-02281-y
[35]
GUYADER-JOLY C, PONCHON S, DURAND M, et al. Effect of lecithin on in vitro and in vivo survival of in vitro produced bovine blastocysts after cryopreservation[J]. Theriogenology, 1999, 52(7): 1193-1202. DOI:10.1016/S0093-691X(99)00211-3
[36]
ACCORSI M F, DA SILVA LEÃO B C, DE SOUZA ROCHA-FRIGONI N A, et al. Reduction in cytoplasmic lipid content in bovine embryos cultured in vitro with linoleic acid in semi-defined medium is correlated with increases in cryotolerance[J]. Zygote, 2016, 24(4): 485-494. DOI:10.1017/S0967199415000428
[37]
CAJAS Y N, CAÑÓN-BELTRÁN K, LADRÓN DE GUEVARA M, et al. Antioxidant nobiletin enhances oocyte maturation and subsequent embryo development and quality[J]. Int J Mol Sci, 2020, 21(15): 5340. DOI:10.3390/ijms21155340
[38]
JIANG W J, LI Y H, ZHAO Y H, et al. L-carnitine supplementation during in vitro culture regulates oxidative stress in embryos from bovine aged oocytes[J]. Theriogenology, 2020, 143: 64-73. DOI:10.1016/j.theriogenology.2019.11.036
[39]
LEN J S, KOH W S D, TAN S X. The roles of reactive oxygen species and antioxidants in cryopreservation[J]. Biosci Rep, 2019, 39(8): BSR20191601. DOI:10.1042/BSR20191601
[40]
BARROZO L G, PAULINO L R F M, SILVA B R, et al. N-acetyl-cysteine and the control of oxidative stress during in vitro ovarian follicle growth, oocyte maturation, embryo development and cryopreservation[J]. Anim Reprod Sci, 2021, 231: 106801. DOI:10.1016/j.anireprosci.2021.106801
[41]
MERTON J S, KNIJN H M, FLAPPER H, et al. Cysteamine supplementation during in vitro maturation of slaughterhouse- and opu-derived bovine oocytes improves embryonic development without affecting cryotolerance, pregnancy rate, and calf characteristics[J]. Theriogenology, 2013, 80(4): 365-371. DOI:10.1016/j.theriogenology.2013.04.025
[42]
LI J J, LIU L Y, WENG J, et al. Biological roles of L-carnitine in oocyte and early embryo development[J]. Mol Reprod Dev, 2021, 88(10): 673-685. DOI:10.1002/mrd.23542
[43]
AMARAL C S, KOCH J, CORREA JÚNIOR E E, et al. Heat stress on oocyte or zygote compromises embryo development, impairs interferon tau production and increases reactive oxygen species and oxidative stress in bovine embryos produced in vitro[J]. Mol Reprod Dev, 2020, 87(8): 899-909. DOI:10.1002/mrd.23407
[44]
LÓPEZ-DAMIÁN E P, JIMÉNEZ-MEDINA J A, ALARCÓN M A, et al. Cryopreservation induces higher oxidative stress levels in Bos indicus embryos compared with Bos taurus[J]. Theriogenology, 2020, 143: 74-81. DOI:10.1016/j.theriogenology.2019.12.001
[45]
SU G H, WU S S, WU M L, et al. Melatonin improves the quality of frozen bull semen and influences gene expression related to embryo genome activation[J]. Theriogenology, 2021, 176: 54-62. DOI:10.1016/j.theriogenology.2021.09.014
[46]
HAYASHI T, KANSAKU K, ABE T, et al. Effects of resveratrol treatment on mitochondria and subsequent embryonic development of bovine blastocysts cryo-preserved by slow freezing[J]. Anim Sci J, 2019, 90(7): 849-856. DOI:10.1111/asj.13219
[47]
BEKER-VAN WOUDENBERG A R, VAN TOL H T A, ROELEN B A J, et al. Estradiol and its membrane-impermeable conjugate (estradiol-bovine serum albumin) during in vitro maturation of bovine oocytes: effects on nuclear and cytoplasmic maturation, cytoskeleton, and embryo quality[J]. Biol Reprod, 2004, 70(5): 1465-1474. DOI:10.1095/biolreprod.103.025684
[48]
COTICCHIO G, DAL CANTO M, MIGNINI RENZINI M, et al. Oocyte maturation: gamete-somatic cells interactions, meiotic resumption, cytoskeletal dynamics and cytoplasmic reorganization[J]. Hum Reprod Update, 2015, 21(4): 427-454. DOI:10.1093/humupd/dmv011
[49]
DÍEZ C, MUÑOZ M, CAAMAÑO J N, et al. Cryopreservation of the bovine oocyte: current status and perspectives[J]. Reprod Domest Anim, 2012, 47(S3): 76-83.
[50]
HOCHI S, KIMURA K, HANADA A. Effect of linoleic acid-albumin in the culture medium on freezing sensitivity of in vitro-produced bovine morulae[J]. Theriogenology, 1999, 52(3): 497-504. DOI:10.1016/S0093-691X(99)00146-6
[51]
IWATA H. Resveratrol enhanced mitochondrial recovery from cryopreservation-induced damages in oocytes and embryos[J]. Reprod Med Biol, 2021, 20(4): 419-426. DOI:10.1002/rmb2.12401
[52]
MOREIRA DA SILVA F, METELO R. Relation between physical properties of the zona pellucida and viability of bovine embryos after slow-freezing and vitrification[J]. Reprod Domest Anim, 2005, 40(3): 205-209. DOI:10.1111/j.1439-0531.2005.00575.x
[53]
MASSIP A, MERMILLOD P, VAN LANGENDONCKT A, et al. Survival and viability of fresh and frozen-thawed in vitro bovine blastocysts[J]. Reprod Nutr Dev, 1995, 35(1): 3-10. DOI:10.1051/rnd:19950101
[54]
OWEN C M, JOHNSON M A, RHODES-LONG K A, et al. Novel Synthetic oviductal fluid for Conventional Freezing 1 (SCF1) culture medium improves development and cryotolerance of in vitro produced Holstein embryos[J]. J Anim Sci, 2022, 100(3): skac043. DOI:10.1093/jas/skac043
[55]
ZOLINI A M, CARRASCAL-TRIANA E, RUIZ DE KING A, et al. Effect of addition of L-carnitine to media for oocyte maturation and embryo culture on development and cryotolerance of bovine embryos produced in vitro[J]. Theriogenology, 2019, 133: 135-143. DOI:10.1016/j.theriogenology.2019.05.005
[56]
STOECKLEIN K S, ORTEGA M S, SPATE L D, et al. Improved cryopreservation of in vitro produced bovine embryos using FGF2, LIF, and IGF1[J]. PLoS One, 2021, 16(2): e0243727. DOI:10.1371/journal.pone.0243727
[57]
MESALAM A, LEE K L, KHAN I, et al. A combination of bovine serum albumin with insulin-transferrin-sodium selenite and/or epidermal growth factor as alternatives to fetal bovine serum in culture medium improves bovine embryo quality and trophoblast invasion by induction of matrix metalloproteinases[J]. Reprod Fertil Dev, 2019, 31(2): 333-346. DOI:10.1071/RD18162
[58]
VARGA S, DIEZ C, FERNÁNDEZ L, et al. Culture system and long-term storage of culture media in the in vitro production of bovine embryos[J]. Acta Vet Hung, 2011, 59(1): 129-139. DOI:10.1556/avet.59.2011.1.12
[59]
NEDAMBALE T L, DINNYÉS A, GROEN W, et al. Comparison on in vitro fertilized bovine embryos cultured in KSOM or SOF and cryopreserved by slow freezing or vitrification[J]. Theriogenology, 2004, 62(3-4): 437-449. DOI:10.1016/j.theriogenology.2003.10.020
[60]
VALENTE R S, DE ALMEIDA T G, ALVES M F, et al. Cellular and apoptotic status monitoring according to the ability and speed to resume post-cryopreservation embryonic development[J]. Theriogenology, 2020, 158: 290-296. DOI:10.1016/j.theriogenology.2020.09.026
[61]
BALASUBRAMANIAN S, RHO G J. Effect of cysteamine supplementation of in vitro matured bovine oocytes on chilling sensitivity and development of embryos[J]. Anim Reprod Sci, 2007, 98(3-4): 282-292. DOI:10.1016/j.anireprosci.2006.03.011
[62]
DE MATOS D G, FURNUS C C, MOSES D F, et al. Stimulation of glutathione synthesis of in vitro matured bovine oocytes and its effect on embryo development and freezability[J]. Mol Reprod Dev, 1996, 45(4): 451-457. DOI:10.1002/(SICI)1098-2795(199612)45:4<451::AID-MRD7>3.0.CO;2-Q
[63]
PALASZ A T, BREÑA P B, MARTINEZ M F, et al. Development, molecular composition and freeze tolerance of bovine embryos cultured in TCM-199 supplemented with hyaluronan[J]. Zygote, 2008, 16(1): 39-47. DOI:10.1017/S0967199407004467
[64]
PICCO S J, ANCHORDOQUY J M, DE MATOS D G, et al. Effect of increasing zinc sulphate concentration during in vitro maturation of bovine oocytes[J]. Theriogenology, 2010, 74(7): 1141-1148. DOI:10.1016/j.theriogenology.2010.05.015
[65]
WOOLDRIDGE L K, NARDI M E, EALY A D. Zinc supplementation during in vitro embryo culture increases inner cell mass and total cell numbers in bovine blastocysts[J]. J Anim Sci, 2019, 97(12): 4946-4950. DOI:10.1093/jas/skz351
[66]
ZHAO X M, WANG N, HAO H S, et al. Melatonin improves the fertilization capacity and developmental ability of bovine oocytes by regulating cytoplasmic maturation events[J]. J Pineal Res, 2018, 64(1): e12445. DOI:10.1111/jpi.12445
[67]
HAYASHI T, UEDA S, MORI M, et al. Influence of resveratrol pretreatment on thawed bovine embryo quality and mitochondrial DNA copy number[J]. Theriogenology, 2018, 106: 271-278. DOI:10.1016/j.theriogenology.2017.10.022
[68]
LEE S Y, KIM H J, PARK S J, et al. Optimization of a dilution method for human expanded blastocysts vitrified using EM grids after artificial shrinkage[J]. J Assist Reprod Genet, 2006, 23(2): 87-91. DOI:10.1007/s10815-005-9006-0
[69]
LI L F, ZHANG X H, ZHAO L H, et al. Comparison of DNA apoptosis in mouse and human blastocysts after vitrification and slow freezing[J]. Mol Reprod Dev, 2012, 79(3): 229-236. DOI:10.1002/mrd.22018
[70]
HIRAOKA K, HIRAOKA K, KINUTANI M, et al. Blastocoele collapse by micropipetting prior to vitrification gives excellent survival and pregnancy outcomes for human day 5 and 6 expanded blastocysts[J]. Hum Reprod, 2004, 19(12): 2884-2888. DOI:10.1093/humrep/deh504
[71]
MUKAIDA T, OKA C, GOTO T, et al. Artificial shrinkage of blastocoeles using either a micro-needle or a laser pulse prior to the cooling steps of vitrification improves survival rate and pregnancy outcome of vitrified human blastocysts[J]. Hum Reprod, 2006, 21(12): 3246-3252. DOI:10.1093/humrep/del285
[72]
VAN LANDUYT L, POLYZOS N P, DE MUNCK N, et al. A prospective randomized controlled trial investigating the effect of artificial shrinkage (collapse) on the implantation potential of vitrified blastocysts[J]. Hum Reprod, 2015, 30(11): 2509-2518. DOI:10.1093/humrep/dev218
[73]
MOHAMED M K, EL-NOURY M A H, AMER M K, et al. Comparative study between two techniques for artificial shrinkage of blastocysts prior to vitrification: LASER pulse versus micro-needle technique in increasing chemical, clinical pregnancy and live birth rates after ICSI, a randomized controlled trial[J]. J Matern Fetal Neonatal Med, 2022, 35(25): 4910-4917. DOI:10.1080/14767058.2021.1873265
[74]
CAO S R, ZHAO C, ZHANG J Q, et al. Retrospective clinical analysis of two artificial shrinkage methods applied prior to blastocyst vitrification on the outcome of frozen embryo transfer[J]. J Assist Reprod Genet, 2014, 31(5): 577-581. DOI:10.1007/s10815-014-0203-6
[75]
UCHIKURA A, MATSUNARI H, NAKANO K, et al. Application of hollow fiber vitrification for cryopreservation of bovine early cleavage stage embryos and porcine morula-blastomeres[J]. J Reprod Dev, 2016, 62(2): 219-223. DOI:10.1262/jrd.2015-162
[76]
MATSUNARI H, MAEHARA M, NAKANO K, et al. Hollow fiber vitrification: a novel method for vitrifying multiple embryos in a single device[J]. J Reprod Dev, 2012, 58(5): 599-608. DOI:10.1262/jrd.2011-051
[77]
KORNIENKO E V, ROMANOVA A B, IKONOPISTSEVA M V, et al. Optimization of triacetate cellulose hollow fiber vitrification (HFV) method for cryopreservation of in vitro matured bovine oocytes[J]. Cryobiology, 2020, 97: 66-70. DOI:10.1016/j.cryobiol.2020.10.007

(编辑   郭云雁)