畜牧兽医学报  2023, Vol. 54 Issue (12): 5218-5227. DOI: 10.11843/j.issn.0366-6964.2023.12.031    PDF    
撒坝猪源E. coli高致病性毒力岛通过NLRP3/ASC/Caspase-1途径诱导IPEC-J2细胞焦亡
肖金龙1, 王浩2, 万全1, 沈珏1, 张博3, 赵维薇2, 邓静1, 王喜1, 赵汝1, 肖鹏1, 高洪1     
1. 云南农业大学动物医学院, 昆明 650201;
2. 云南农业大学食品科学技术学院, 昆明 650201;
3. 云南农业大学动物科学技术学院, 昆明 650201
摘要:旨在研究撒坝猪源E.coli高致病性毒力岛(highly pathogenic virulence island, HPI)诱导IPEC-J2细胞焦亡的机制, 本研究以LPS+ATP为阳性对照, 将实验室前期筛选的E.coli HPI及通过CRISPR/Cas9基因敲除技术构建完成的E.coliΔHPI感染IPEC-J2细胞, 观察细胞损伤情况; RT-qPCR测定各组作用0.5、3、6、9、12 h后细胞内焦亡通路中关键因子NOD样受体家族热蛋白结构域相关蛋白3(NOD-like receptor thermal protein domain associated protein 3, NLRP3)、凋亡相关斑点样蛋白(apoptosis-associated speck-like protein containing a CARD, ASC)、胱天蛋白酶-1(caspase-1)、消皮素D (gasderminD, GSDMD)及炎性因子白介素-18(IL-18)、白介素-1β(IL-1β)的mRNA转录水平; 激光共聚焦观察NLRP3/Caspase-1炎性复合体组装及表达情况; Western blot测定GSDMD及其活化形式GSDMD-N蛋白表达水平, PI染色检测胞膜完整性。结果表明: LPS+ATP处理显著促进细胞焦亡的发生, 阴性对照组细胞正常生长、轮廓清晰, E.coli感染组及LPS+ATP组细胞出现变形、脱落、边界模糊等明显细胞病变效应(cytopathic effect, CPE), 且HE染色显示, E.coliHPI感染相较于E.coli ΔHPI感染对细胞的损伤更严重; E.coli HPI组中的焦亡通路关键因子及炎性因子mRNA水平在3~9 h均显著(P < 0.05)或极显著(P < 0.01)高于E.coli ΔHPI组; NLRP3/Caspase-1炎性复合体在细胞质中发生组装, 且E.coli HPI组NLRP3/Caspase-1蛋白荧光强度、GSDMD、GSDMD-N蛋白表达水平及PI染色阳性率均极显著(P < 0.01)高于对照E.coli ΔHPI组; E.coli HPI组的CPE、HE染色、焦亡通路关键因子及炎性因子mRNA水平、GSDMD及GSDMD-N蛋白表达量、NLRP3/Caspase-1共定位情况均与LPS+ATP组相似。结果提示, 撒坝猪源E.coliHPI通过上调NLRP3/ASC/Caspase-1信号通路中关键因子mRNA水平, 诱导NLRP3/Caspase-1炎性复合体的组装, 促进焦亡标志蛋白GSDMD及GSDMD-N的表达, 并对IPEC-J2细胞膜进行打孔, 从而诱导细胞发生焦亡。
关键词大肠杆菌    高致病性毒力岛    焦亡    猪小肠上皮细胞    NLRP3/ASC/Caspase-1通路    
Induction of IPEC-J2 Pyroptosis by E.coli HPI from Saba Pig via NLRP3/ASC/Caspase-1 Pathway
XIAO Jinlong1, WANG Hao2, WAN Quan1, SHEN Jue1, ZHANG Bo3, ZHAO Weiwei2, DENG Jing1, WANG Xi1, ZHAO Ru1, XIAO Peng1, GAO Hong1     
1. College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China;
2. College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China;
3. Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
Abstract: To study the mechanism of pyroptosis induced by highly pathogenic virulence island (HPI) of E. coli from Saba pig in IPEC-J2 cells, The E. coli HPI screened in the laboratory and the E. coli ΔHPI constructed by CRISPR/Cas9 gene knockout technology were used to infect IPEC-J2 cells to observe cell damage, LPS+ATP was used as a positive control. RT-qPCR was used to determine the mRNA transcription levels of key factors in the pyroptosis pathway, including NOD-like receptor thermal protein domain associated protein 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), caspase-1, Gasdermin D (GSDMD), and inflammatory factors interleukin-18 (IL-18) and interleukin-1β (IL-1β) at 0.5, 3, 6, 9, and 12 h after treatment in each group. Laser confocal microscopy was used to observe the assembly and expression of NLRP3/Caspase-1 inflammasome complex. Western blot was used to determine the expression levels of GSDMD and its activated form GSDMD-N protein. PI staining was used to detect membrane integrity. The results showed that LPS+ATP treatment significantly promoted the occurrence of pyroptosis. The cells in the negative control group grew normally with clear contours. The cells in the E. coli infection group and LPS+ATP group showed obvious cytopathic effects (CPE) such as deformation, detachment, and blurred boundaries. HE staining showed that E. coli HPI infection caused more severe cell damage than E. coli ΔHPI infection. The mRNA levels of key factors and inflammatory factors in the pyroptosis pathway in the E.coli HPI group were significantly (P < 0.05) or extremely significantly (P < 0.01) higher than those in the E. coli ΔHPI group at 3-9 h. NLRP3/Caspase-1 inflammasome complex was assembled in the cytoplasm, and the protein fluorescence intensity of NLRP3/Caspase-1, the expression levels of GSDMD and GSDMD-N protein, and the positive rate of PI staining in the E. coli HPI group were extremely significantly (P < 0.01) higher than those in the controlE. coli ΔHPI group. The CPE, HE staining, mRNA levels of key factors and inflammatory factors in the pyroptosis pathway, expression levels of GSDMD and GSDMD-N protein, and co-localization of NLRP3/Caspase-1 in the E.coliHPI group were similar to those in the LPS+ATP group. The results suggest that E. coli HPI from Saba pig induces pyroptosis in IPEC-J2 cells by upregulating the mRNA levels of key factors in the NLRP3/ASC/Caspase-1 signaling pathway, inducing the assembly of NLRP3/Caspase-1 inflammasome complex, promoting the expression of pyroptosis marker proteins GSDMD and GSDMD-N, and punching holes in the cell membrane of IPEC-J2 cells.
Key words: Escherichia coli    highly pathogenic virulence island    pyroptosis    porcine small intestinal epithelial cells    NLRP3/ASC/Caspase-1 pathway    

撒坝猪属于农业部地方猪种遗传资源保护品种,在分类上属于乌金猪品系,具有饲料要求低、利用率高、适应性和抗逆性较强等优点[1-2]。1月龄以内的仔猪易被致病性大肠杆菌(Escherichia coli,E. coli)感染,可致仔猪黄痢、白痢和水肿病甚至死亡,对仔猪的生长发育造成极大的威胁[3-4]。同时,由于致病性E. coli的血清型众多、抗原类型差异大且复杂多变、新发病型不断出现的原因,使得大肠杆菌病总体的发病率呈升高趋势[5-6]。深入研究致病性E. coli对于相关疾病的预防、诊断、治疗及保障养殖业的健康发展具有重要意义。E. coli属于革兰阴性菌,部分特殊类型的E. coli具有毒力基因,如HPI基因[7-8]。HPI首先在耶尔森菌中被发现,大小35~45 kb,可向E. coli水平转移[9]。研究发现耶尔森菌HPI功能缺失可显著降低细菌对小鼠的毒性,禽源E. coli HPI基因缺失会引起部分相关毒力因子表达水平下降、黏附细胞能力减弱、半数致死量(median lethal dose,LD50)上升以及症状减轻等,而含有HPI的E. coli可提高小鼠的死亡率[10-12],提示HPI在E. coli感染、侵袭、致病过程中起重要作用。焦亡是由各种病原微生物感染或其他危险信号引起的、伴随着炎性反应的程序性细胞死亡,可分为Caspase-1介导的经典焦亡通路和Caspase-4/5/11介导的非经典焦亡通路。在经典焦亡通路中,机体受到危险刺激引起炎性小体组装并切割激活Caspase-1,GSDMD自身抑制状态被Caspase-1破坏,同时Caspase-1将Pro-IL-1β及Pro-IL-18切割激活,随后GSDMD-N通过脂质结合位点迁移至质膜,破坏质膜完整性,诱导焦亡的发生,IL-1β和IL-18也随之外释,进一步扩大炎症[13-14]。目前有研究发现,弗氏志贺杆菌、沙门杆菌、耶尔森杆菌等均可诱导细胞发生细胞焦亡[15],而致病性E. coli HPI能否诱导细胞焦亡仍不清楚。本研究以LPS+ATP为阳性对照,将E. coli ΔHPI、E. coli HPI感染IPEC-J2细胞,观察细胞形态、质膜孔的形成、焦亡通路相关因子的表达变化及炎性复合体的组装情况,探究撒坝猪源E. coli HPI诱导细胞焦亡的机制,阐明E. coli HPI对细胞焦亡的影响,为撒坝猪源E. coli HPI的致病机制提出新见解。

1 材料方法 1.1 材料

1.1.1 细胞和试验用菌   IPEC-J2购于吉尼欧生物公司(广州)。E. coli HPI由云南农业大学病理实验室分离自云南楚雄腹泻撒坝仔猪粪便,并以20%的甘油保存于-80 ℃冰箱,已验证HPI结构完整性[16]E. coli ΔHPI为实验室前期利用CRISPR/Cas9技术敲除并保存菌株,已验证基因敲除成功[17]

1.1.2 主要试剂、仪器   RNA提取试剂盒、反转录试剂盒(Vazyme Biotech Co., Ltd.),4%多聚甲醛、抗淬灭封片剂(Biosharp)、ECL显影液、BCA蛋白定量试剂盒、10~180 ku Western blot蛋白marker、DAPI(Servicebio),NLRP3 Antibody、Caspase-1 Antibody、GSDMD Antibody、Goat anti-rabbit IgG(Abcam Plc)。

紫外可见分光光度计(北京普析仪器公司),超速低温离心机(Beckman Coulter, Inc.),倒置荧光显微镜(Olympus America.),CO2培养箱(Thermo Fisher Scientific Inc.),荧光定量PCR仪(Bio-Rad Laboratories, Inc.)。

1.2 方法

1.2.1 试验分组   细胞接种六孔板培养,每孔加入2 mL细胞培养基;对照组(Control):细胞正常培养,试验组:细胞培养液中接种OD600 nm=0.6~0.8的E. coli HPI或E. coliΔHPI菌液100 μL;阳性对照(LPS+ATP)组:10 μg·mL-1 LPS处理5.5 h,再加入5 mmol·mL-1 ATP处理0.5 h;各组于处理后不同时间点收集细胞进行以下试验,每组设置3个重复。

1.2.2 IPEC-J2的感染处理和CPE拍照   各组细胞于作用后6 h弃去细胞培养液,洗涤3次,光学显微镜下观察拍照。

1.2.3 IPEC-J2的HE染色   各组细胞爬片用95%乙醇固定、苏木素染液作用10 min、伊红染色液作用2 min、滴加中性树胶封片,观察拍照。

1.2.4 RT-qPCR检测焦亡通路相关因子   各组细胞于处理后0.5、3、6、9、12 h收集样品,参照高旭雯等[18]的方法提取总RNA;gDNA去除及cDNA合成方法按试剂盒说明书进行;RT-qPCR检测GSDMDNLRP3、Caspase-1、ASCIL-1β、IL-18的mRNA表达水平,利用2-ΔΔCt法计算各基因的相对表达量。RT-qPCR引物序列及退火温度见表 1

表 1 引物信息 Table 1 The Primer

1.2.5 激光共聚焦观察NLRP3/Caspase-1炎性复合体的组装   各组细胞处理9 h后4%甲醛固定15 min,0.2% TritonX-100通透3 min,3% BSA封闭1 h,随后加入NLRP3 Antibody(1∶200)及Caspase-1 Antibody(1∶100)混合液于4 ℃冰箱内孵育12 h,再加入羊抗小鼠IgG(1∶200)及Goat anti-rabbit IgG(1∶200)混合液室温遮光孵育1 h,DAPI染色液室温遮光孵育5 min,防淬灭剂封片,镜下观察并采集图像。

1.2.6 Western blot检测焦亡标志蛋白GSDMD-N   各组细胞处理9 h后加入裂解液低温裂解15 min,依照蛋白浓度测定试剂盒说明书测定蛋白浓度,样品进行聚丙烯酰胺凝胶电泳、转膜,随后将PVDF膜放入5%脱脂奶粉封闭2 h,加入一抗于4 ℃冰箱内孵育12 h,加入二抗于室温下孵育1 h、ECL显色液显色;凝胶成像系统中观察并采集图像。

1.2.7 IPEC-J2的碘化丙啶(propidium iodide, PI)染色   各组细胞爬片用95%乙醇固定、加入2 mL PI染液遮光孵育20 min、DAPI孵育5 min、拍照观察计算形成质膜孔的阳性细胞占比。

1.2.8 统计分析   以SPSS 21软件对统计数据进行单因素方差分析,采用Tukey法对试验处理组进行多重比较检验,结果用“ x±s”表示,显著性水平设为P<0.05。

2 结果 2.1 IPEC-J2 CPE观察

对照组小肠上皮细胞在正常情况下排列紧密呈梭形(图 1a),E. coli感染后由于细菌的大量繁殖及代谢废物的排出,可见E. coli ΔHPI组与E. coli HPI组细胞均出现细胞肿胀、轮廓模糊等现象(图 1bc),阳性对照组细胞出现肿胀变形、脱落、破碎等更为严重的病理变化(图 1 d)。

a. 正常培养的细胞; b. E. coli ΔHPI感染6 h的细胞; c. E. coli HPI感染6 h的细胞; d. LPS+ATP处理6 h的细胞 a. Normal cultured cells; b. Cells infected with E. coli ΔHPI for 6 h; c. Cells infected with E. coli HPI for 6 h; d. Cells treated with LPS+ATP for 6 h 图 1 小肠上皮细胞CPE形态观察(标尺=500 μm) Fig. 1 CPE morphology observation of IPEC-J2 (Scale bar=500 μm)
2.2 IPEC-J2 HE染色

HE结果显示,正常IPEC-J2细胞呈梭形,轮廓清晰,无脱落现象(图 2a)。E. coli感染组和阳性对照组中细胞均表现出不规则形态,细胞间界线模糊不清,逐渐变为椭圆形或圆形,膨胀变形破裂(图 2bcd)。相较于E. coli ΔHPI组,E. coli HPI和阳性对照组病变更严重,细胞发生坏死崩解,并大量脱落,细胞核破裂溶解。

a. 正常培养的细胞; b. E. coli ΔHPI感染6 h的细胞; c. E. coli HPI感染6 h的细胞; d. LPS+ATP处理6 h的细胞 a. Normal cultured cells; b. Cells infected with E. coli ΔHPI for 6 h; c. Cells infected with E. coli HPI for 6 h; d. Cells treated with LPS+ATP for 6 h 图 2 小肠上皮细胞HE染色结果(标尺=50 μm) Fig. 2 HE staining results of IPEC-J2(Scale bar=50 μm)
2.3 IPEC-J2 RT-qPCR检测

β-actin为内参,2-ΔΔCt法计算各组相应时间点GSDMDNLRP3、Caspase-1、ASCIL-1β、IL-18的mRNA水平。结果显示:E. coli感染组细胞内焦亡关键因子及炎性因子mRNA水平均先升高再降低;阳性对照组细胞各因子mRNA水平极显著高于对照组;在3~9 h,E. coli HPI组与E. coli ΔHPI组细胞内各因子mRNA表达量呈现显著或极显著差异;试验组细胞中焦亡通路关键因子在6或9 h达高峰(图 3)。

*代表相较于对照组的差异显著性,*表示差异显著(P<0.05),**表示差异极显著(P<0.01);#代表相应组别间的差异显著性,#表示差异显著(P<0.05), ##表示差异极显著(P<0.01),下同 * significant difference from control, * represents significant difference (P < 0.05), ** represents highly significant difference(P < 0.01); # significant group difference, # represents significant difference (P < 0.05), ## represents highly significant difference (P < 0.01), same for all of following 图 3 焦亡通路关键因子及相关炎性因子的mRNA表达水平 Fig. 3 mRNA expression level of key factors of pyroptosis pathway and related inflammatory factors
2.4 IPEC-J2中炎性复合体的组装

qPCR结果显示,细胞焦亡的执行蛋白GSDMD的mRNA表达量在6 h达到高峰,GSDMD蛋白的表达及活化过程要稍晚于GSDMD mRNA的转录过程,所以后续对GSDMD蛋白的表达活化及膜孔的形成均在作用后9 h进行检测。

图 4为各组细胞NLRP3、Caspase-1蛋白表达及共定位情况,NLRP3蛋白用绿色荧光标记,Caspase-1蛋白用红色荧光标记,DAPI用蓝色荧光标记,Merge为3种荧光的合成结果。E. coli感染组和阳性对照组在细胞质中均出现了明显的NLRP3和Caspase-1共定位情况,表明NLRP3/Caspase-1炎性复合体的组装;同时E. coli HPI组的蛋白荧光强度极显著高于E. coli ΔHPI组。

图 4 小肠上皮细胞激光共聚焦观察结果 Fig. 4 Inflammatory complex results of IPEC-J2
2.5 GSDMD-N的表达

以β-actin蛋白为内参蛋白,Western blot检测各组作用9 h时细胞内GSDMD及其活化形式GSDMD-N的蛋白表达量。结果显示:在约31和53 ku处出现条带,符合GSDMD-N和GSDMD的蛋白大小;阳性对照及试验组细胞的GSDMD、GSDMD-N蛋白表达量相对于对照组极显著升高;E. coli HPI组与E. coli ΔHPI组相比,GSDMD及GSDMD-N蛋白表达量差异极显著(P<0.01)(图 5)。

图 5 IPEC-J2 GSDMD及其活化形式GSDMD-N蛋白的表达水平及量化结果 Fig. 5 Expression level and quantitative results of IPEC-J2 GSDMD and its activated form GSDMD-N protein
2.6 IPEC-J2质膜孔形成情况

图 6为细胞处理9 h后的PI染色情况,有膜孔的细胞被PI染料红色荧光标记,细胞核用DAPI蓝色荧光标记,Merge为二种荧光的合成结果。结果显示各组细胞处理9 h后E. coli感染组和阳性对照组细胞死亡率极显著高于对照组,其中E. coli HPI组细胞死亡率极显著高于E. coli ΔHPI组,且E. coli HPI组高于阳性对照组。

图 6 小肠上皮细胞PI染色结果及细胞阳性率 Fig. 6 PI staining results and positive rate of IPEC-J2
3 讨论

LPS+ATP被广泛用于细胞焦亡模型的构建[19-20],本研究将LPS+ATP作用于小肠上皮细胞作为阳性对照。结果显示,在E. coli ΔHPI组中,可能由于细菌代谢物或其他毒力因子导致细胞也出现了CPE,但相对于E. coli ΔHPI组,E. coli HPI组感染造成的细胞损伤更加严重,表明HPI可以促进或导致细胞的损伤。为了确定细胞出现CPE是否伴随焦亡的发生,对焦亡通路关键因子mRNA水平进行检测,发现感染3~9 h时E. coli HPI组焦亡通路关键因子及炎性因子mRNA表达量显著高于E. coli ΔHPI组,表明致病性E. coli HPI对于细胞焦亡NLRP3/ASC/Caspase-1信号通路关键因子及炎性因子的表达具有促进作用,这与以往的研究结果相符合[21-22]

当细菌、真菌等各种病原相关分子和来自宿主的某些危险信号分子刺激机体时,先天性免疫系统即整合胞内信号转导并组装形成蛋白复合物[23]。Caspase-1前体借助“中间桥梁”接头蛋白ASC与相应的模式识别受体(NLRP3等)连接,而后组装成一个高分子量的炎性小体[24-25]。Wang等[26]通过共聚焦显微镜观察到巨噬细胞焦亡模型中NLRP3、ASC、Caspase-1在细胞质中共定位现象,我们利用激光共聚焦同样发现了炎症小体重要组件NLRP3和Caspase-1蛋白的在细胞质中的定位现象,且E. coli HPI组的蛋白荧光强度极显著高于E. coli ΔHPI组,表明E. coli HPI能够促进NLRP3和Caspase-1蛋白的表达及NLRP3/Caspase-1炎性复合体在细胞质中的组装,进一步确定了E. coli HPI通过NLRP3/ASC/Caspase-1经典焦亡通路诱导焦亡的发生。

炎性小体形成后将Caspase-1前体水解为成熟的Caspase-1,Caspase-1再将焦亡的刽子手——GSDMD在ASP275位点切割激活。GSDMD由N端形成结构域(PFD)和C端抑制结构域(RD)组成,正常状态下PFD和RD相互作用抑制GSDMD活性,被Caspase-1切割后PFD和RD分离,PFD在质膜中寡聚形成直径1~2 μm的孔隙,允许IL-1β、IL-18、PI、Caspase-1等直径更小的物质通过。此外,Caspase-1还可以诱导IL-1β、IL-18前体的成熟,在机体内招募免疫细胞,增强T细胞和NK细胞功能,进而放大炎症反应,诱导细胞焦亡[27-29]。GSDMD蛋白本身作为所有炎性Caspase的作用底物,是细胞焦亡真正的执行蛋白[30],通过Western blot对其在细胞内表达情况的检测可以进步确定细胞是否发生了焦亡。与E. coli ΔHPI组相比,在E. coli HPI组中GSDMD及GSDMD-N有更高的表达率,这与RT-qPCR结果和细胞表现出特征性的死亡状态一致。焦亡的典型特征为质膜膜孔的产生,使得细胞内外相互连通,PI染液便能够通过膜孔进入细胞着色,最终呈现出染色阳性[31]。试验组及阳性对照组细胞PI染色阳性率明显升高在一定程度上证明焦亡的发生,同时E. coli HPI组较E.coliΔHPI组细胞阳性率显著上升,表明E. coli HPI对于IPEC-J2膜孔的产生有积极影响,诱导了细胞焦亡的发生。在E. coli HPI组中,CPE、焦亡通路关键因子mRNA表达量、NLRP3/Caspase-1炎性复合体组装情况、GSDMD-N蛋白表达量均与LPS+ATP诱导的细胞焦亡模型相似,表明E. coli HPI能够诱导细胞焦亡的发生。

值得注意的是, E. coli HPI组中NLRP3/Caspase-1蛋白荧光强度、GSDMD-N均低于阳性对照组,但E. coli HPI组PI染色阳性率却高于阳性对照组,可能是E. coli HPI通过经典焦亡通路诱导GSDMD蛋白表达的同时也通过其他途径诱导了其他打孔蛋白的表达,如GSDMB、GSDMC、GSDME等[27],这值得人们进一步深入探究。

4 结论

致病性E. coli HPI对NLRP3/Caspase-1炎性复合体的组装具有促进作用,并通过NLRP3/ASC/Caspase-1途径切割激活GSDMD-N,促进质膜孔的形成,从而诱导猪小肠上皮细胞发生焦亡。

参考文献
[1]
杨玉婷, 高欢, 冉津铭, 等. 35日龄撒坝仔猪盲肠发育及微生物多样性研究[J]. 中国畜牧杂志, 2021, 57(12): 250-256.
YANG Y T, GAO H, RAN J M, et al. A study on cecal development and microbial diversity of 35-day-old Saba piglets[J]. Chinese Journal of Animal Science, 2021, 57(12): 250-256. (in Chinese)
[2]
李明丽, 赵宝, 李志娟, 等. 撒坝母猪产仔性能影响因素分析[J]. 福建农业学报, 2020, 35(11): 1252-1257.
LI M L, ZHAO B, LI Z J, et al. Factors affecting reproductive performance of Saba sows[J]. Fujian Journal of Agricultural Sciences, 2020, 35(11): 1252-1257. (in Chinese)
[3]
SALAMON H, NISSIM-ELIRAZ E, ARDRONAI O, et al. The role of O-polysaccharide chain and complement resistance of Escherichia coli in mammary virulence[J]. Vet Res, 2020, 51(1): 77. DOI:10.1186/s13567-020-00804-x
[4]
汪群. 腹泻与健康仔猪粪便菌群的比较及致病菌的分离与耐药性研究[D]. 广州: 华南理工大学, 2019.
WANG Q. Comparison of fecal microbiota between diarrheal and healthy piglets and study of the antibiotic resistance of pathogens[D]. Guangzhou: South China University of Technology, 2019. (in Chinese)
[5]
ZHANG B Z, KU X, YU X, et al. Prevalence and antimicrobial susceptibilities of bacterial pathogens in Chinese pig farms from 2013 to 2017[J]. Sci Rep, 2019, 9: 9908. DOI:10.1038/s41598-019-45482-8
[6]
王广伟. 枣庄地区鸡大肠杆菌病的防治研究[D]. 泰安: 山东农业大学, 2010.
WANG G W. Study on the prevention and control of chicken colibacillosis in Zaozhuang area[D]. Taian: Shandong Agricultural University, 2010. (in Chinese)
[7]
CHAPMAN T A, WU X Y, BARCHIA I, et al. Comparison of virulence gene profiles of Escherichia coli strains isolated from healthy and diarrheic swine[J]. Appl Environ Microbiol, 2006, 72(7): 4782-4795. DOI:10.1128/AEM.02885-05
[8]
SCHUBERT S, RAKIN A, KARCH H, et al. Prevalence of the "high-pathogenicity island" of Yersinia species among Escherichia coli strains that are pathogenic to humans[J]. Infect Immun, 1998, 66(2): 480-485. DOI:10.1128/IAI.66.2.480-485.1998
[9]
MAGISTRO G, MAGISTRO C, STIEF C G, et al. The high-pathogenicity island (HPI) promotes flagellum-mediated motility in extraintestinal pathogenic Escherichia coli[J]. PLoS One, 2017, 12(10): e0183950. DOI:10.1371/journal.pone.0183950
[10]
王斌, 叶冬青. 强毒力岛HPI在肠道致病菌中的研究现状[J]. 中国预防医学杂志, 2001, 2(2): 151-153.
WANG B, YE D Q. The research status of high pathogenicity island HPI in enteric pathogens[J]. Chinese Preventive Medicine, 2001, 2(2): 151-153. (in Chinese)
[11]
邵颖. APEC毒力岛基因irp2、fyua缺失对其毒力影响的研究[D]. 合肥: 安徽农业大学, 2014.
SHAO Y. The effect of the irp2、fyua deletion in HPI on the pathogenicity of APEC[D]. Hefei: Anhui Agricultural University, 2014. (in Chinese)
[12]
SCHUBERT S, PICARD B, GOURIOU S, et al. Yersinia high-pathogenicity island contributes to virulence in Escherichia coli causing Extraintestinal infections[J]. Infect Immun, 2002, 70(9): 5335-5337. DOI:10.1128/IAI.70.9.5335-5337.2002
[13]
潘旭红, 李林俞, 陈鑫, 等. 细胞焦亡的分子机制及其在肿瘤中的研究进展[J]. 中国现代医生, 2022, 60(29): 89-93.
PAN X H, LI L Y, CHEN X, et al. Molecular mechanisms of cell death and research progress in its role in cancer[J]. China Modern Doctor, 2022, 60(29): 89-93. (in Chinese)
[14]
LI Z H, JI S L, JIANG M L, et al. The regulation and modification of GSDMD signaling in diseases[J]. Front Immunol, 2022, 13: 893912. DOI:10.3389/fimmu.2022.893912
[15]
游宇来, 王涛. 细胞焦亡与感染性疾病研究进展[J]. 检验医学与临床, 2018, 15(24): 3792-3795.
YOU Y L, WANG T. Research progress on the relationship between cell death and infectious diseases[J]. Laboratory Medicine and Clinic, 2018, 15(24): 3792-3795. (in Chinese)
[16]
SHAN C L, MIAO S S, LIU C Y, et al. Induction of macrophage pyroptosis-related factors by pathogenic E. coli high pathogenicity island (HPI) in Yunnan Saba pigs[J]. BMC Vet Res, 2021, 17(1): 114. DOI:10.1186/s12917-021-02824-x
[17]
ZHANG B, WANG H D, ZHAO W W, et al. New insights into the construction of wild-type Saba pig-derived Escherichia coli irp2 gene deletion strains[J]. 3 Biotech, 2021, 11(9): 408. DOI:10.1007/s13205-021-02951-0
[18]
高旭雯. 长链非编码RNA在BVDV诱导宿主细胞凋亡中的作用与机制研究[D]. 哈尔滨: 东北农业大学, 2020.
GAO X W. The role and mechanism of long non-coding RNA in the apoptosis of host cells induced by BVDV infection[D]. Harbin: Northeast Agricultural University, 2020. (in Chinese)
[19]
SHEN R T, YIN P, YAO H, et al. Punicalin ameliorates cell pyroptosis induced by LPS/ATP through suppression of ROS/NLRP3 pathway[J]. J Inflammation Res, 2021, 14: 711-718. DOI:10.2147/JIR.S299163
[20]
MA X Y, LI Y J, SHEN W X, et al. LPS mediates bovine endometrial epithelial cell pyroptosis directly through both NLRP3 classical and non-classical inflammasome pathways[J]. Front Immunol, 2021, 12: 676088. DOI:10.3389/fimmu.2021.676088
[21]
DEMIREL I, PERSSON A, BRAUNER A, et al. Activation of NLRP3 by uropathogenic Escherichia coli is associated with IL-1β release and regulation of antimicrobial properties in human neutrophils[J]. Sci Rep, 2020, 10(1): 21837. DOI:10.1038/s41598-020-78651-1
[22]
ZHANG X A, CHENG Y L, XIONG Y W, et al. Enterohemorrhagic Escherichia coli specific enterohemolysin induced IL-1β in human macrophages and EHEC-induced IL-1β required activation of NLRP3 inflammasome[J]. PLoS One, 2012, 7(11): e50288. DOI:10.1371/journal.pone.0050288
[23]
五且昆·吐尔逊. 干扰素调节因子家族成员在流感病毒诱导的局部和全身炎症反应中的表达模式[D]. 长春: 吉林大学, 2020.
TU ER XUN W Q K. Expression pattern of the interferon regulatory factor family members in influenza virus induced local and systemic inflammatory responses[D]. Changchun: Jilin University, 2020. (in Chinese)
[24]
庄万欣. USP3通过靶向ASC调控炎症小体激活的功能与机制研究[D]. 济南: 山东大学, 2021.
ZHUANG W X. The function and mechanism of USP3 in regulating the activation of inflammasome by targeting ASC[D]. Ji'nan: Shandong University, 2021. (in Chinese)
[25]
PINAR A A, YUFEROV A, GASPARI T A, et al. Relaxin can mediate its anti-fibrotic effects by targeting the myofibroblast NLRP3 inflammasome at the level of caspase-1[J]. Front Pharmacol, 2020, 11: 1201. DOI:10.3389/fphar.2020.01201
[26]
WANG Y, YANG C, MAO K R, et al. Cellular localization of NLRP3 inflammasome[J]. Protein Cell, 2013, 4(6): 425-431. DOI:10.1007/s13238-013-2113-2
[27]
YU P, ZHANG X, LIU N, et al. Pyroptosis: mechanisms and diseases[J]. Signal Transduct Target Ther, 2021, 6(1): 128. DOI:10.1038/s41392-021-00507-5
[28]
刘思逸. 基于NLRP3炎症小体信号探讨高糖环境下大鼠肾小管上皮细胞炎症因子变化及糖尿病大鼠肾脏纤维化机制[D]. 南昌: 南昌大学, 2021.
LIU S Y. Based on NLRP3 inflammasome to investigate the changes of inflammatory factors in rats renal tubular epithelial cells under high glucose environment and the mechanism of renal fibrosis in diabetic rats[D]. Nanchang: Nanchang University, 2021. (in Chinese)
[29]
ZHAO N, LI C C, DI B, et al. Recent advances in the NEK7-licensed NLRP3 inflammasome activation: Mechanisms, role in diseases and related inhibitors[J]. J Autoimmun, 2020, 113: 102515. DOI:10.1016/j.jaut.2020.102515
[30]
ZHAO W Y, YANG H, LYU L Y, et al. GSDMD, an executor of pyroptosis, is involved in IL-1β secretion in Aspergillus fumigatus keratitis[J]. Exp Eye Res, 2021, 202: 108375. DOI:10.1016/j.exer.2020.108375
[31]
陈刘赠. 新型NLRP3炎性小体抑制剂: 紫檀芪衍生物的设计、合成及抗炎活性评价[D]. 安徽医科大学, 2021.
CHEN L Z. New NLRP3 inflammasome inhibitor: design, synthesis and anti-inflammatory activity evaluation of pterostilbene derivatives[D]. Hefei: Anhui Medical University, 2021. (in Chinese)

(编辑   白永平)