畜牧兽医学报  2023, Vol. 54 Issue (12): 4972-4981. DOI: 10.11843/j.issn.0366-6964.2023.12.009    PDF    
鸡骨骼肌卫星细胞系的建立及分析
王燕星, 张雨时, 姬海港, 刘阳, 牛玉芳, 韩瑞丽, 刘小军, 田亚东, 康相涛, 李转见     
河南农业大学动物科技学院, 郑州 450046
摘要:旨在通过慢病毒包装SV40-LT基因并转导PMSCs以构建鸡骨骼肌卫星细胞系。本研究采集20~30枚15胚龄健康AA鸡的胸部组织, 采用混合酶消化法分离培养PMSCs。将细胞随机分为两组, 每组3个重复, 处理组选择SV40-LT慢病毒转染48 h后, 更换含1 μg·mL-1的嘌呤霉素筛选培养基于处理组和对照组(病毒不转染)。待对照组细胞全部死亡, 对处理组细胞进行不断传代培养, 最终获得鸡骨骼肌卫星细胞系。免疫荧光试验分析鸡骨骼肌卫星细胞标志基因PAX7的表达; 采用CCK-8和细胞周期分析检测细胞增殖特性; 血清依赖性和软琼脂分析检测其恶性转化情况; 构建诱导分化模型检测其诱导分化能力。结果表明, PMSCs中有92%细胞PAX7基因呈阳性, 可用于后续研究。相较于原代鸡骨骼肌卫星细胞, SV40-LT基因在鸡骨骼肌卫星细胞系(IMSCs P12)中的表达是原代鸡骨骼肌卫星细胞的15倍, 且连续传代至12代后, IMSCs P12与PMSCs均呈纤维样状。IMSCs P12具有更高的增殖活性且没有发生恶性转化, 随后, 对IMSCs P12进行诱导分化, 在其增殖至70%到诱导分化1 d这一阶段, IMSCs P12与PMSCs的PAX7基因表达下调, 而MyoDMyHC基因表达上调。结果提示, 本研究通过转染SV40-LT基因成功培养了鸡骨骼肌卫星细胞系, 其具有与原代鸡骨骼肌卫星细胞相似的特性。该细胞系的建立为研究家禽骨骼肌相关的功能基因提供了新的平台, 也为SV40-LT基因在家禽细胞永生化的研究奠定了基础。
关键词    骨骼肌卫星细胞    SV40-LT    细胞系    PAX7    
Characterization and Establishment and Analysis of the Chicken Skeletal Satellite Cell Line
WANG Yanxing, ZHANG Yushi, JI Haigang, LIU Yang, NIU Yufang, HAN Ruili, LIU Xiaojun, TIAN Yadong, KANG Xiangtao, LI Zhuanjian     
College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
Abstract: The purpose of the study was to establishment of chicken skeletal satellite cell line by constructing SV40-LT gene with lentivirus and transforming primary chicken skeletal satellite cell line (PMSCs). In this study, chest tissues from 20-30 healthy AA chickens of 15 embryonic ages were collected, and a mixed enzyme digestion method was used to isolate and cultivate PMSCs. Randomly divided the cells into two groups, each with three replicates. The treatment group was transfected with SV40-LT lentivirus for 48 hours, and then replaced with Puromycinmedium containing 1 μg·mL-1 puromycin for screening and cultivation based on the treatment group and the control group (virus not transfected). After all cells in the control group died, the cells in the treatment group were continuously subcultured to obtain a chicken skeletal muscle satellite cell line. Immunofluorescence assay was used to analyze the expression of the marker gene PAX7 in chicken skeletal muscle satellite cells; Cell proliferation characteristics were detected using CCK-8 and cell cycle analysis; Serum dependence and soft agar analysis were used to detect its malignant transformation status; Constructing an induced differentiation model to test its ability to induce differentiation. The 92% of cells in PMSCs were positive for the PAX7 gene, which could be used for subsequent research. Compared with primary chicken skeletal muscle satellite cells, SV40-LT was expressed 15-fold in chicken skeletal muscle satellite cell lines (IMSCs P12), and after continuous passage to 12th generation, both IMSCs P12 and PMSCs exhibited fibrous morphology. IMSCs P12 showed higher proliferative activity and did not undergo malignant transformation. Subsequently, IMSCs P12 was induced to differentiate. During the stage from 70% proliferation to 1 day of induced differentiation, the expression of PAX7 genes in IMSCs P12 and PMSCs was downregulated, while the expression of MyoD and MyHC genes was upregulated. This study successfully cultivated chicken skeletal muscle satellite cell line by transfecting the SV40-LT gene, which has similar characteristics to the primary chicken skeletal muscle satellite cells. The establishment of this cell line provided a new platform for studying functional genes related to poultry skeletal muscles, and also laid the foundation for the study of SV40-LT gene immortalization in poultry cells.
Key words: chicken    skeletal muscle satellite cells    SV40-LT    cell line    PAX7    

骨骼肌是畜禽机体重要组成部分之一,对畜禽运动的维系具有重要作用[1]。肌肉组织的终生维持是由卫星细胞介导的[2],骨骼肌卫星细胞(muscle satellite cells, MSCs)是位于细胞膜和基膜之间的一类肌源性干细胞[3],通常情况下,处于静止状态仅零星增殖[4]。而当机体损伤,骨骼肌卫星细胞被激活,进行分裂以重建纤维完整性和功能[5]。分离培养PMSCs对于禽类骨骼肌研究来说是一个复杂且耗时的过程,并且每次试验中细胞产量有限。同时,得到的细胞通常在一次或两次传代后停止生长,且存在内源性污染[6]。细胞永生化是指通过自发或人为诱导原代细胞[7],使其度过复制衰老期,持续增殖分裂。永生化细胞系保留了原代细胞所具有的特定免疫标记和功能特性[8],且能够提供均一的细胞群和可重现的结果[9-10]。常用于建立永生化细胞系的外源基因包括EB病毒[11]、猿猴病毒40 Large T (SV40-LT)[12]和人端粒酶逆转录酶[13]等。SV40是一种双链DNA病毒,因其能够快速且使原代细胞稳定转化为永生化细胞而应用广泛[14-15]

本试验通过慢病毒转染SV40-LT以培养鸡骨骼肌卫星细胞系,从而为家禽骨骼肌的功能研究及永生化细胞系的建立提供参考。

1 材料与方法 1.1 试验材料

DMEM:F12、多聚甲醛(PFA)、胶原酶I、牛血清白蛋白、红细胞裂解液、嘌呤霉素、Triton X-100、马血清购自索莱宝公司;胎牛血清FBS购自Gibco公司;PAX7购自DSHB公司;CY3、山羊血清购自博奥森公司;Fluoromount-G荧光封片剂购自SourthernBiotech公司;质粒无内毒素提取试剂盒购自天根公司;动物总RNA快速提取试剂盒购自GENERay公司;5×All-In-One RT MasterMix购自Abm公司;SYBR Green qPCR Master、CCK-8试剂购自vazyme公司;Agarose购自擎科生物公司;pHY-SV40-Puro病毒液购自赛百慷公司。

1.2 试验方法

1.2.1 原代鸡骨骼肌卫星细胞的分离、培养   取15胚龄的鸡胚20~30枚常规消毒后,超净台内分离胸部肌肉于平皿;PBS缓冲液冲洗3次,剔除血管、脂肪、结缔组织等非肌肉组织;平皿中加入少量消化酶(0.1% I型胶原酶、2%牛血清白蛋白混合于DMEM/F12),将组织剪碎并移至50 mL离心管中;加入组织块5倍体积的消化酶溶液,封口,置于37 ℃水浴消化45 min左右;加入3倍体积的完全培养基终止消化;混合液依次过100目、200目、500目的细胞过滤筛,细胞悬液1 000 r·min-1离心5 min;弃上清,完全培养基重悬细胞接种于T75培养瓶,置于37 ℃,5% CO2培养箱中培养。4 h后进行差速贴壁,即可分离得到PMSCs。

1.2.2 PMSCs免疫荧光鉴定   取F1代细胞接种于24孔板中,每孔3×106个细胞。将细胞用PBS缓慢洗涤;4%多聚甲醛于4 ℃固定30 min;0.1%Triton X-100室温透膜10 min;PBS洗涤;滴加山羊血清[16]封闭1 h;弃封闭液,加入PAX7一抗,4 ℃过夜孵育;回收一抗,PBS洗涤;加入CY3二抗,37 ℃避光孵育1 h;PBS洗涤;加入DAPI染核5 min;PBS洗涤;荧光显微镜下观察。

1.2.3 最佳药物筛选浓度的确定   取F2代细胞接种于24孔板,将嘌呤霉素设置如下梯度:1、2、3、4、5、6、7 μg·mL-1对F2代细胞进行加压筛选,每2 d换一次液;观察细胞状态,以细胞全部死亡的最低浓度为最佳筛选浓度。PMSCs的嘌呤霉素最佳筛选浓度为1 μg·mL-1

1.2.4 慢病毒载体的包装   取HEK293T细胞接种于培养皿,将质粒pBobi-SV40-Puro与Lenti-Mix(pMDLg/pRRE∶pVSV-G∶pRSV-Rev=5∶3∶2比例混合)混匀,加入0.25 moL· mL-1 CaCl2吹匀;加入2×HBS,室温静置10 min;将Lenti-Mix-DNA转染体系液逐滴加入培养皿,置于37 ℃、5%CO2的细胞培养箱培养8~10 h;弃液,加入完全培养基继续培养24~48 h,收集上清,500 g离心10 min;取上清用0.45 μmoL·L-1过滤器过滤;加入慢病毒浓缩液,4 ℃过夜;4 ℃ 10 000 r·min-1离心30 min,用无血清培养基重悬,分装后冻存于-80 ℃。

1.2.5 永生化鸡骨骼肌卫星细胞的建立   取F2代细胞,加入病毒液;12 h后抽弃一半培养基并加入一半新鲜培养基,培养24~48 h;加入筛选培养基;显微镜下观察对照组细胞全部死亡,将筛选培养基中的嘌呤霉素浓度减半,直至有阳性细胞的出现;将阳性细胞不断连续培养后,获得鸡骨骼肌卫星细胞系IMSCs;将传代至第12代的鸡骨骼肌卫星细胞系称为IMSCs P12[17]

1.2.6 细胞增殖分析   将细胞接种于96孔板,每孔5×102个细胞;设置8组,每组10个重复;依次在1~8 d将完全培养基与CCK-8试剂按照9∶1的比例混合;抽弃原有培养基,加入CCK-8试剂的培养液,孵育2 h;用酶标仪测定450 nm处吸光度值并绘制生长曲线。

1.2.7 细胞周期检测   将细胞接种于6孔板,每孔2×106个细胞;消化细胞,2 000 r·min-1离心4 min;弃上清,加入1 mL预冷的PBS,2 000 r·min-1离心4 min;弃上清,重复两次;加入1 mL预冷的70%乙醇,4 ℃固定12~24 h;1 200 r·min-1离心5 min,弃上清;加入PBS,1 200 r·min-1离心5 min;弃上清,碘化丙啶染色,37 ℃避光温浴30 min;用流式细胞仪在488 nm波长处检测细胞周期。

1.2.8 血清依赖性分析   将细胞接种于96孔板,培养12 h;配制0%、5%、10%、20%胎牛血清[18]的DMEM/F12培养基,加入细胞中,每个浓度至少3个重复;加入10 μL CCK-8试剂,孵育2 h。用酶标仪在450 nm波长处测定吸光度值并绘制柱状图。

1.2.9 软琼脂分析   将1.2%的Agarose培养基与20%FBS的DMEM/F12培养基混合,铺到6孔板;将IMSCs P12稀释至每毫升1 000个,HEK293T细胞稀释到每毫升200个;将0.7%的Agarose培养基与20%FBS的DMEM/F12培养基缓慢混合后加入细胞悬液,铺至下层胶;每隔2 d补加200 μL培养基[19];培养2周,待HEK293T细胞长出克隆后,显微镜拍照保存。

1.2.10 鸡骨骼肌卫星细胞诱导分化模型构建及分析   将细胞接种于24孔板;将培养基替换成诱导分化培养基(含2%马血清[20]的DMEM/F12培养基),分别收取增长至70%,分化后1~4 d的细胞。

1.2.11 实时荧光定量PCR检测基因的表达   SV40-LT、PAX7、MyoDMyHC的引物如表 1所示,β-actin用作为内参基因。使用SYBR Green Master Mix试剂,cDNA作为模板,在QuantStudio 5实时荧光定量仪进行实时荧光定量PCR,参数如下:95 ℃预变性30 s;聚合酶链式反应95 ℃持续10 s,60 ℃持续30 s,共35个循环;95 ℃持续15 s,60 ℃持续1 min,95 ℃持续15 s。采用2—ΔΔCt方法计算基因的相对表达量。每组样品至少3个生物学重复。

表 1 引物序列 Table 1 Primer sequences
1.3 数据处理与分析

试验数据采用SPSS 27.0软件中的One-way ANOVA和多重比较进行统计分析,结果以“Mean±SEM”表示。0.01<P<0.05表示差异显著,P<0.01表示差异极显著。

2 结果 2.1 鸡骨骼肌卫星细胞细胞鉴定

在PMSCs中,有92%的细胞PAX7在细胞核中呈阳性表达(图 1),可用于后续研究。

图 1 PMSCs中PAX7免疫荧光染色结果(100×,标尺:100 μm) Fig. 1 Immunofluorescence staining result of PAX7 in PMSCs (100×, Bar=100 μm)
2.2 慢病毒载体的构建

对照GFP慢病毒包装24 h左右后,荧光效果显示GFP阳性率约90%以上,病毒滴度为1×108 tu·mL-1(图 2)。

图 2 GFP对照病毒包装效果(200×) Fig. 2 Comparison virus packaging rendering of GFP (200×)
2.3 嘌呤霉素筛选阳性细胞

鸡骨骼肌卫星细胞系连续传至12代(IMSCs P12)后仍具有与PMSCs相似的形态(图 3),且SV40-LT基因在IMSCs P12中的表达是PMSCs的15倍(图 4)。

A.PMSCs生长近融合状态;B.IMSCs P12生长状态 A.PMSCs growth near fusion state; B.Growth state of IMSCs P12 图 3 PMSCs和IMSCs P12形态图(100×,标尺:100 μm) Fig. 3 The morphology of PMSCs and IMSCs P12(100×, Bar=100 μm)
图 4 IMSCs P12中SV40-LT mRNA表达 Fig. 4 SV40-LT mRNA expression in IMSCs P12
2.4 鸡骨骼肌卫星细胞生长曲线分析

将PMSCs与IMSCs P12连续培养8 d,在1~5 d细胞处于生长潜伏期,5~6 d处于对数生长期,然后细胞进入平台期(图 5)。

图 5 PMSCs和IMSCs P12增殖曲线 Fig. 5 The growth curves of PMSCs and IMSCs P12
2.5 鸡骨骼肌卫星细胞周期分析

IMSCs P12处在S期的细胞明显多于PMSCs,二者差异极显著(P<0.01);IMSCs P12处在G2M期的细胞明显多于PMSCs,二者差异极显著(P<0.000 1)(图 6)。说明与PMSCs相比,IMSCs P12具有更高的增殖活性。

图 6 PMSCs和IMSCs P12细胞周期检测 Fig. 6 Cell cycle detection of PMSCs and IMSCs P12
2.6 永生化鸡骨骼肌卫星细胞血清依赖性分析

本试验采用不同血清浓度来培养IMSCs P12,结果如图 7所示,在无血清时,IMSCs P12不能正常生长;血清浓度为5%、10%、20%时,IMSCs P12能够增殖,且20%的血清浓度促进增殖的能力要明显高于5%的血清浓度, 两者差异极显著(P < 0.000 1);15%、20%的血清浓度促进细胞增殖的能力极显著高于5%时细胞增殖的能力(P < 0.000 1)。

图 7 IMSCs P12血清依赖性分析 Fig. 7 Serum dependence analysis in IMSCs P12
2.7 鸡骨骼肌卫星细胞软琼脂分析

在培养5D、10D、14D后,显微镜下镜检结果表明,IMSCs P12在软琼脂中均为单独的细胞(图 8ABC),没有形成细胞克隆,而HEK293T细胞形成了明显的独立细胞克隆团(图 8DEF)。

A.软琼脂培养2 d的IMSCs P12;B.软琼脂培养5 d的IMSCs P12;C.软琼脂培养2周的IMSCs P12;D.软琼脂培养2 d的HEK293T细胞;E.软琼脂培养5 d的HEK293T细胞;F.软琼脂培养2周的HEK293T细胞 A.Culture IMSCs P12 in soft agar for 2 days; B.Culture IMSCs P12 in soft agar for 5 days; C.Culture IMSCs P12 in soft agar for 2 weeks; D.Culture HEK293T in soft agar for 2 days; E.Culture HEK293T in soft agar for 5 days; F.Culture HEK293T in soft agar for 2 weeks 图 8 PMSCs和IMSCs P12软琼脂分析(100×,标尺:100 μm) Fig. 8 Soft agar analysis of PMSCs and IMSCs P12 (100×, Bar=100 μm)
2.8 鸡骨骼肌卫星细胞诱导分化模型构建及分析

鸡骨骼肌卫星细胞经2%马血清诱导处理后,可以向成肌细胞、肌纤维进行分化。PAX7、MyoDMyHC分别为鸡骨骼肌卫星细胞、成肌细胞、肌纤维的标志基因。PAX7在PMSCs与IMSCs P12增殖到70%、诱导分化1 d、2 d的表达趋势是一致的,先下降后上升(图 9A);MyoD在PMSCs与IMSCs P12增殖到70%、诱导分化1 d的基因表达趋势一致,都是上升(图 9B);MyHC在PMSCs与IMSCs P12增殖到70%、诱导分化1~3 d的基因表达趋势一致,都是上升(图 9C)。

A.PAX7 mRNA在PMSCs和IMSCs P12中的表达变化;B.MyoD mRNA在PMSCs和IMSCs P12中的表达变化;C.MyHC mRNA在PMSCs和IMSCs P12中的表达变化 A. PAX7 mRNA expression in PMSCs and IMSCs P12; B.MyoD mRNA expression in PMSCs and IMSCs P12; C.MyHC mRNA expression in PMSCs and IMSCs P12 图 9 PMSCs和IMSCs P12诱导分化 Fig. 9 Induced differentiation of PMSCs and IMSCs P12
3 讨论

一般而言,原代细胞增殖传代到一定的代数后会停止分裂并伴有衰老、死亡[21]。原代细胞的分离过程比较复杂且不同批次的细胞会带来异质性,影响试验结果[22]。永生化细胞系因其可以提供均质的细胞材料、可重复的试验结果、避免了内源性污染的风险[23]并且具有更好的增殖特性等优势[24]。本研究成功培养了一种鸡骨骼肌卫星细胞系,其生长曲线与细胞周期结果显示增殖趋势与PMSCs保持一致,且IMSCs P12具有更高的增殖活性。

软琼脂试验是检测永生化细胞是否发生恶性转化的标准之一,正常的细胞在软琼脂中并不会生长,而肿瘤细胞可以在软琼脂中生长形成集落[25-27]。HEK293T细胞作为包装慢病毒载体常用的细胞系之一,比较适合作为软琼脂分析的的阳性对照[28]。血清依赖性分析是鉴定细胞是否发生恶性转化的另一标准,肿瘤细胞即使在低血清培养基中也会增殖[29]。SV40法构建的细胞系在低血清培养基中很难形成集落,增加血清浓度后,可见细胞增殖[30]。本研究中,IMSCs P12在软琼脂培养2周后,依旧为单独的细胞克隆,且随着血清浓度的升高,IMSCs P12的增殖能力在逐渐升高,可见IMSCs P12没有发生恶性转化。

干细胞具有多能分化潜能,可以通过外部因素诱导分化成其他细胞,这种能力使得干细胞的研究非常有价值[31-33]。在构建永生化细胞时,干细胞优先作为选择的对象之一[34]。已有许多研究表明,骨骼肌卫细胞可以向成肌、成脂等细胞分化,永生化细胞系的建立将为肌肉、脂肪分化相关调控过程提供体外细胞模型[35-39]。骨骼肌卫星细胞在未分化时主要表达PAX7基因,而MyoD、MyHC低表达;在分化过程中,PAX7的表达下调,MyoD、MyHC的表达上调[40-43]。本研究通过对IMSCs P12诱导分化,当IMSCs P12增殖到70%到诱导分化第1天这一段时期,PAX7基因表达下调,MyoDMyHC基因表达上调。基于这些结果,该细胞系具有与PMSCs相似的分化能力。

SV40-LT基因的转导可以使细胞越过复制衰老期,同时也保留许多原代细胞的分化特性[44-45]。有研究表明,转染SV40-LT可建立永生化细胞系[46],但由于宿主具有特异性,SV40-LT能否在鸡细胞中发挥作用还是未可知的[47]。在研究家禽骨骼肌功能方面,可供使用的细胞系相对有限[48-49]。本研究成功地建立了一种稳定传代至12代的鸡骨骼肌卫星细胞系,下一步将利用其来探究与骨骼肌发育和功能相关基因的表达和功能。但所建立的细胞系培养传代至后期细胞增殖较慢,并且在诱导分化2 d后,IMSCs P12中PAX7、MyoDMyHC基因的表达显著高于PMSCs。由此推断,SV40-LT基因并不适用于鸡骨骼肌卫星细胞永生化的建立。

4 结论

本研究通过慢病毒包装SV40-LT基因转染PMSCs得到连续传代、生长良好的鸡骨骼肌卫星细胞系,这为研究家禽骨骼肌相关的功能基因提供了新的细胞模型,也为家禽永生化细胞系的建立提供了研究依据。

参考文献
[1]
SHI H M, HE Y, LI X Z, et al. Regulation of non-coding RNA in the growth and development of skeletal muscle in domestic chickens[J]. Genes (Basel), 2022, 13(6): 1033. DOI:10.3390/genes13061033
[2]
MASSENET J, GARDNER E, CHAZAUD B, et al. Epigenetic regulation of satellite cell fate during skeletal musclere generation[J]. Skelet Muscle, 2021, 11(1): 4. DOI:10.1186/s13395-020-00259-w
[3]
邢敬亚, 芒来, 刘桂芹, 等. 组蛋白修饰调控骨骼肌再生过程中肌卫星细胞命运的研究进展[J]. 动物营养学报, 2022, 34(5): 2741-2751.
XING J Y, MANG L, LIU G Q, et al. Research progress of histone modification regulates fate of satellite cells during skeletal muscle regeneration[J]. Chinese Journal of Animal Nutrition, 2022, 34(5): 2741-2751. DOI:10.3969/j.issn.1006-267x.2022.05.003 (in Chinese)
[4]
SOUSA-VICTOR P, ARCÍA-PRAT L, MUÑOZ-CÁNOVES P. Control of satellite cell function in muscle regeneration and its disruption in ageing[J]. Nat Rev Mol Cell Biol, 2022, 23(3): 204-226. DOI:10.1038/s41580-021-00421-2
[5]
薛科, 王林杰, 陈利, 等. 高糖诱导山羊骨骼肌卫星细胞成脂分化过程中相关基因表达的变化[J]. 畜牧兽医学报, 2014, 45(5): 706-713.
XUE K, WANG L J, CHEN L, et al. Adipogenic-related gene expressions in goat skeletal muscle satellite cells treated with high concentration glucose[J]. Acta Veterinaria et Zootechnica Sinica, 2014, 45(5): 706-713. (in Chinese)
[6]
郑琪, 睢梦华, 凌英会. 骨骼肌卫星细胞增殖与成肌分化过程中关键信号通路的作用[J]. 畜牧兽医学报, 2017, 48(11): 2005-2014.
ZHENG Q, SUI M H, LING Y H. The role of key signaling pathways in the proliferation and differentiation of skeletal muscle satellite cells[J]. Acta Veterinaria et Zootechnica Sinica, 2017, 48(11): 2005-2014. DOI:10.11843/j.issn.0366-6964.2017.11.001 (in Chinese)
[7]
赵梦坡, 八晓敏, 罗胜军, 等. 端粒酶逆转录酶在建立永生化细胞中的应用[J]. 动物医学进展, 2023, 44(5): 102-107.
ZHAO M P, BA X M, LUO S J, et al. Application of telomerase reverse transcriptase in establishment of immortalized cells[J]. Progress in Veterinary Medicine, 2023, 44(5): 102-107. (in Chinese)
[8]
SONG Y, JOSHI N R, VEGTER E, et al. Establishment of an immortalized endometriotic stromal cell line from human ovarian endometrioma[J]. Reprod Sci, 2020, 27(11): 2082-2091. DOI:10.1007/s43032-020-00228-0
[9]
宋慧子, 栾兆进, 王兆琛, 等. 永生化绵羊附睾上皮细胞系的建立及其生物学特性分析[J]. 畜牧兽医学报, 2019, 50(9): 1822-1831.
SONG H Z, LUAN Z J, WANG Z C, et al. Establishment of sheep immortalized epididymal epithelial cell line and analysis of its biological characteristics[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50(9): 1822-1831. (in Chinese)
[10]
GUO D X, ZHANG L, WANG X T, et al. Establishment methods and research progress of livestock and poultry immortalized cell lines: a review[J]. Front Vet Sci, 2022, 9: 956357. DOI:10.3389/fvets.2022.956357
[11]
YETMING K D, LUPEY-GREEN L N, BIRYUKOV S, et al. The BHLF1 locus of Epstein-Barr virus contributes to viral latency and B-cell immortalization[J]. J Virol, 2020, 94(17): e01215-20.
[12]
YI W H, YANG D Z, XU Z, et al. Immortalization of mouse primary astrocytes[J]. Gene, 2023, 865: 147327. DOI:10.1016/j.gene.2023.147327
[13]
BIKKUL M U, FARAGHER R G A, WORTHINGTON G, et al. Telomere elongation through hTERT immortalization leads to chromosome repositioning in control cells and genomic instability in Hutchinson-Gilford progeria syndrome fibroblasts, expressing a novel SUN1 isoform[J]. Genes Chromosomes Cancer, 2019, 58(6): 341-356. DOI:10.1002/gcc.22711
[14]
SHANG D S, ZHOU T C, ZHUANG X Y, et al. Molecular dissection on inhibition of Ras-induced cellular senescence by small t antigen of SV40[J]. Cell Mol Life Sci, 2022, 79(5): 242. DOI:10.1007/s00018-022-04275-5
[15]
KAISER B, BÖTTNER M, WEDEL T, et al. Establishment and characterization of an SV40 large T antigen-transduced porcine colonic epithelial cell line[J]. Cells Tissues Organs, 2017, 203(5): 267-286. DOI:10.1159/000453394
[16]
CUI H X, GUO L P, ZHAO G P, et al. Method using a co-culture system with high-purity intramuscular preadi pocytes and satellite cells from chicken pectoralis major muscle[J]. Poult Sci, 2018, 97(10): 3691-3697. DOI:10.3382/ps/pey023
[17]
CHEN Y, HU S S, WANG M M, et al. Characterization and establishment of an immortalized rabbit melanocyte cell line using the SV40 large T antigen[J]. Int J Mol Sci, 2019, 20(19): 4874. DOI:10.3390/ijms20194874
[18]
ZHANG Z H, LIN S D, LUO W, et al. Sox6 differentially regulates inherited myogenic abilities and muscle fiber types of satellite cells derived from fast- and slow-type muscles[J]. Int J Mol Sci, 2022, 23(19): 11327. DOI:10.3390/ijms231911327
[19]
WANG W, ZHANG T M, WU C Y, et al. Immortalization of chicken preadipocytes by retroviral transduction of chicken TERT and TR[J]. PLoS One, 2017, 12(5): e0177348. DOI:10.1371/journal.pone.0177348
[20]
WEI Y H, TIAN Y T, LI X Y, et al. Circular RNA circFNDC3AL upregulates BCL9 expression to promote chicken skeletal muscle satellite cells proliferation and differentiation by binding to miR-204[J]. Front Cell Dev Biol, 2021, 9: 736749. DOI:10.3389/fcell.2021.736749
[21]
WANG J, YU X Y, ZHAO S R, et al. Construction of a peacock immortalized fibroblast cell line for avian virus production[J]. Poult Sci, 2022, 101(12): 102147. DOI:10.1016/j.psj.2022.102147
[22]
SHITTU I, ZHU Z Y, LU Y Q, et al. Development, characterization and optimization of a new suspension chicken-induced pluripotent cell line for the production of Newcastle disease vaccine[J]. Biologicals, 2016, 44(1): 24-32. DOI:10.1016/j.biologicals.2015.09.002
[23]
SERIDI N, HAMIDOUCHE M, BELMESSABIH N, et al. Immortalization of primary sheep embryo kidney cells[J]. In Vitro Cell Dev Biol Anim, 2021, 57(1): 76-85. DOI:10.1007/s11626-020-00520-y
[24]
KONG B W, LEE J Y, BOTTJE W G, et al. Genome-wide differential gene expression in immortalized DF-1 chicken embryo fibroblast cell line[J]. BMC Genomics, 2011, 12: 571. DOI:10.1186/1471-2164-12-571
[25]
ŠRAJER GAJDOŠIK M, HIXSON D C, BRILLIANT K E, et al. Soft agar-based selection of spontaneously transformed rat prostate epithelial cells with highly tumorigenic characteristics[J]. Exp Mol Pathol, 2018, 105(1): 89-97. DOI:10.1016/j.yexmp.2018.05.014
[26]
LAU H Y, TANG J, CASEY P J, et al. Evaluating the epithelial-mesenchymal program in human breast epithelial cells cultured in soft agar using a novel macromolecule extraction protocol[J]. Cancers (Basel), 2021, 13(4): 807. DOI:10.3390/cancers13040807
[27]
赵娟, 徐斯日古楞, 李慧萍, 等. 绵羊肺腺瘤病毒囊膜蛋白引起绵羊绒毛膜滋养层细胞的恶性转化[J]. 畜牧兽医学报, 2018, 49(5): 1089-1095.
ZHAO J, XU S R G L, LI H P, et al. Malignant transformation of sheep trophoblast cells induced by envelope protein of jaagsiekte sheep retrovirus[J]. Acta Veterinaria et Zootechnica Sinica, 2018, 49(5): 1089-1095. (in Chinese)
[28]
TANG Q L, GU L X, XU Y, et al. Establishing functional lentiviral vector production in a stirred bioreactor for CAR-T cell therapy[J]. Bioengineered, 2021, 12(1): 2095-2105. DOI:10.1080/21655979.2021.1931644
[29]
BAULER M, ROBERTS J K, WU C C, et al. Production of lentiviral vectors using suspension cells grown in serum-free media[J]. Mol Ther Methods Clin Dev, 2019, 17: 58-68.
[30]
DAYA-GROSJEAN L, AZZARONE B, MAUNOURY R, et al. SV40 immortalization of adult human mesenchymal cells from neuroretina.Biological, functional and molecular characterization[J]. Int J Cancer, 1984, 33(3): 319-329. DOI:10.1002/ijc.2910330308
[31]
ROSSELLÓ R A, CHEN C C, DAI R, et al. Mammalian genes induce partially reprogrammed pluripotent stem cells in non-mammalian vertebrate and invertebrate species[J]. eLife, 2013, 2: e00036. DOI:10.7554/eLife.00036
[32]
曾明, 绳小艳, 叶孝颖, 等. 小鼠胚胎干细胞系的建立及向雌性生殖细胞诱导的研究[J]. 南开大学学报: 自然科学版, 2018, 51(1): 1-7.
ZENG M, SHENG X Y, YE X Y, et al. Induction of germ cells and meiosis from female ESCs[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2018, 51(1): 1-7. (in Chinese)
[33]
刘宗正, 肖娜, 杨培培, 等. 崂山奶山羊脂肪间充质干细胞系的建立及鉴定[J]. 畜牧与饲料科学, 2018, 39(12): 1-5.
LIU Z Z, XIAO N, YANG P P, et al. Establishment and identification of adipose mesenchymal stem cell lines of Laoshan dairy goat[J]. Animal Husbandry and Feed Science, 2018, 39(12): 1-5. DOI:10.12160/j.issn.1672-5190.2018.12.001 (in Chinese)
[34]
PARK Y, HOSOMICHI J, GE C, et al. Immortalization and characterization of mouse temporomandibular joint disc cell clones with capacity for multi-lineage differentiation[J]. Osteoarthritis Cartilage, 2015, 23(9): 1532-1542. DOI:10.1016/j.joca.2015.04.006
[35]
RYU M, KIM M, JUNG H Y, et al. Effect of p38 inhibitor on the proliferation of chicken muscle stem cells and differentiation into muscle and fat[J]. Anim Biosci, 2023, 36(2): 295-306. DOI:10.5713/ab.22.0171
[36]
VELLEMAN S G, COY C S, ABASHT B. Effect of expression of PPARG, DNM2L, RRAD, and LINGO1 on broiler chicken breast muscle satellite cell function[J]. Comp Biochem Physiol A Mol Integr Physiol, 2022, 268: 111186. DOI:10.1016/j.cbpa.2022.111186
[37]
戴巍, 宋瑞龙, 张远浩, 等. 鸡骨骼肌卫星细胞的分离培养与鉴定[J]. 畜牧兽医学报, 2021, 52(3): 676-682.
DAI W, SONG R L, ZHANG Y H, et al. Isolation, culture, and identification of muscle satellite cells of chicken[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(3): 676-682. (in Chinese)
[38]
赵新艳, 郭妍婷, 陈俊贞, 等. 牛骨骼肌卫星细胞的分离鉴定和诱导分化[J]. 中国畜牧兽医, 2020, 47(10): 3249-3258.
ZHAO X Y, GUO Y T, CHEN J Z, et al. Isolation, identification and differentiation of bovine skeletal muscle satellite cells[J]. China Animal Husbandry & Veterinary Medicine, 2020, 47(10): 3249-3258. (in Chinese)
[39]
何波, 郑嵘, 熊远著, 等. 新生猪骨骼肌卫星细胞的培养鉴定及生物学特性[J]. 畜牧兽医学报, 2006, 37(6): 555-559.
HE B, ZHENG R, XIONG Y Z, et al. Culture, identification and biological characteristics of skeletal muscle satellite cells of the neonatal pig[J]. Acta Veterinaria et Zootechnica Sinica, 2006, 37(6): 555-559. DOI:10.3321/j.issn:0366-6964.2006.06.006 (in Chinese)
[40]
RELAIX F, BENCZE M, BOROK M J, et al. Perspectives on skeletal muscle stem cells[J]. Nat Commun, 2021, 12(1): 692. DOI:10.1038/s41467-020-20760-6
[41]
ZAMMIT P S, GOLDING J P, NAGATA Y, et al. Muscle satellite cells adopt divergent fates: a mechanism for self-renewal?[J]. J Cell Biol, 2004, 166(3): 347-357. DOI:10.1083/jcb.200312007
[42]
陈岩, 王琨, 朱大海. 鸡骨骼肌卫星细胞的分离培养、鉴定及生物学特性研究[J]. 遗传, 2006, 28(3): 257-260.
CHEN Y, WANG K, ZHU D H. Isolation, culture, identification and biological characteristics of Chicken skeletal muscle satellite cells[J]. Hereditas (Beijing), 2006, 28(3): 257-260. (in Chinese)
[43]
林正浩, 王讯, 李晓开, 等. 鸽骨骼肌卫星细胞的分离、培养及成肌特性[J]. 华南农业大学学报, 2019, 40(1): 53-58.
LIN Z H, WANG X, LI X K, et al. Isolation, identification and biological characteristics of Skeletal muscle satellite cells in pigeons[J]. Journal of South China Agricultural University, 2019, 40(1): 53-58. (in Chinese)
[44]
李文雅, 牛欣然, 任团辉, 等. 鸡骨骼肌中天然反义lncRNA VGLL2-AS的鉴定及其与VGLL2的关系研究[J]. 畜牧兽医学报, 2023, 54(1): 122-132.
LI W Y, NIU X R, REN T H, et al. Identification of natural antisense lncRNA VGLL2-AS in chicken skeletal muscle and its relationship with VGLL2[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1): 122-132. (in Chinese)
[45]
SANZ-SERRANO D, SÁNCHEZ-DE-DIEGO C, MERCADE M, et al. Dental Stem Cells SV40, a new cell line developed in vitro from human stem cells of the apical papilla[J]. Int Endod J, 2023, 56(4): 502-513. DOI:10.1111/iej.13887
[46]
SONG Y, ZHENG J. Establishment of a functional ovine fetoplacental artery endothelial cell line with a prolonged life span[J]. Biol Reprod, 2007, 76(1): 29-35. DOI:10.1095/biolreprod.106.055921
[47]
王宁, 于莹莹, 王珊珊, 等. 人乳头瘤病毒16型E6和E7癌基因对鸡前脂肪细胞增殖的影响[J]. 东北农业大学学报, 2015, 46(2): 47-52.
WANG N, YU Y Y, WANG S S, et al. Effect of HPV-16 E6 and E7 oncogenes on chicken preadipocyte proliferation[J]. Journal of Northeast Agricultural University, 2015, 46(2): 47-52. (in Chinese)
[48]
ZHAO J, ZHAO X Y, SHEN X X, et al. CircCCDC91 regulates chicken skeletal muscle development by sponging m iR-15 family via activating IGF1-PI3K/AKT signaling pathway[J]. Poult Sci, 2022, 101(5): 101803.
[49]
YIN H D, HE H R, SHEN X X, et al. miR-9-5p inhibits skeletal muscle satellite cell proliferation and Dif ferentiation by targeting IGF2BP3 through the IGF2-PI3K/akt signaling pathway[J]. Int J Mol Sci, 2020, 21(5): 1655.

(编辑   郭云雁)