畜牧兽医学报  2023, Vol. 54 Issue (12): 5091-5100. DOI: 10.11843/j.issn.0366-6964.2023.12.019    PDF    
腐殖酸钠对白羽肉鸡营养物质表观消化率、粪便微生物及其代谢产物的影响
李贞明1, 余苗1,2, 唐延天1, 李袁飞1, 刘志昌1, 容庭1,3, 马现永1,2     
1. 广东省农业科学院动物科学研究所 猪禽种业全国重点实验室 农业部华南动物营养与饲料重点实验室 广东省畜禽育种与营养研究重点实验室 广东省畜禽肉品质量安全控制与评定工程技术研究中心, 广州 510640;
2. 岭南现代农业科学与技术广东省实验室茂名分中心, 茂名 525000;
3. 清远市弘顺农牧有限公司, 清远 511500
摘要:旨在探究日粮添加腐殖酸钠对肉鸡营养物质表观消化率、粪便微生物数量及其代谢产物的影响。试验选取540只1日龄817白羽肉鸡, 随机分为3组(每组6个重复, 每个重复30只)。对照组饲喂基础日粮, 试验组分别饲喂含0.3%和0.5%腐殖酸钠的试验日粮。试验为期42 d, 试验结束前3 d, 每个重复选取体重相近的2只肉鸡放入代谢笼, 进行代谢试验。结果表明: 1)与对照组相比, 日粮添加0.5%的腐殖酸钠可显著提高肉鸡对粗蛋白、磷和灰分的表观消化率(P < 0.05)。2)与对照组和0.3%组相比, 日粮中添加0.5%的腐殖酸钠可显著提高肉鸡粪便中总菌和乳酸杆菌的数量, 并降低大肠杆菌的数量(P < 0.05)。与0.3%组相比, 日粮中添加0.5%的腐殖酸钠可显著提高肉鸡粪便中普雷沃氏菌的数量(P < 0.05)。3)与对照组相比, 日粮中添加0.5%的腐殖酸钠可显著降低肉鸡粪便中氨态氮的含量, 并提高乳酸的含量(P < 0.05)。与对照组和0.3%组相比, 日粮中添加0.5%的腐殖酸钠可显著降低肉鸡粪便中的对甲酚的含量(P < 0.05)。4)与对照组和0.3%组相比, 日粮添加0.5%腐殖酸钠可显著降低肉鸡粪便中酪胺、亚精胺、精胺和总生物胺的含量(P < 0.05)。与对照组相比, 日粮添加0.3%和0.5%腐殖酸钠可显著降低肉鸡粪便中腐胺的含量(P < 0.05);此外, 日粮添加0.3%腐殖酸钠可显著降低肉鸡粪便中酪胺和精胺的含量(P < 0.05)。综上所述, 日粮添加一定比例的腐殖酸钠可提高肉鸡对营养物质的表观消化率, 促进粪便中有益菌的生长与繁殖, 提高粪便中乳酸的含量, 抑制有害菌的生长与繁殖; 进而降低粪便中氨态氮、对甲酚和生物胺等臭味物质的含量, 达到源头减排的目的, 且在本试验条件下添加0.5%的效果优于0.3%。
关键词肉鸡    腐殖酸钠    表观消化率    粪便    微生物    生物胺    
Effects of Sodium Humate on Nutrient Apparent Digestibility, Fecal Microorganisms and Their Metabolites in White-feathered Broilers
LI Zhenming1, YU Miao1,2, TANG Yantian1, LI Yuanfei1, LIU Zhichang1, RONG Ting1,3, MA Xianyong1,2     
1. Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangdong Public Laboratory of Animal Breeding and Nutrition, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
2. Maoming Branch, Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming 525000, China;
3. Qingyuan Hongshun Agriculture and Animal Husbandry Co. Ltd., Qingyuan 511500, China
Abstract: The objective of the study was to investigate the effects of dietary supplementation with sodium humate on nutrient apparent digestibility, fecal microbial population and their metabolites in broilers. A total of 540 one-day-old 817 white-feathered broilers were selected for the trial and randomly divided into 3 groups (6 replicates per group, 30 birds per replicate). The control group was fed the basal diet and the test group was fed the test diets containing 0.3% and 0.5% sodium humate, respectively. The trial lasted for 42 days, and 3 days before the end of the trial, 2 broilers with similar body weight were selected from each replicate and were put into metabolic cages for metabolic tests. The results showed that: 1)Compared with the control group, dietary supplementation of 0.5% sodium humate significantly increased apparent digestibility of crude protein, phosphorus and ash (P < 0.05) in broilers. 2)Compared with the control and 0.3% groups, dietary supplementation with 0.5% sodium humate significantly increased total bacteria and Lactobacillus concentrations (P < 0.05) and decreased Escherichia coli concentrations (P < 0.05) in broiler manure. Compared with the 0.3% group, dietary supplementation with 0.5% sodium humate significantly increased Prevotella concentration (P < 0.05) in broiler manure. 3)Compared with the control group, dietary supplementation with 0.5% sodium humate significantly decreased ammoniacal nitrogen concentrations (P < 0.05) and increased lactic acid concentrations (P < 0.05) in broiler manure. Compared with the control and 0.3% groups, dietary supplementation with 0.5% sodium humate significantly decreased p-cresol concentrations (P < 0.05) in broiler manure. 4) Compared with the control and 0.3% groups, dietary supplementation with 0.5% sodium humate significantly decreased tyramine, spermidine, spermidine and total amines concentrations (P < 0.05) in broiler manure. Compared with the control group, dietary supplementation with 0.3% and 0.5% sodium humate significantly decreased putrescine concentrations (P < 0.05) in broiler manure; Additionally, dietary supplementation with 0.3% sodium humate significantly decreased tyramine and spermine concentrations (P < 0.05) in broiler manure. Therefore, dietary supplementation with sodium humate can improve nutrient apparent digestibility in broilers, promote beneficial bacteria growth and reproduction, increase lactic acid concentrations, inhibite harmful bacteria growth and reproduction, and then decrease ammonia nitrogen, p-cresol and biogenic amines and other odorous substances in manure, thus achieve the goal of pollution source reduction, and under the current condition, supplementation with 0.5% was more effective than 0.3%.
Key words: broiler    sodium humate    apparent digestibility    manure    microorganisms    biogenic amines    

据《第二次全国污染源普查公报》[1]显示,全国畜禽养殖业水污染排放量中,化学需氧量达到了1 000.53万吨,氨氮11.09万吨,总氮59.63万吨,总磷11.97万吨。针对畜禽污染,我国出台了多项政策并提出了源头减排、过程控制和末端利用的全方位减排理念,其中源头减排主要是通过合理选择饲料原料和在饲料中添加益生菌、天然提取物和酶制剂等的途径来实现[2]。相较于过程控制和末端利用,源头减排成本低,并具有事半功倍的效果,对畜禽养殖污染物的减排具有重要意义[3-4]

腐殖酸钠是腐殖酸的一种钠盐,含有酚基、羟基、羧基和醌基等多种活性功能基团,具有较强的离子交换作用和吸附作用。在畜禽养殖业中,腐殖酸钠通常被用来作为外用或内用的药剂。研究表明,腐殖酸钠具有促生长、消炎抗菌、抗氧化和增强免疫力等作用[5-7]。Písaŕíková等[8]研究表明,腐殖酸钠具有一定的吸附作用,日粮添加腐殖酸钠可提高仔猪对含氮物质的表观消化率,降低养殖环境中氨的浓度。Ji等[9]研究发现,日粮添加腐殖酸可显著提高仔猪的生长性能,并降低氨的排放量。目前,国内关于腐殖酸钠在源头减排方面的研究相对较少。因此,通过在日粮中添加适量的腐殖酸钠,研究其对肉鸡营养物质表观消化率、粪便微生物种类和数量及其代谢物的影响,旨在为腐殖酸钠在畜禽养殖业中的应用提供参考依据。

1 材料与方法 1.1 试验材料

腐殖酸钠中水溶性腐殖酸含量(干物质基础)≥70%。由辉昂化工有限公司提供。

1.2 试验设计

试验选取540只1日龄817白羽肉鸡,随机分为3组(每组6个重复,每个重复30只)。对照组饲喂不含抗生素的基础日粮,试验组分别饲喂含0.3%和0.5%腐殖酸钠的试验饲粮。试验为期42 d。基础日粮选取玉米、豆粕等原料,参照NRC(1994)并结合中华人民共和国农业行业标准《鸡饲养标准》(NY/T33—2004)进行配制,并制成颗粒料。基础日粮组成和营养水平见表 1。试验结束前3 d,每个重复选取体重相近的2只肉鸡放入代谢笼,采取全收粪法进行消化代谢试验。

表 1 基础日粮组成及营养水平(饲喂基础) Table 1 Composition and nutrient levels of basal diets (as-fed basis)  
1.3 饲养管理

试验鸡饲养于广东省农业科学院动物科学研究所试验场,采用地面平养。全期试验鸡自由采食和饮水;1~28日龄,栏舍封闭,室温保持32 ℃,采用全天光照;29~42日龄,栏舍开放,采用自然光照。其他按照常规饲养程序和免疫程序进行饲养和免疫。

1.4 样品采集

试验结束前3 d,每个重复选取体重相近的2只肉鸡放入代谢笼,采取全收粪法进行消化代谢试验。每天10:00收集粪样,并剔除羽毛,随后置于自封袋中,于-20 ℃冰箱保存。连续收集3 d后,取300 g粪样,加入20 mL 10%硫酸,混合均匀。将日粮和粪样65 ℃烘干至恒重,室温回潮24 h后,称重并粉碎。用于测定其中干物质(DM)、能量(GE)、粗蛋白质(CP)、粗脂肪(EE)、钙(Ca)、磷(P)和粗灰分(Ash)的含量,计算营养物质的表观消化率。另取10 g新鲜粪样保存于-80 ℃冰箱,用于后续微生物及其代谢产物的检测。

1.5 检测指标

1.5.1 营养物质表观消化率的检测   日粮和粪样中营养物质的表观消化率的检测方法如下:分别按照GB/T6435—2006、GB/T 6432—2018、GB/T 6433—2006、GB/T 6436—2018、GB/T 6437—2018和GB/T 6438—2007测定DM、CP、EE、Ca、P和Ash,采用全自动氧弹热量计Parr 6400(Parr,美国)测定GE。

营养物质表观消化率(%)= 100×[(日粮中营养物质的量-对应粪中该营养物质的量)/日粮中营养物质的量]。

1.5.2 粪便微生物DNA提取和荧光定量PCR检测   称取0.20 g粪样,利用粪便DNA纯化试剂盒(4101050,杭州新景生物试剂开发有限公司)提取、纯化粪便中微生物的总DNA,采用核酸蛋白测定仪(Nanodrop 1000,Thermo Fisher Scientific)测定DNA的浓度和质量,样品标准吸光度为260/280在1.80~2.00,260/230在2.00左右。采用荧光定量PCR仪(CFX96 Real-time PCR System, Bio-Rad)对粪样中总菌(total bacteria)、乳酸杆菌(Lactobacillus)、双歧杆菌(Bifidobacterium)、拟杆菌门(Bacteroidetes)、厚壁菌门(Firmicutes)、普雷沃氏菌(Prevotella)、梭菌Ⅳ(Clostridium cluster Ⅳ)、瘤胃球菌(Ruminococcus)和大肠杆菌(Escherichia coli)的16S rRNA基因拷贝数进行定量分析,并以10倍梯度稀释的标准质粒作为模板建立标准曲线,标准质粒由广东省农业科学院猪禽种业全国重点实验室提供,计算结果均表示为每克粪样中16S rRNA基因的拷贝数。PCR的反应体系和扩增程序具体参照Yu等[10]的方法, 特异性引物由上海生工基因技术有限公司广州分公司合成,PCR引物如表 2[11-18]所示。

表 2 定量微生物种类以及引物 Table 2 Quantitative microbial species and primers

1.5.3 粪便中微生物代谢产物的检测   氨态氮含量的检测:根据Chaney和Marbach[19]的方法,采用比色法测定粪样中氨态氮的含量。

乳酸含量的测定:按照试剂盒说明书步骤测定粪样中乳酸的含量,试剂盒购自南京建成生物工程研究所。

酚和吲哚类物质的检测:参照Yu等[10]的方法处理样品。使用高效液相色谱仪(Waters Alliance e2695,Waters)测定粪样中酚和吲哚类化合物质,并利用外标法通过标准曲线计算其含量。

生物胺含量测定:参照Yu等[10]的方法处理样品。使用高效液相色谱仪(Waters Alliance e2695,Waters)测定粪样中生物胺,并利用外标法通过标准曲线计算其含量。

1.6 数据统计与分析

营养物质表观消化率、微生物和微生物代谢产物的数据结果均以笼为统计单位,采用SPSS 20.0统计软件中单因子方差分析(one-way ANOVA,LSD)方法进行统计分析,使用Duncan氏多重比较检验。所有数据均表示为“平均值±标准误”,P < 0.05表示差异显著。

2 结果 2.1 腐殖酸钠对肉鸡表观消化率的影响

表 3可知,与对照组相比,日粮添加0.5%的腐殖酸钠可显著提高肉鸡对粗蛋白质、磷和灰分的表观消化率(P < 0.05)。不同日粮处理对日粮中干物质、总能、粗脂肪和钙的表观消化率无显著影响(P>0.05)。

表 3 腐殖酸钠对肉鸡日粮养分表观消化率的影响 Table 3 Effect of sodium humate on dietary nutrients apparent digestibility of broilers  
2.2 腐殖酸钠对肉鸡粪便中微生物数量的影响

表 4可知,与对照组和0.3%组相比,日粮中添加0.5%的腐殖酸钠可显著提高肉鸡粪便中总菌和乳酸杆菌的数量,并降低大肠杆菌的数量(P < 0.05)。与0.3%组相比,日粮中添加0.5%的腐殖酸钠可显著提高肉鸡粪便中普雷沃氏菌的数量(P < 0.05)。不同日粮处理对肉鸡粪便中厚壁菌门、拟杆菌门、双歧杆菌、梭菌Ⅳ和瘤胃球菌无显著影响(P>0.05)。

表 4 腐殖酸钠对白羽肉鸡粪便中微生物数量的影响 Table 4 Effect of sodium humate on the number of microorganisms in the feces of white-feathered broilers  
2.3 腐殖酸钠对肉鸡粪便中氨态氮、乳酸、酚和吲哚类化合物含量的影响

表 5可知,与对照组相比,日粮中添加0.5%的腐殖酸钠可显著降低肉鸡粪便中氨态氮的含量,并提高乳酸的含量(P < 0.05)。与对照组和0.3%组相比,0.5%组肉鸡粪便中的对甲酚显著降低(P < 0.05)。不同日粮处理对肉鸡粪便中苯酚、吲哚和粪臭素无显著影响(P>0.05)。

表 5 腐殖酸钠对肉鸡粪便中乳酸和含氮化合物含量的影响 Table 5 Effect of sodium humate on lactic acid and nitrogenous compounds concentrations in broilers′ manure
2.4 腐殖酸钠对肉鸡粪便中生物胺含量的影响

表 6可知,与对照组和0.3%组相比,日粮添加0.5%腐殖酸钠可显著降低肉鸡粪便中酪胺、亚精胺、精胺和总生物胺的含量(P < 0.05)。与对照组相比,日粮添加0.3%和0.5%腐殖酸钠可显著降低肉鸡粪便中腐胺的含量(P < 0.05);另外,日粮添加0.3%腐殖酸钠可显著降低肉鸡粪便中酪胺和精胺的含量(P < 0.05)。不同日粮处理对肉鸡粪便中甲胺、色胺和尸胺的含量无显著影响(P>0.05)。

表 6 腐殖酸钠对肉鸡粪便中生物胺含量的影响 Table 6 Effect of sodium humate on biogenic amine concentrations in broilers′ manure  
3 讨论 3.1 腐殖酸钠对肉鸡营养物质表观消化率的影响

表观消化率是反映试验动物对日粮中营养物质消化吸收水平的重要指标。在本试验中,日粮添加0.5%的腐殖酸钠可显著提高粗蛋白、磷和灰分的表观消化率。Wang等[20]研究发现,日粮添加腐殖酸钠可显著提高肉鸡对有机物和干物质的表观消化率。Wang等[21]研究则表明,羔羊对日粮养分的表观消化率不受腐殖酸的影响。本试验结果与上述的结果并不一致,可能是添加剂量和生产厂家的不同所导致的,具体原因还需进一步研究。腐殖酸钠是一种有机弱酸盐,可调节并稳定畜禽消化系统中的pH,提高消化酶的活性,促进畜禽肠道对营养物质的消化与吸收[22-24]。同时,腐殖酸钠作为一种螯合剂,具有较强的络合力、离子交换作用和吸附作用,在日粮经过畜禽肠道时,腐殖酸钠通过吸附作用使日粮中的营养物质缓慢通过肠道,延长营养物质的消化吸收时间,提高营养物质的表观消化率[25-26]。因此,腐殖酸钠提高肉鸡对营养物质的表观消化率,可能是因为腐殖酸钠提高了肉鸡肠道中有益菌的数量,稳定了肠道环境的pH,刺激消化酶分泌,并通过吸附作用,延长营养物质的消化吸收时间,进而提高肉鸡对营养物质的表观消化率。

3.2 腐殖酸钠对肉鸡粪便中微生物数量的影响

肠道菌群与畜禽机体代谢和健康水平密切相关,是维持肠道屏障功能和稳定肠道微生态环境的关键[27]。乳酸杆菌和普雷沃氏菌是肉鸡肠道中的有益菌,乳酸杆菌作为优势菌群定植在肉鸡肠道中,具有产生挥发性脂肪酸和抑菌因子的功效,可有效改善肠道环境,抑制有害菌的生长和繁殖;普雷沃氏菌是短链脂肪酸的主要生产菌,可通过促进肠道黏膜的发育来稳定肠道环境[28-29]。大肠杆菌属于畜禽肠道中常见的病原菌,产生内毒素和肠毒素破坏肠道黏膜屏障,导致畜禽肠道感染,影响畜禽机体健康[30]。在本试验中,日粮添加0.5%的腐殖酸钠可显著提高肉鸡粪便中乳酸杆菌的数量,并降低大肠杆菌的数量。这与Domínguez-Negrete等[31]研究一致。腐殖酸钠是一种多功能化合物,富含生物碱、维生素和生物活性物质,具有抗菌、抗炎和止泻等功能[32]。腐殖酸钠能够调控肠道菌群,可能是因为腐殖酸钠富含多种功能性活性物质,促进有益菌的生长繁殖,使有益菌分泌乳酸、短链脂肪酸和抑菌因子等,抑制大肠杆菌等有害菌的生长繁殖。这也进一步验证了腐殖酸钠可通过改善肠道微生态环境,提高肉鸡对营养物质的表观消化率。

3.3 腐殖酸钠对肉鸡粪便中乳酸和含氮化合物含量的影响

日粮中未被胃和小肠消化吸收的含氮物质进入后肠后会被微生物发酵生成氨态氮、酚和吲哚类化合物等臭味物质,其中高浓度氨态氮抑制肠道上皮细胞的增殖与分化,降低线粒体的氧化作用,增加腹泻率;高浓度对甲酚具有遗传毒性和致癌性,不利于肠道健康[33-34]。McMurphy等[35]和Ikyume等[36]研究表明,腐殖酸具有较强的氮结合能力,可显著降低肉牛和山羊瘤胃中氨态氮的浓度。本试验中,肉鸡粪便中氨态氮和对甲酚的浓度显著降低,可能与腐殖酸钠的氮结合能力有关。此外,日粮添加0.5%的腐殖酸钠显著提高了肉鸡粪便中乳酸的含量,这与腐殖酸钠提高粪便中乳酸菌的数量有关。研究表明,乳酸可有效抑制致病菌的生长与繁殖,并降低其发酵含氮化合物所需蛋白酶的活性,减少畜禽粪便中的臭味物质的产生[37-38]。因此,腐殖酸钠降低肉鸡粪便中的含氮化合物的浓度,一方面是因为腐殖酸钠具有较强的氮结合能力,另一方面是因为腐殖酸钠抑制有害菌的生长与繁殖,降低发酵含氮化合物所需蛋白酶的活性,进而减少臭味物质的产生。

3.4 腐殖酸钠对肉鸡粪便中生物胺含量的影响

生物胺主要是微生物对氨基酸进行脱羧产生的一种有机碱性化合物,包括一元胺、二元胺和多胺[39-40]。例如,酪氨酸脱羧生成酪胺;精氨酸脱羧生成腐胺、亚精胺和精胺。高浓度酪胺、腐胺、亚精胺和精胺具有毒性,能引起高血糖、偏头痛、肾衰竭和肿瘤在内的相关疾病[41]。何俊娜等[42]报道称,腐殖酸可影响微生物对含氮化合物的代谢水平。本试验结果显示,日粮添加腐殖酸钠可显著降低肉鸡粪便中酪胺、腐胺、亚精胺、精胺和总生物胺的浓度,表明腐殖酸钠可抑制微生物对酪氨酸和精氨酸的脱羧反应,降低相关生物胺浓度。余苗等[34]研究表明,大肠杆菌等微生物具有代谢含氮化合物产生生物胺的能力。在本试验中,日粮添加腐殖酸钠显著降低了肉鸡粪便中大肠杆菌的数量,进一步验证了腐殖酸钠具有降低肉鸡粪便中生物胺浓度的作用。

4 结论

日粮添加腐殖酸钠可提高肉鸡对日粮中粗蛋白、磷和灰分的表观消化率,促进粪便中乳酸菌的生长与繁殖,提高乳酸的浓度,抑制大肠杆菌的生长与繁殖;同时,降低粪便中氨态氮、对甲酚、腐胺、酪胺、亚精胺、精胺和总生物胺等臭味物质的浓度,达到源头减排的目的,且在本试验条件下添加0.5%的效果优于0.3%。

参考文献
[1]
第二次全国污染源普查公报[J]. 环境保护, 2020, 48(18): 8-10.
The second national pollution source census bulletin[J]. Environmental Protection, 2020, 48(18): 8-10. (in Chinese)
[2]
郭林霞, 赵国先, 杨博文, 等. 从源头减少鸡舍臭味物质排放措施研究进展[J]. 中国家禽, 2020, 42(2): 94-99.
GUO L X, ZHAO G X, YANG B W, et al. Research advances on measures for reduce the emission of smelly substances from the source[J]. China Poultry, 2020, 42(2): 94-99. (in Chinese)
[3]
李福欣, 齐自成, 张启超. 猪场养殖污染物源头减排措施探讨[J]. 山东畜牧兽医, 2019, 40(3): 42-44.
LI F X, QI Z C, ZHANG Q C. Discussion on source reduction measures of pollutants in pig farms[J]. Shandong Journal of Animal Science and Veterinary Medicine, 2019, 40(3): 42-44. DOI:10.3969/j.issn.1007-1733.2019.03.031 (in Chinese)
[4]
吴银宝, 吴根义, 廖新俤. 实施清洁生产源头控制畜禽养殖污染[J]. 农业环境科学学报, 2021, 40(11): 2283-2291.
WU Y B, WU G Y, LIAO X D. Implementation of cleaner production to reduce livestock and poultry pollution at the source[J]. Journal of Agro-Environment Science, 2021, 40(11): 2283-2291. (in Chinese)
[5]
陈志敏, 张海生, 陈将, 等. 腐殖酸钠对肉仔鸡生长性能、免疫功能和抗氧化能力的影响[J]. 动物营养学报, 2019, 31(4): 1733-1742.
CHEN Z M, ZHANG H S, CHEN J, et al. Effects of sodium humate on growth performance, immune function and antioxidant capacity of broilers[J]. Chinese Journal of Animal Nutrition, 2019, 31(4): 1733-1742. (in Chinese)
[6]
WANG Q, YING J, ZOU P, et al. Effects of dietary supplementation of humic acid sodium and zinc oxide on growth performance, immune status and antioxidant capacity of weaned piglets[J]. Animals, 2020, 10(11): 2104. DOI:10.3390/ani10112104
[7]
EDMONDS M S, JOHAL S, MORELAND S. Effect of supplemental humic and butyric acid on performance and mortality in broilers raised under various environmental conditions[J]. J Appl Poultry Res, 2014, 23(2): 260-267. DOI:10.3382/japr.2013-00901
[8]
PÍSAŔÍKOVÁ B, ZRALY Z, HERZIG I. The effect of dietary sodium humate supplementation on nutrient digestibility in growing pigs[J]. Acta Vet Brno, 2010, 79(3): 349-353. DOI:10.2754/avb201079030349
[9]
JI F, MCGLONE J J, KIM S W. Effects of dietary humic substances on pig growth performance, carcass characteristics, and ammonia emission[J]. J Anim Sci, 2006, 84(9): 2482-2490. DOI:10.2527/jas.2005-206
[10]
YU M, LI Z M, CHEN W D, et al. Hermetia illucens larvae as a potential dietary protein source altered the microbiota and modulated mucosal immune status in the colon of finishing pigs[J]. J Anim Sci Biotechnol, 2019, 10: 50. DOI:10.1186/s40104-019-0358-1
[11]
SUZUKI M T, TAYLOR L T, DELONG E F. Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5'-nuclease assays[J]. Appl Environ Microbiol, 2000, 66(11): 4605-4614. DOI:10.1128/AEM.66.11.4605-4614.2000
[12]
LAN Y, XUN S, TAMMINGA S, et al. Real-time PCR detection of lactic acid bacteria in cecal contents of eimeria tenella-lnfected broilers fed soybean oligosaccharides and soluble soybean polysaccharides[J]. Poult Sci, 2004, 83(10): 1696-1702. DOI:10.1093/ps/83.10.1696
[13]
WALKER A W, INCE J, DUNCAN S H, et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota[J]. ISME J, 2011, 5(2): 220-230. DOI:10.1038/ismej.2010.118
[14]
GUO X, XIA X, TANG R, et al. Development of a real-time PCR method for Firmicutes and Bacteroidetes in faeces and its application to quantify intestinal population of obese and lean pigs[J]. Lett Appl Microbiol, 2008, 47(5): 367-373. DOI:10.1111/j.1472-765X.2008.02408.x
[15]
LAYTON A, MCKAY L, WILLIAMS D, et al. Development of Bacteroides 16S rRNA Gene TaqMan-based real-time PCR assays for estimation of total, human, and bovine fecal pollution in water[J]. Appl Environ Microbiol, 2006, 72(6): 4214-4224. DOI:10.1128/AEM.01036-05
[16]
MATSUKI T, WATANABE K, FUJIMOTO J, et al. Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces[J]. Appl Environ Microbiol, 2004, 70(12): 7220-7228. DOI:10.1128/AEM.70.12.7220-7228.2004
[17]
VERMA R, VERMA A K, AHUJA V, et al. Real-time analysis of mucosal flora in patients with inflammatory bowel disease in India[J]. J Clin Microbiol, 2010, 48(11): 4279-4282. DOI:10.1128/JCM.01360-10
[18]
HUIJSDENS X W, LINSKENS R K, MAK M, et al. Quantification of bacteria adherent to gastrointestinal mucosa by real-time PCR[J]. J Clin Microbiol, 2002, 40(12): 4423-4427. DOI:10.1128/JCM.40.12.4423-4427.2002
[19]
CHANEY A L, MARBACH E P. Modified reagents for determination of urea and ammonia[J]. Clin Chem, 1962, 8(2): 130-132. DOI:10.1093/clinchem/8.2.130
[20]
WANG R F, WANG Y, AN X P, et al. Effects of biomacromolecules on growth, digestibility, digestive enzyme activity, antioxidation, and immunity in broilers[J]. S Afr J Anim Sci, 2022, 52(4): 539-551.
[21]
WANG Y, WANG R F, HAO X R, et al. Growth performance, nutrient digestibility, immune responses and antioxidant status of lambs supplemented with humic acids and fermented wheat bran polysaccharides[J]. Anim Feed Sci Technol, 2020, 269: 114644. DOI:10.1016/j.anifeedsci.2020.114644
[22]
ARPÁŠOVÁ H, KAČÁNIOVÁ M, PISTOVÁ V, et al. Effect of probiotics and humic acid on egg production and quality parameters of laying hens eggs[J]. Sci Pap: Anim Sci Biotechnol, 2016, 49(2): 1-9.
[23]
袁小陵, 王亚超, 胡茂, 等. 不同种类酸化剂对白羽肉鸡生长性能、屠宰性能、器官指数及养分表观消化率的影响[J]. 中国畜牧杂志, 2023, 59(2): 196-201.
YUAN X L, WANG Y C, HU M, et al. Effects of different types of acidifiers on growth performance, slaughtering performance, organ index and nutrient apparent digestibility of white feather broilers[J]. Chinese Journal of Animal Science, 2023, 59(2): 196-201. (in Chinese)
[24]
李运虎, 李美君, 彭兰丽, 等. 不同酸化剂对断奶仔猪胃肠道pH和消化酶活性的影响[J]. 饲料博览, 2019(2): 20-23.
LI Y H, LI M J, PENG L L, et al. Effect of different acidifiers on gastrointestinal pH value and digestive enzyme activities in weaned piglets[J]. Feed Review, 2019(2): 20-23. (in Chinese)
[25]
姜忠玲, 王国志, 王林安. 腐植酸钠在畜牧兽医中的应用[J]. 黑龙江畜牧兽医, 2001(12): 36-37.
JIANG Z L, WANG G Z, WANG L A. Application of humic acid natrium on animal and veterinary[J]. Heilongjiang Animal Science and Veterinary Medicine, 2001(12): 36-37. (in Chinese)
[26]
WANG D, YOU Z D, DU Y Y, et al. Influence of sodium humate on the growth performance, diarrhea incidence, blood parameters, and fecal microflora of pre-weaned dairy calves[J]. Animals, 2022, 12(1): 123. DOI:10.3390/ani12010123
[27]
SONNENBURG J L, BÄCKHED F. Diet-microbiota interactions as moderators of human metabolism[J]. Nature, 2016, 535(7610): 56-64. DOI:10.1038/nature18846
[28]
林标声, 何玉琴, 谢璐娜, 等. 菌酶协同发酵饲料对肉鸡肌肉风味物质含量、肠道转录组及菌群组成的影响[J]. 动物营养学报, 2022, 34(11): 7049-7062.
LIN B S, HE Y Q, XIE L N, et al. Effects of fermented feed by bacteria coupled fermentation with enzymes on meat flavor contents, intestinal transcriptome and flora composition of broilers[J]. Chinese Journal of Animal Nutrition, 2022, 34(11): 7049-7062. (in Chinese)
[29]
LOUIS P, HOLD G L, FLINT H J. The gut microbiota, bacterial metabolites and colorectal cancer[J]. Nat Rev Microbiol, 2014, 12(10): 661-672. DOI:10.1038/nrmicro3344
[30]
CHANG C H, TENG P Y, LEE T T, et al. Effects of multi-strain probiotic supplementation on intestinal microbiota, tight junctions, and inflammation in young broiler chickens challenged with Salmonella enterica subsp.enterica[J]. Asian-Australas J Anim Sci, 2020, 33(11): 1797-1808. DOI:10.5713/ajas.19.0427
[31]
DOMÍNGUEZ-NEGRETE A, GÓMEZ-ROSALES S, DE LOURDES ANGELES M, et al. Effect of the addition of humic substances as growth promoter in broiler chickens under two feeding regimens[J]. Animals, 2019, 9(12): 1101. DOI:10.3390/ani9121101
[32]
JI Y Y, ZHANG A J, CHEN X B, et al. Sodium humate accelerates cutaneous wound healing by activating TGF-β/Smads signaling pathway in rats[J]. Acta Pharm Sin B, 2016, 6(2): 132-140. DOI:10.1016/j.apsb.2016.01.009
[33]
余苗, 李贞明, 陈卫东, 等. 不同淀粉类型饲粮对育肥猪盲肠食糜主要微生物及其代谢产物的影响[J]. 动物营养学报, 2020, 32(2): 613-625.
YU M, LI Z M, CHEN W D, et al. Effects of different starch type diets on main microbes and their metabolites in cecal digesta of finishing pigs[J]. Chinese Journal of Animal Nutrition, 2020, 32(2): 613-625. DOI:10.3969/j.issn.1006-267x.2020.02.017 (in Chinese)
[34]
余苗, 李贞明, 王刚, 等. 黑水虻幼虫粉对育肥猪盲肠食糜主要微生物数量和代谢产物的影响[J]. 畜牧兽医学报, 2020, 51(2): 299-310.
YU M, LI Z M, WANG G, et al. Effects of Hermetia illucens larvae meal on the number of main microbes and metabolites in the cecal digesta of finishing pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(2): 299-310. (in Chinese)
[35]
MCMURPHY C P, DUFF G C, HARRIS M A, et al. Effect of humic/fulvic acid in beef cattle finishing diets on animal performance, ruminal ammonia and serum urea nitrogen concentration[J]. J Appl Anim Res, 2009, 35(2): 97-100. DOI:10.1080/09712119.2009.9706995
[36]
IKYUME T T, ONI A O, YUSUF A O, et al. Rumen metabolites and microbiome of semi-intensively managed West African Dwarf goats supplemented concentrate diet of varying levels of sodium humate[J]. Egypt J Vet Sci, 2020, 51(2): 263-270.
[37]
娜仁高娃, 安晓萍, 齐景伟, 等. 腐殖酸钠对大肠杆菌的抑制作用研究[J]. 中国畜牧兽医, 2014, 41(8): 228-231.
NARENGAOWA, AN X P, QI J W, et al. Study on bacteriostatic action of sodium humate on Escherichia coli[J]. China Animal Husbandry & Veterinary Medicine, 2014, 41(8): 228-231. (in Chinese)
[38]
PI Y, GAO K, PENG Y, et al. Antibiotic-induced alterations of the gut microbiota and microbial fermentation in protein parallel the changes in host nitrogen metabolism of growing pigs[J]. Animal, 2019, 13(2): 262-272. DOI:10.1017/S1751731118001416
[39]
GUARCELLO R, DE ANGELIS M, SETTANNI L, et al. Selection of amine-oxidizing dairy lactic acid bacteria and identification of the enzyme and gene involved in the decrease of biogenic amines[J]. Appl Environ Microbiol, 2016, 82(23): 6870-6880. DOI:10.1128/AEM.01051-16
[40]
PEGG A E. Toxicity of polyamines and their metabolic products[J]. Chem Res Toxicol, 2013, 26(12): 1782-1800. DOI:10.1021/tx400316s
[41]
王东升. 日粮模式对瘤胃与后肠中生物胺生成的影响[D]. 南京: 南京农业大学, 2012.
WANG D S. Effects of high concentrate feeding on the concentration of biogenic amines in the rumen and hindgut[D]. Nanjing: Nanjing Agricultural University, 2012. (in Chinese)
[42]
何俊娜, 鲁鑫涛, 邱家凌, 等. 腐植酸的生物学功能及其在动物生产中的应用[J]. 中国畜牧杂志, 2017, 53(11): 16-20.
HE J N, LU X T, QIU J L, et al. Biological functions of humic acid and its application in animal production[J]. Chinese Journal of Animal Science, 2017, 53(11): 16-20. (in Chinese)

(编辑   范子娟)