2. 青藏高原动物遗传资源保护与利用四川省重点实验室,成都 610041;
3. 西南民族大学畜牧兽医学院,成都 610041
2. Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Chengdu 610041, China;
3. College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
同一生物体内的所有细胞都具有相同的基因组,但其外观和功能均不相同。在细胞分裂过程中,转录程序的选择性激活和随后的维持决定了细胞的特性。表观遗传修饰主要通过调节染色质功能,在细胞发育和细胞分裂过程的维持中起着至关重要的作用[1],其主要包括3种调节机制:DNA甲基化、microRNA介导的基因转录调控和组蛋白翻译后修饰[2]。表观遗传调控机制控制着配子发生早期的基因组重编程和胚胎的发育,在哺乳动物发育过程中发挥着重要作用。
DNA甲基化是指以S-腺苷甲硫氨酸为甲基供体,由DNA甲基转移酶催化,在CpG二核苷酸胞嘧啶的5’端碳原子上结合一个甲基基团的化学修饰过程[3]。在哺乳动物中,DNA甲基化主要发生在胞嘧啶-鸟嘌呤二核苷酸的胞嘧啶上,即CpG位点(CpGs),且在基因组中呈不均匀分布[4-5]。作为基因表达的中介机制,DNA甲基化被广泛认为是一种表观遗传抑制标志,主要涉及基因组印迹、X染色体失活、转座元件沉默等多种生理过程[6]。此外,DNA甲基化可以调节转录因子与其他染色质互作蛋白的结合并改变染色质结构,从而调控基因表达[7]。
DNA甲基化在哺乳动物卵母细胞和早期胚胎发育过程中具有重要作用。DNA甲基化不仅调控基因的表达,还经历了广泛的从头甲基化和去甲基化的动态变化,这对哺乳动物受精、早期胚胎发育及组织特异性分化至关重要[8-12]。有研究发现,DNA甲基化可抑制哺乳动物细胞中的基因启动子,介导RSPO2促进哺乳动物的卵泡发育[13-14]。还有研究发现,卵母细胞DNA甲基化对基因组印迹至关重要,而无法建立印迹会导致小鼠和人类发生先天性疾病或致命。卵母细胞甲基化的部分或完全缺失会导致胚胎致死,异常的DNA甲基化会阻碍胚胎发育[15-16]。因此,研究DNA甲基化在哺乳动物卵母细胞和胚胎发育过程中的调控机制对提高卵母细胞成熟率、胚胎发育能力以及哺乳动物繁殖率具有重要意义。本文主要介绍了DNA甲基化的建立与去除机制及其生物学功能,重点阐述了DNA甲基化在哺乳动物卵母细胞和胚胎发育过程中精准生成、维持、读取和删除的动态变化过程,为进一步研究哺乳动物表观遗传调控提供参考依据。
1 哺乳动物DNA甲基化与去甲基化 1.1 DNA甲基化途径DNA甲基化是哺乳动物中一种重要的表观遗传修饰,主要由从头甲基化和维持甲基化组成,并通过特定的DNA甲基转移酶(DNMTs)介导和维持。目前, 在哺乳动物中发现的DNMTs主要有6种,分别是维持型DNMT1,新生型DNMT3A、DNMT3B和DNMT3C,辅助因子DNMT3L以及介导tRNAs甲基化的DNMT2。维持型DNMT1是最早发现的DNA甲基转移酶,主要存在于哺乳动物的卵母细胞和早期胚胎的细胞质中,负责细胞分裂过程中DNA甲基化的维持,其维持机制主要是通过在复制过程中将旧DNA链的DNA甲基化复制到新合成的DNA链上从而维持DNA甲基化,且其依赖于UHRF1将DNMT1招募到半甲基化的CG位点[17-19]。DNMT1的敲除会导致小鼠胚胎死亡以及全基因组的广泛性去甲基化[20]。DNMT2具有完整的催化结构域且高度保守,能够使位于天冬氨酸转运RNA反密码子环的胞嘧啶38甲基化,但不参与基因组DNA甲基化[21-22]。而DNMT3A和DNMT3B则主要负责生殖细胞、胚胎干细胞及哺乳动物早期胚胎发育过程中的从头甲基化,但二者又有不同,DNMT3A偏向于未甲基化的DNA,在卵母细胞和附植前胚胎中发挥重要作用;而DNMT3B偏向于半甲基化和未甲基化的DNA,在胚胎发育外胚层转录过程中发挥着重要作用[23-25]。DNMT3A和DNMT3B的敲除会导致生殖细胞中印记丢失,造成DNA甲基化异常,进而导致胚胎发育缺陷甚至死亡[26]。在DNMT3L的辅助作用下,DNMT3A和DNMT3B可靶向定位CpG位点,并与DNMT1合作传播甲基化模式[27]。DNMT3C也是一种从头甲基转移酶,主要负责对雄性生殖系统中逆转录转座子的启动子进行甲基化,且该酶的特殊活性是小鼠生育能力所必需的[28],这不仅揭示了哺乳动物DNA甲基化系统的可塑性,同时还扩大了逆转录转座子表观遗传调控机制的范围。DNMT3L是一种核蛋白,不含酶的活性位点,但能够识别携带未甲基化组蛋白H3赖氨酸4(H3K4)的核小体,将DNMT3A和DNMT3B招募到特定位点,间接参与从头甲基化[29-30]。
1.2 DNA去甲基化途径DNA去甲基化(DNA demethylation)在原始生殖细胞和胚胎发育过程中发挥重要作用,可分为被动去甲基化和主动去甲基化。被动去甲基化主要发生在母体基因中,是指复制后未使新的DNA链甲基化,而保持半甲基化状态,随着DNA的复制和细胞分裂,甲基化被不断稀释的过程[31]。DNMT1对半甲基化的DNA具有高度亲和力且呈周期依赖性,在母体和合子中DNMT1能够靶向去甲基化。因此,可通过破坏维持DNA甲基化机制,致使CpG在DNA复制过程中被不断稀释来完成被动去甲基化过程[32]。主动去甲基化发生在DNA复制之外,由DNA去甲基化酶(ten-eleven-translocation, TET)家族将5-甲基胞嘧啶(5 mC)催化氧化为5-羟甲基胞嘧啶(5-hydroxymethylcytosine,5 hmC),然后复制依赖性稀释氧化的5 mC或胸腺嘧啶DNA糖基化酶(TDG)介导的5-甲酰胞嘧啶(5-formylcytosine,5fC)和5-羧基胞嘧啶(5-carboxyl cytosine,5caC)的切除并结合碱基切除修复来完成整个去甲基化过程[33-34]。
TET蛋白酶家族参与DNA去甲基化反应需要α-酮戊二酸、铁和氧,并由抗坏血酸作为辅助因子促进[35],在哺乳动物原始生殖细胞及胚胎发育等方面具有重要作用[36],其表达水平与DNA甲基化密切相关。高表达的TETs可显著降低基因组的DNA甲基化水平,而缺少TETs则会诱导基因组DNA高甲基化。TET家族由TET1、TET2和TET3三个成员组成,均具有羟基化酶活性,且在小鼠不同组织中呈差异性表达。有研究表明,TET3在卵母细胞和受精卵中高度表达,雌性小鼠敲除TET3可导致生育能力下降甚至致死[37]。随着早期胚胎的发育,TET3在2细胞期迅速减少,直到囊胚期开始出现反转,而TET1和TET2的表达量增加,由此表明TET3主要在哺乳动物卵母细胞和受精卵发育中发挥了主动去甲基化功能,而TET1和TET2则在原始生殖细胞中发挥去甲基化作用[38]。
2 DNA甲基化在哺乳动物卵母细胞和胚胎发育中的动态变化尽管DNA甲基化模式具有可遗传性,但在哺乳动物卵母细胞和胚胎发育过程中,DNA甲基化呈现动态变化[39]。哺乳动物发育过程中主要发生两种表观遗传的重编程过程,一种发生在原始生殖细胞形成阶段,另一种发生在附植前胚胎发育阶段[40]。在这两个阶段中,基因组首先进行全局去甲基化,然后发生从头甲基化,从而建立新的甲基化模式[41],这在哺乳动物生殖细胞遗传记忆的重新建立及发育潜能的开发方面具有重要作用[42-43]。
2.1 卵母细胞DNA甲基化的动态变化原始生殖细胞(PGC)是精子和卵子的前体,哺乳动物生殖细胞来源于附植后早期胚胎的体细胞。原始生殖细胞形成后,基因组发生去甲基化,这标志着第二次重编程的开始。在配子发生期间,不同性别的基因组在不同时间和程度上被重新甲基化[44],有研究发现,小鼠早期原始生殖细胞携带着与体细胞类似的DNA甲基化模式,当迁移至生殖嵴时(E7.5-E13.5)被全部消除;雄性小鼠出生后不久即可重新建立配子特异性表观基因组,而雌性小鼠卵母细胞会一直保持低甲基化状态,直到原始卵泡被激活进入生长状态,卵母细胞才会在发育过程中经历性别特异性的从头甲基化并重新建立遗传印迹[45-48]。
卵母细胞是一种终末分化细胞,具有不同于体细胞的独特DNA甲基化模式。在卵母细胞生长发育过程中,DNA甲基化的获得呈渐进性。原始生殖细胞进入并在第一次减数分裂前期停止,在减数分裂前期到排卵期间卵母细胞几乎不存在甲基化[49-50],在卵泡发育后期,随着卵母细胞的增大而重新获得甲基化[15],并于青春期到达MⅡ卵母细胞的峰值[51]。此外,卵母细胞甲基化主要局限于活跃转录区,使得卵母细胞基因组呈现出一种由低水平甲基化的基因间区或转录不活跃区域将高度甲基化的基因体分隔开的双峰模式[52-54]。多项研究表明,取消单个基因的转录会导致该位点无法建立甲基化[54-55]。印迹是亲本等位基因特异性DNA甲基化导致后代组织中印迹基因表达的过程[52, 56]。在人类和小鼠中,卵母细胞具有多数印迹基因控制区(ICRs),其作为卵母细胞的CpG岛在卵母细胞发育过程中建立甲基化[54]。然而,卵母细胞甲基化动态变化也与其他细胞生理活动一样,会因外界条件的影响而产生差异,在牛卵母细胞从生发泡(GV)期到中期Ⅱ(MⅡ)阶段的整个体外成熟过程中,全基因组DNA甲基化显示出稳定的信号,并且在大小不同卵泡产生的卵母细胞间并未观察到显著差异[57]。此外,小鼠MⅡ期卵母细胞玻璃化可降低全组甲基化水平[58]。
2.2 早期胚胎DNA甲基化的动态变化哺乳动物胚胎发育从受精卵开始,其胚胎发育早期是最动态的生物学过程之一,有大量的DNA甲基化重编程在此过程中发生[59]。胚胎附植前的第一次DNA甲基化重编程擦除了配子发生过程中积累的相关遗传信息,并恢复了胚胎细胞的全能性[60]。受精后,父系和母系DNA甲基化发生第一次重编程,父系DNA主要通过TET3与TDG介导的主动去甲基化,在第一个细胞周期中快速去甲基化,同时在卵裂过程继续去甲基化[61-62],而母系DNA由于DNMT1被排除在细胞核之外而缺乏维持性能[56],因而在细胞分裂过程中发生被动去甲基化,使胚胎的DNA甲基化水平呈下降趋势,囊胚期达到最低[11, 41]。此时,整个基因组DNA甲基化几乎被完全擦除,仅保留了小部分特异性甲基化区域,此后,随着胚胎植入子宫,从头甲基化转移酶DNMT3A和DNMT3B迅速恢复基因组甲基化[15]。然而,有研究表明,在小鼠、猪、牛和人类早期胚胎发育过程中,DNA甲基化的建立与去除时间因物种而异,小鼠和人类DNA甲基化的建立主要发生在囊胚期,而猪主要发生在8~16细胞期,牛则主要发生在16细胞期;此外,小鼠DNA去甲基化发生在E7.5~E13.5期间,而猪、牛和人类则均从受精后开始分别至囊胚期、16细胞期及桑葚胚期完成DNA去甲基化(表 1)。
哺乳动物DNA甲基化水平主要受DNMTs和TETs的调控,DNMTs家族主要介导DNA甲基化的建立与维持,而TET家族则主要介导DNA去甲基化。然而,酶的作用又受多种因素的影响,例如,参与TET介导去甲基化作用的氧气、铁和α-酮戊二酸以及抗坏血酸等[35]。此外,还有能够靶向定位DNA甲基化位点的UHRF1以及能够通过与UHRF1结合来抑制DNA甲基化的Stella等影响因子。
缺氧诱导因子(hypoxia-inducible factors,HIF)是一种由氧稳定型β亚基和不稳定型α亚基(HIF-1α、HIF-2α、HIF-3α)组成的氧依赖的转录激活因子。研究表明,HIF可在缺氧条件下调节多种细胞氧稳态的基因转录,在哺乳动物胚胎发育中起关键作用[69]。HIF-1α和HIF-2α是缺氧反应的关键,能够结合并转录激活多种基因。在缺氧条件下,HIF-2α可促进红细胞生成素编码基因的转录[70],而HIF-1α则直接诱导TET3表达促进DNA去甲基化[35]。HIF-1α和HIF-2α的靶向失活将导致小鼠胚胎发育缺陷,同时低氧也可降低体外成熟产生的牛受精卵中母体基因的整体甲基化水平[71]。
泛素样蛋白1(the ubiquitin-like, containing PHD and RING finger domains protein 1, UHRF1) 能够识别DNA甲基化和组蛋白修饰,对维持DNA甲基化在胚胎附植前发育的第一次重编程中起着至关重要的作用,其最基本的机制是:辅助因子UHRF1在DNA复制后识别半甲基化的CpG位点,并招募DNMT1来甲基化新的DNA子链。研究表明,在卵母细胞和着床前胚胎的整体表观遗传重编程过程中,UHRF1可通过调控DNA甲基化及H3K9甲基化抑制逆转录转座子的转录,敲除雄性小鼠生殖细胞UHRF1基因可导致减数分裂停滞,雄性小鼠不育;母体UHRF1基因可通过调控DNA甲基化和组蛋白修饰来参与卵母细胞及早期胚胎的发育,缺失会严重降低小鼠卵母细胞的质量并导致早期胚胎发育停滞和雌性小鼠不育;敲除母体UHRF1基因可导致胚胎致死表型且伴随全基因组低甲基化[19, 72]。
Stella(也称PGC7或Dppa3)是一种在原始生殖细胞中高度表达的蛋白,可保护母体基因组和印迹基因免受主动去甲基化的影响。研究表明,在小鼠和牛胚胎中,Stella可保护母体基因组免受TET3介导的5 mC向5 hmC的氧化转化,敲除Stella基因可导致雌性生育能力强烈下降以及早期胚胎无法主动进入囊胚期,证明Stella是正确表观遗传重编程和胚胎发育的重要因素[73-74]。此外,Stella也可防止卵母细胞在发育过程中DNA过度甲基化并通过与UHRF1结合来抑制DNA甲基转移酶DNMT1的招募作用[75]。
4 展望DNA甲基化是表观遗传修饰的重要调控机制之一,在哺乳动物卵母细胞和胚胎发育过程中发挥着重要作用。研究表明,卵母细胞DNA甲基化异常会阻碍早期胚胎发育,部分或完全缺失则可导致早期胚胎致死和先天性疾病。因此,深入探究DNA甲基化在哺乳动物卵母细胞和胚胎发育过程中的动态变化模式,为研究哺乳动物表观遗传调控等提供参考依据,为进一步探讨哺乳动物卵母细胞体外成熟环境及建立体外胚胎生产系统提供理论依据。此外,DNA甲基化水平也受到各类因素的影响,关于HIF、UHRF1及Dppa3等影响因子对DNA甲基化的建立与维持以及相关机制的调控尚不清楚,仍需进一步深入研究。在未来,深入研究DNA甲基化的调控机制对于提高哺乳动物繁殖率以及加强动物疾病防控仍具有重大应用价值。
[1] |
BERNSTEIN B E, MEISSNER A, LANDER E S. The mammalian epigenome[J]. Cell, 2007, 128(4): 669-681. DOI:10.1016/j.cell.2007.01.033 |
[2] |
DELCUVE G P, RASTEGAR M, DAVIE J R. Epigenetic control[J]. J Cell Physiol, 2009, 219(2): 243-250. DOI:10.1002/jcp.21678 |
[3] |
甘麦邻, 杨大洪, 谭娅, 等. 环境因素引起的哺乳动物跨代DNA甲基化修饰现象[J]. 畜牧兽医学报, 2017, 48(12): 2225-2231. GAN M L, YANG D H, TAN Y, et al. The study of influence of environment on transgenerational inheritance of DNA methylation in mammals[J]. Acta Veterinaria et Zootechnica Sinica, 2017, 48(12): 2225-2231. DOI:10.11843/j.issn.0366-6964.2017.12.001 (in Chinese) |
[4] |
NISHIYAMA A, NAKANISHI M. Navigating the DNA methylation landscape of cancer[J]. Trends Genet, 2021, 37(11): 1012-1027. DOI:10.1016/j.tig.2021.05.002 |
[5] |
HALUŠKOVA J, HOLEČKOVÁ B, STANIČOVÁ J. DNA methylation studies in cattle[J]. J Appl Genet, 2021, 62(1): 121-136. DOI:10.1007/s13353-020-00604-1 |
[6] |
XIE S, QIAN C M. The growing complexity of UHRF1-Mediated maintenance DNA methylation[J]. Genes (Basel), 2018, 9(12): 600. DOI:10.3390/genes9120600 |
[7] |
SCHVBELER D. Function and information content of DNA methylation[J]. Nature, 2015, 517(7534): 321-326. DOI:10.1038/nature14192 |
[8] |
REN H L, TAYLOR R B, DOWNING T L, et al. Locally correlated kinetics of post-replication DNA methylation reveals processivity and region specificity in DNA methylation maintenance[J]. J Roy Soc Interface, 2022, 19(195): 20220415. DOI:10.1098/rsif.2022.0415 |
[9] |
MING X, ZHANG Z Q, ZOU Z N, et al. Kinetics and mechanisms of mitotic inheritance of DNA methylation and their roles in aging-associated methylome deterioration[J]. Cell Res, 2020, 30(11): 980-996. DOI:10.1038/s41422-020-0359-9 |
[10] |
GUO H S, ZHU P, YAN L Y, et al. The DNA methylation landscape of human early embryos[J]. Nature, 2014, 511(7511): 606-610. DOI:10.1038/nature13544 |
[11] |
SMITH Z D, CHAN M M, MIKKELSEN T S, et al. A unique regulatory phase of DNA methylation in the early mammalian embryo[J]. Nature, 2012, 484(7394): 339-344. DOI:10.1038/nature10960 |
[12] |
UYAL F, CINAR O, CAN A. Knockdown of Dnmt1 and Dnmt3a gene expression disrupts preimplantation embryo development through global DNA methylation[J]. J Assist Reprod Genet, 2021, 38(12): 3135-3144. DOI:10.1007/s10815-021-02316-9 |
[13] |
ZHOU X F, HE Y T, LI N, et al. DNA methylation mediated RSPO2 to promote follicular development in mammals[J]. Cell Death Dis, 2021, 12(7): 653. DOI:10.1038/s41419-021-03941-z |
[14] |
MAUNAKEA A K, NAGARAJAN R P, BILENKY M, et al. Conserved role of intragenic DNA methylation in regulating alternative promoters[J]. Nature, 2010, 466(7303): 253-257. DOI:10.1038/nature09165 |
[15] |
SENDŽIKAIT G, KELSEY G. The role and mechanisms of DNA methylation in the oocyte[J]. Essays Biochem, 2019, 63(6): 691-705. DOI:10.1042/EBC20190043 |
[16] |
ZHANG J, HAO L L, WEI Q, et al. TET3 overexpression facilitates DNA reprogramming and early development of bovine SCNT embryos[J]. Reproduction, 2020, 160. |
[17] |
NISHIYAMA A, MULHOLLAND C B, BULTMANN S, et al. Two distinct modes of DNMT1 recruitment ensure stable maintenance DNA methylation[J]. Nat Commun, 2020, 11(1): 1222. DOI:10.1038/s41467-020-15006-4 |
[18] |
PETRYK N, BULTMANN S, BARTKE T, et al. Staying true to yourself: mechanisms of DNA methylation maintenance in mammals[J]. Nucl Acids Res, 2021, 49(6): 3020-3032. DOI:10.1093/nar/gkaa1154 |
[19] |
MAENOHARA S, UNOKI M, TOH H, et al. Role of UHRF1 in de novo DNA methylation in oocytes and maintenance methylation in preimplantation embryos[J]. PLoS Genet, 2017, 13(10): e1007042. DOI:10.1371/journal.pgen.1007042 |
[20] |
李秦. 抗坏血酸在牦牛卵母细胞和体外受精胚胎DNA甲基化调控中的应用[D]. 兰州: 甘肃农业大学, 2020. LI Q. Application of ascorbic acid in the regulation of DNA methylation in yak oocytes and IVF embryos[D]. Lanzhou: Gansu Agricultural University, 2020. (in Chinese) |
[21] |
LYKO F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation[J]. Nat Rev Genet, 2018, 19(2): 81-92. DOI:10.1038/nrg.2017.80 |
[22] |
GOLL M G, KIRPEKAR F, MAGGERT K A, et al. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2[J]. Science, 2006, 311(5759): 395-398. DOI:10.1126/science.1120976 |
[23] |
王倩倩. 双加氧酶Tet对DNA甲基化修饰的影响及相关调控机制研究[D]. 北京: 中国农业大学, 2018. WANG Q Q. Effects of Tet dioxygenases on DNA methylation and related regulatory mechanisms[D]. Beijing: China Agricultural University, 2018. (in Chinese) |
[24] |
ITO T, KUBIURA-ICHIMARU M, MURAKAMI Y, et al. DNMT1 regulates the timing of DNA methylation by DNMT3 in an enzymatic activity-dependent manner in mouse embryonic stem cells[J]. PLoS One, 2022, 17(1): e0262277. DOI:10.1371/journal.pone.0262277 |
[25] |
CHEN Z Y, ZHANG Y. Role of mammalian DNA methyltransferases in development[J]. Annu Rev Biochem, 2020, 89: 135-158. DOI:10.1146/annurev-biochem-103019-102815 |
[26] |
YAGI M, KABATA M, TANAKA A, et al. Identification of distinct loci for de novo DNA methylation by DNMT3A and DNMT3B during mammalian development[J]. Nat Commun, 2020, 11(1): 3199. DOI:10.1038/s41467-020-16989-w |
[27] |
LI Y L, CHEN X, LU C. The interplay between DNA and histone methylation: molecular mechanisms and disease implications[J]. EMBO Rep, 2021, 22(5): e51803. |
[28] |
BARAU J, TEISSANDIER A, ZAMUDIO N, et al. The DNA methyltransferase DNMT3C protects male germ cells from transposon activity[J]. Science, 2016, 354(6314): 909-912. DOI:10.1126/science.aah5143 |
[29] |
UYSAL F, AKKOYUNLU G, OZTURK S. Dynamic expression of DNA methyltransferases (DNMTs) in oocytes and early embryos[J]. Biochimie, 2015, 116: 103-113. DOI:10.1016/j.biochi.2015.06.019 |
[30] |
ZHAO X B, CHEN Y P, TAN M, et al. Extracellular matrix stiffness regulates DNA methylation by PKCα-dependent nuclear transport of DNMT3L[J]. Adv Healthc Mater, 2021, 10(16): 2100821. DOI:10.1002/adhm.202100821 |
[31] |
TOMIZAWA S I, NOWACKA-WOSZUK J, KELSEY G. DNA methylation establishment during oocyte growth: mechanisms and significance[J]. Int J Dev Biol, 2012, 56(10-12): 867-875. |
[32] |
GREENBERG M V C. Get out and stay out: new insights into DNA methylation reprogramming in mammals[J]. Front Cell Dev Biol, 2021, 8: 629068. DOI:10.3389/fcell.2020.629068 |
[33] |
WU X J, ZHANG Y. TET-mediated active DNA demethylation: mechanism, function and beyond[J]. Nat Rev Genet, 2017, 18(9): 517-534. DOI:10.1038/nrg.2017.33 |
[34] |
FICZ G, BRANCO M R, SEISENBERGER S, et al. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation[J]. Nature, 2011, 473(7347): 398-402. DOI:10.1038/nature10008 |
[35] |
CAO J Z, LIU H, WICKREMA A, et al. HIF-1 directly induces TET3 expression to enhance 5-hmC density and induce erythroid gene expression in hypoxia[J]. Blood Adv, 2020, 4(13): 3053-3062. DOI:10.1182/bloodadvances.2020001535 |
[36] |
MATULEVICIUTE R, CUNHA P P, JOHNSON R S, et al. Oxygen regulation of TET enzymes[J]. FEBS J, 2021, 288(24): 7143-7161. DOI:10.1111/febs.15695 |
[37] |
GU T P, GUO F, YANG H, et al. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes[J]. Nature, 2011, 477(7366): 606-610. DOI:10.1038/nature10443 |
[38] |
CHENG H, ZHANG J, ZHANG S, et al. Tet3 is required for normal in vitro fertilization preimplantation embryos development of bovine[J]. Mol Reprod Dev, 2019, 86(3): 298-307. DOI:10.1002/mrd.23105 |
[39] |
YAMAZAKI T, HATANO Y, TANIGUCHI R, et al. Editing DNA methylation in mammalian embryos[J]. Int J Mol Sci, 2020, 21(2): 637. DOI:10.3390/ijms21020637 |
[40] |
SAITOU M, KAGIWADA S, KURIMOTO K. Epigenetic reprogramming in mouse pre-implantation development and primordial germ cells[J]. Development, 2012, 139(1): 15-31. DOI:10.1242/dev.050849 |
[41] |
BRANCO M R, ODA M, REIK W. Safeguarding parental identity: Dnmt1 maintains imprints during epigenetic reprogramming in early embryogenesis[J]. Genes Dev, 2008, 22(12): 1567-1571. DOI:10.1101/gad.1690508 |
[42] |
WU H, ZHANG Y. Reversing DNA methylation: mechanisms, genomics, and biological functions[J]. Cell, 2014, 156(1-2): 45-68. DOI:10.1016/j.cell.2013.12.019 |
[43] |
SEISENBERGER S, PEAT J R, REIK W. Conceptual links between DNA methylation reprogramming in the early embryo and primordial germ cells[J]. Curr Opin Cell Biol, 2013, 25(3): 281-288. DOI:10.1016/j.ceb.2013.02.013 |
[44] |
YAKOVLEV A F. Epigenetic effects in livestock breeding[J]. Russ J Genet, 2018, 54(8): 897-909. DOI:10.1134/S1022795418080148 |
[45] |
DE FELICI M. Nuclear reprogramming in mouse primordial germ cells: epigenetic contribution[J]. Stem Cells Int, 2011, 2011: 425863. |
[46] |
HIURA H, OBATA Y, KOMIYAMA J, et al. Oocyte growth-dependent progression of maternal imprinting in mice[J]. Genes Cells, 2006, 11(4): 353-361. DOI:10.1111/j.1365-2443.2006.00943.x |
[47] |
LUCIFERO D, MANN M R W, BARTOLOMEI M S, et al. Gene-specific timing and epigenetic memory in oocyte imprinting[J]. Hum Mol Genet, 2004, 13(8): 839-849. DOI:10.1093/hmg/ddh104 |
[48] |
SWALES A K E, SPEARS N. Genomic imprinting and reproduction[J]. Reproduction, 2005, 130(4): 389-399. DOI:10.1530/rep.1.00395 |
[49] |
SMALLWOOD S A, TOMIZAWA S I, KRUEGER F, et al. Dynamic CpG island methylation landscape in oocytes and preimplantation embryos[J]. Nat Genet, 2011, 43(8): 811-814. DOI:10.1038/ng.864 |
[50] |
SEISENBERGER S, ANDREWS S, KRUEGER F, et al. The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells[J]. Mol Cell, 2012, 48(6): 849-862. DOI:10.1016/j.molcel.2012.11.001 |
[51] |
UYSAL F, OZTURK S, AKKOYUNLU G. DNMT1, DNMT3A and DNMT3B proteins are differently expressed in mouse oocytes and early embryos[J]. J Mol Histol, 2017, 48(5-6): 417-426. DOI:10.1007/s10735-017-9739-y |
[52] |
KOBAYASHI H, SAKURAI T, IMAI M, et al. Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocyte-specific heritable marks[J]. PLoS Genet, 2012, 8(1): e1002440. DOI:10.1371/journal.pgen.1002440 |
[53] |
OKAE H, CHIBA H, HIURA H, et al. Genome-wide analysis of DNA methylation dynamics during early human development[J]. PLoS Genet, 2014, 10(12): e1004868. DOI:10.1371/journal.pgen.1004868 |
[54] |
VESELOVSKA L, SMALLWOOD S A, SAADEH H, et al. Deep sequencing and de novo assembly of the mouse oocyte transcriptome define the contribution of transcription to the DNA methylation landscape[J]. Genome Biol, 2015, 16: 209. DOI:10.1186/s13059-015-0769-z |
[55] |
SINGH V B, SRIBENJA S, WILSON K E, et al. Blocked transcription through KvDMR1 results in absence of methylation and gene silencing resembling Beckwith-Wiedemann syndrome[J]. Development, 2017, 144(10): 1820-1830. |
[56] |
GREENBERG M V C, BOURC'HIS D. The diverse roles of DNA methylation in mammalian development and disease[J]. Nat Rev Mol Cell Biol, 2019, 20(10): 590-607. DOI:10.1038/s41580-019-0159-6 |
[57] |
RACEDO S E, WRENZYCKI C, LEPIKHOV K, et al. Epigenetic modifications and related mRNA expression during bovine oocyte in vitro maturation[J]. Reprod Fertil Dev, 2009, 21(6): 738-748. DOI:10.1071/RD09039 |
[58] |
LIANG Y, FU X W, LI J J, et al. DNA methylation pattern in mouse oocytes and their in vitro fertilized early embryos: effect of oocyte vitrification[J]. Zygote, 2014, 22(2): 138-145. DOI:10.1017/S0967199412000512 |
[59] |
CANOVAS S, IVANOVA E, HAMDI M, et al. Culture medium and sex drive epigenetic reprogramming in preimplantation bovine embryos[J]. Int J Mol Sci, 2021, 22(12): 6426. DOI:10.3390/ijms22126426 |
[60] |
XU Q H, XIE W. Epigenome in early mammalian development: inheritance, reprogramming and establishment[J]. Trends Cell Biol, 2018, 28(3): 237-253. DOI:10.1016/j.tcb.2017.10.008 |
[61] |
WANG X G, BHANDARI R K. DNA methylation dynamics during epigenetic reprogramming of medaka embryo[J]. Epigenetics, 2019, 14(6): 611-622. DOI:10.1080/15592294.2019.1605816 |
[62] |
SHEN L, INOUE A, HE J, et al. Tet3 and DNA replication mediate demethylation of both the maternal and paternal genomes in mouse zygotes[J]. Cell Stem Cell, 2014, 15(4): 459-471. DOI:10.1016/j.stem.2014.09.002 |
[63] |
刘青青, 郑丽明, 刘红亮, 等. 小鼠早期胚胎发育过程中的DNA去甲基化[J]. 畜牧兽医学报, 2013, 44(4): 501-507. LIU Q Q, ZHENG L M, LIU H L, et al. DNA demethylation in mouse pre-implantation embryos[J]. Acta Veterinaria et Zootechnica Sinica, 2013, 44(4): 501-507. (in Chinese) |
[64] |
ZHU P, GUO H S, REN Y X, et al. Single-cell DNA methylome sequencing of human preimplantation embryos[J]. Nat Genet, 2018, 50(1): 12-19. DOI:10.1038/s41588-017-0007-6 |
[65] |
GUO F, LI X L, LIANG D, et al. Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote[J]. Cell Stem Cell, 2014, 15(4): 447-459. DOI:10.1016/j.stem.2014.08.003 |
[66] |
ARAND J, REIJO PERA R A, WOSSIDLO M. Reprogramming of DNA methylation is linked to successful human preimplantation development[J]. Histochem Cell Biol, 2021, 156(3): 197-207. DOI:10.1007/s00418-021-02008-6 |
[67] |
IVANOVA E, CANOVAS S, GARCIA-MARTÍNEZ S, et al. DNA methylation changes during preimplantation development reveal inter-species differences and reprogramming events at imprinted genes[J]. Clin Epigenet, 2020, 12(1): 64. DOI:10.1186/s13148-020-00857-x |
[68] |
甘建宇, 张芯, 蔡更元, 等. DNA甲基化在猪胚胎发育过程中的研究进展[J]. 畜牧兽医学报, 2022, 53(10): 3287-3295. GAN J Y, ZHANG X, CAI G Y, et al. Research progress of DNA methylation during porcine embryonic development[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3287-3295. (in Chinese) |
[69] |
XIONG X R, FU M, LAN D L, et al. Yak response to high-altitude hypoxic stress by altering mRNA expression and DNA methylation of hypoxia-inducible factors[J]. Anim Biotechnol, 2015, 26(3): 222-229. DOI:10.1080/10495398.2014.1002563 |
[70] |
KAPITSINOU P P, LIU Q D, UNGER T L, et al. Hepatic HIF-2 regulates erythropoietic responses to hypoxia in renal anemia[J]. Blood, 2010, 116(16): 3039-3048. DOI:10.1182/blood-2010-02-270322 |
[71] |
BENNEMANN J, GROTHMANN H, WRENZYCKI C. Reduced oxygen concentration during in vitro oocyte maturation alters global DNA methylation in the maternal pronucleus of subsequent zygotes in cattle[J]. Mol Reprod Dev, 2018, 85(11): 849-857. DOI:10.1002/mrd.23073 |
[72] |
CAO Y M, LI M R, LIU F, et al. Deletion of maternal UHRF1 severely reduces mouse oocyte quality and causes developmental defects in preimplantation embryos[J]. FASEB J, 2019, 33(7): 8294-8305. DOI:10.1096/fj.201801696RRRR |
[73] |
BAKHTARI A, ROSS P J. DPPA3 prevents cytosine hydroxymethylation of the maternal pronucleus and is required for normal development in bovine embryos[J]. Epigenetics, 2014, 9(9): 1271-1279. DOI:10.4161/epi.32087 |
[74] |
HAN L S, REN C, ZHANG J, et al. Differential roles of Stella in the modulation of DNA methylation during oocyte and zygotic development[J]. Cell Discov, 2019, 5: 9. DOI:10.1038/s41421-019-0081-2 |
[75] |
FUNAKI S, NAKAMURA T, NAKATANI T, et al. Inhibition of maintenance DNA methylation by Stella[J]. Biochem Biophys Res Commun, 2014, 453(3): 455-460. DOI:10.1016/j.bbrc.2014.09.101 |
(编辑 郭云雁)