2. 北京农学院动物科学技术学院, 北京 102206
2. School of Animal Science and Technology, Beijing Agricultural College, Beijing, Changping 102206, China
目前, 由细菌引起的猪传染性疾病是我国养猪业面临的巨大挑战。其中,猪链球菌(Streptococcus suis,S. suis)感染会引起猪败血症、淋巴结脓肿、关节炎等症状,此外,S. suis还是一种常见的人畜共患性细菌,感染S. suis的人会患肺炎、脑膜炎以及败血症,严重者并发心内膜炎、纤维炎、预后听力受损等[1-3]。1951年荷兰学者首次报道了S. suis,从那时起S. suis感染的报道逐渐常见于养猪企业以及规模化猪场。最初人们根据S. suis细胞壁荚膜多糖(capsular polysaccharide, CPS) 对其进行血清型分型[4],至1987年,S. suis被划分为一个新菌种且已发现10种血清型[5];1998年,16S RNA方法被当作S. suis血清分型的主要方法[6],随后血清型20型、22型、26型、32型和34型因遗传学差异而从S. suis中独立出来[7],迄今为止S. suis已有超过390菌种[8]。
我国规模化猪场中普遍存在S. suis感染情况,目前多采用抗菌药物以及疫苗相结合的方式来进行治疗。但是随着亚致死剂量抗菌药物的不合理使用,对四环素类、大环内酯类、氨基糖苷类等药物耐受的S. suis也逐渐开始流行[9-10];S. suis在抗菌药物存在的情况下会入侵宿主细胞内部,从而直接导致抗菌药物治疗失效,加重其感染与传播风险。目前针对耐药性S. suis的研究尚不透彻,新兴的抗菌药物仍在研发阶段,因此本文旨在归纳总结目前耐药性S. suis的流行情况和新兴的S. suis抗菌药物研究进展,以期对耐药性S. suis的流行进行监测,对下一代抗菌药物的研发提供新思路。
1 猪链球菌病流行情况分析S. suis在全球规模化猪场中普遍流行。根据近年的数据报道显示,印度[11]、泰国[12]、印度尼西亚[13]、中国[14]、韩国[15]等亚洲国家均有报道S. suis流行,且检出率在20%~50%甚至更高;欧洲各国家猪场中也有报道S. suis流行的情况,瑞典[16]、捷克[17-18]、西班牙[19]等国家猪场中均检出S. suis且部分国家感染率超过90%;美洲国家中,加拿大[20]和美国[21-22]一直以来均有S. suis感染报道(表 1),但是南美地区则仅有巴西报道过S. suis的流行情况[23],这说明猪链球菌感染普遍存在于世界各地,但是各个地区的血清流行性并不相同,这与不同地区养殖场的种类、管理以及生物种类都有很大的关系。
![]() |
表 1 全球部分地区报道的规模化猪场中S. suis感染情况 Table 1 The infection of S. suis in the world |
我国各地均有感染S. suis的报道,其中东部地区感染率最高,但是我国的普遍流行的菌株类型均为血清2型[14, 24-32](表 1)。这说明同一国家中流行的菌株类型相似,同一国家之间的猪产品运输以及用药习惯都使得流行性菌株的种类更为相似。
自1998年和2005年我国江苏、四川两省分别暴发了集中性的人感染S. suis的病例以来,我国各地均有散发的人感染S. suis的报道:2007—2018年仍有报道广西感染S. suis的患者[33],在我国的山东省[34-35]、江苏省[36-38]、浙江省[39]、上海市[40]、河北省[41]、广西省[31, 42-43]、贵州省[44]均有零星感染S. suis的病例出现,这些病例的共同特点是患病人员均在接触生猪时有伤口接触或是接触生猪后免疫力下降的情况。医院则均采用抗菌药物对患者进行治疗,但是也有患者对于抗菌药物不敏感的报道,这很可能是患者感染了耐药性S. suis所致,所以对耐药性S. suis进行调查研究不仅可以控制养殖场中耐药菌株的流行情况,还可以保障人用抗菌药物的有效性。
2 猪链球菌耐药现状及耐药机制分析 2.1 耐药性猪链球菌全球流行情况耐药性S. suis的流行发生在世界各地[45],
2010—2019年, 西班牙的加泰罗尼亚地区S. suis均对3代头孢菌素、万古霉素和利福平敏感,对青霉素和氟喹诺酮类药物敏感率分别为88.9%和71.4%,并且大多数菌株对红霉素和克林霉素耐药[46];2016—2020年, 奥地利猪群的553份猪呼吸道上皮的样品显示S. suis阳性,并且对四环素(66%)、克林霉素(62%)和红霉素(58%)耐药(图 1A)[47];2011—2018年, 澳大利亚对当地规模化猪场S. suis病原分离物检测发现,菌株普遍存在四环素和红霉素耐药[48];瑞典在2020年对当地规模化猪场病原分离物检测发现,多数S. suis对四环素耐药,少部分菌株对恩诺沙星呈耐药性[49](表 2)。S. suis耐药性的产生同不规范使用抗生素有关,丹麦地区首次分离出耐药性S. suis的时间在其批准畜牧业使用抗生素之后[45],巴西[50]、泰国[51]、中国[14]等地区耐药性S. suis的出现也同其使用抗生素作为促生长剂有关。通过对于来自不同国家的耐药性S. suis分析发现,其同源性可以追溯到1830年,且很可能首先出现在西欧地区[52]。
![]() |
A. 2016—2020年间奥地利猪场的553份样品中各耐药性S. suis比例; B. 2013—2017年间中国16个养猪省份猪场病原分离物中耐药性S. suis耐药种类以及比例; C. 2011—2019年间中国20个省份中分离到的耐药性S. suis耐药种类以及比例; D. 检出S. suis耐药性以及相关耐药基因的菌株遗传进化时间轴[41, 57] A. Proportion of each resistant S. suis in 553 samples from Austrian pig farms during 2016-2020; B. Proportion of resistant S. suis in pathogenic isolates from pig farms in 16 pig provinces in China during 2013-2017; C. Proportion of resistant S. suis isolated from 20 provinces in China during 2011-2019[41, 57] 图 1 规模化猪场S. suis耐药性现状以及耐药基因进化轴 Fig. 1 Resistance of S. suis's pathogenic isolates from large-scale pig farms |
![]() |
表 2 耐药性S. suis的种类情况 Table 2 Type of tolerance S. suis |
我国规模化猪场中普遍存在S. suis耐药情况。从我国16个主要养猪省采集的样品中分离出19 673个感染S. suis的病原分离物,这些病料均对8种常用抗生素(β-内酰胺类、氨基糖苷类、大环内酯类、林可霉素类、四环素类、喹诺酮类、多黏菌素类和磺胺类)表现出非常高的抗生素耐药率(图 1B)[53]。江西猪场的猪鼻拭子样本显示S. suis的阳性分离率为34.08%,80%以上的分离样本对万古霉素、青霉素、米诺环素和氯霉素敏感[54]。黑龙江猪场中的采集样品则对红霉素、四环素、氯霉素等抗生素耐药率高达80%以上[55]。
近年来多数研究表明,S. suis的耐药性同其耐药基因有关[58],2011—2019年,中国的20个省中收集到的436个S. suis分离物中发现了介导大环内酯类耐药的erm(B)基因和介导四环素类耐药的tet(O)抗性基因(图 1C)[14];2016—2018年, 从中国6个省份猪场的鼻腔样本中分离出的S. suis染色体上和质粒上有对噁唑烷酮类和酚类抗生素抗性的optrA基因[59];2022年, 我国广东地区规模化猪场中收集到的150个分离菌株中四环素耐药基因tet(M)的检测率最高,其次是四环素介导的tet(O)基因[60],34株S. suis对四环素的耐药率高达100%,其次为米诺环素82.4%、多西环素47.1%,其中3重耐药菌株占比44.1%、2重耐药菌株占比41.1%。tet(A)、tet(C)、tet(D)、tet(M)、tet(O)和tet(X)等耐药基因均有检出[61]。通过对从我国分离的366株临床S. suis进行人类相关进化枝分析发现,中国特有的ST7型猪链球菌含有许多抗生素抗性基因,包括tet(O)、mef(A)、erm(B)、msr(D)和aph(3’)-Ⅲ等,这些抗生素抗性基因也显示出很强的可移动遗传元件相关性,说明这些基因可以在不同菌株之间传播[52]。表 3中归纳了6个国家耐药菌株的发生发展和携带的耐药基因情况。
![]() |
表 3 6国耐药性S. suis的发生发展 Table 3 Development of drug-resistant S. suis in six countries |
S. suis中获得耐药性菌株的耐药基因如erm(B)和tet(O)在质粒或转座子介导下传播[65]。在猪感染S. suis的过程中,菌株借助生物被膜(bacterial biofilm,BF)定殖于呼吸道上皮细胞分泌的黏液层[57],穿透黏液层后,黏附素(adhesin)协助S. suis黏附到呼吸道上皮细胞和细胞外基质中[66],随后S. suis会侵入宿主上皮细胞,进入宿主血液流经全身并引起宿主败血症[67],或是穿过血脑屏障进入中枢系统进而引起脑膜炎[68-69];在S. suis感染宿主的过程中,耐药机制使菌株带有耐药性,例如其主动外排、钝化酶的产生以及药物作用靶点改变等方式(图 1B、C)。
在S. suis相关疾病暴发初期,水平传播是其主要传染方式。目前,研究人员普遍认为S. suis感染人的方式为开放性伤口的接触以及误食生猪肉[70];我国作为生猪养殖大国,仍有大量潜在S. suis感染的高危人群,更需要加强对S. suis感染的监测。
3 耐药性猪链球菌病的防治措施 3.1 精确检测防控耐药菌株传播我国规模化猪场在诊断S. suis时多采用生化试验、凝集试验、免疫印迹试验、多重PCR等快速检测方法。我国对于S. suis快速检测技术的研究已较为成熟,这可以更准确地帮助兽医进行临床诊断[71-79](表 4)。通过这些精准检测方式,可以在第一时间得知病原体的基因水平信息,有助于人们对病原体分类甄别。对于耐药性猪链球菌,也可以采用耐药基因作为靶点基因进行检测,这对了解和控制耐药性猪链球菌的传播有很大作用。
![]() |
表 4 S. suis的快速检测方法 Table 4 The rapid detection methods of S. suis |
我国目前已研制出多种用于预防S. suis的灭活苗。新型疫苗例如针对S. suis的免疫性膜相关蛋白的重组亚单位疫苗[80]、基因缺失疫苗[81]等都具有很强的抗原特异性(表 5)。
![]() |
表 5 我国应用的S. suis疫苗* Table 5 The vaccine application of S. suis in China |
除过传统的疫苗接种方式,也有研究发现茶多酚(green tea polyphenols, GTP)可以影响S. suis的重要代谢途径,例如嘧啶代谢、蛋白质消化和吸收[82];双黄酮类化合物可以降低S. suis毒力因子(virulence factor, SLY)的活性、减少了炎症因子的产生和细胞自噬[83]。穿心莲内酯亚抑菌浓度的干预可抑制S. suis生物被膜的形成,并且可致毒力基因表达水平差异[84]。这些新兴的中药治疗方法为预防和控制耐药性S. suis的感染提供了新的见解。
![]() |
S. suis体外传播时主要通过带病猪经口传播,但也会以气溶胶的形态在空气中生存[42],多数集中在母猪以及保育仔猪阶段[43]。S. suis在感染人的过程中主要通过伤口暴露传播:大多数感染人员有生猪接触[44],但是也存在没有接触史的S. suis感染患者[57] When S. suis is transmitted in vitro, it is mainly transmitted orally through sick pigs, but it can also survive in the air in the form of aerosols[42], most of these are concentrated in sows and nursery piglets[43]. S. suis is mainly transmitted through wound exposure in the process of infecting people: most infected people have contact with pigs[44], but there are also S. suis infected patients without a history of contact[57] 图 2 S. suis耐药机制以及感染过程示意图 Fig. 2 The process of S. suis's insistence and infection |
抗菌药物一直被认为是治疗细菌感染的特效药,然而抗菌药物的亚致死剂量使用会促使S. suis的耐药性发生。目前开发出高效的新型抗菌药物仍然是治疗耐药性S. suis感染的最有效策略。
一方面,可以采用联合用药、穿梭用药等经典手段来抑制耐药性的进一步发展,例如常规抗菌剂(anti-microbiology bacterial, AMB)与精油(essential oil, EO)的组合比单独使用AMBs对抑制S. suis效果更佳[85-86];利用体外杀伤曲线和体内处理试验联合得出氨苄青霉素+安普霉素和替莫林+大观霉素的联合治疗方案对S. suis有较单一抗生素使用更为有效的治疗效果[87-89];我国传统的中药有效成分例如黄酮类化合物黄酮类化合物在抗细菌共感染方面具有明显效果[90],实验室前期研究成果已经显示黄酮类中药具有良好的抗S. suis溶血素作用[91],该类中药主要通过抑制溶血素基因编码、基因转录等途径抑制其活性[92],这也为今后中药治疗S. suis感染提供参考。
另一方面,虽然抗菌药物一直以来被认为是细菌感染的特效药,但是随着抗菌药物的不合理和大规模使用,抗菌药物的耐药性大大提高。受到宿主因素影响的细菌药物耐受行为直接导致抗菌药物治疗策略失效[93]。S. suis作为革兰阳性菌可以侵入宿主的上皮细胞并在其中存活,这使得S. suis对多种抗生素均有耐受性产生[85]。通过依从S. suis的主要毒力因子例如自溶素(autolysins, Atl)、猪溶血素(suilysin, SLY)介导的侵入方式[87, 90],研发靶向细菌毒力因子的抗菌药物,降低细菌黏附、避免病原菌入侵细胞[94];S. suis的中和性抗体也可以作为阻断细菌入侵的候选因子;通过设计作用于宿主的抗菌化合物(host-acting antibacterial compounds, HACs)也可以用于抗S. suis[95]:模拟甘露糖受体C型1型(mannose receptor C-1, MRC-1)的多肽作用于肺炎链球菌的溶血素可以抑制链球菌内化[96];砷酸盐、异霉素和过氧化氢等可以通过重塑宿主膜来调节酸性鞘蛋白酶,从而减少细菌黏附[93];25-羟基胆固醇通过靶向膜重塑,来改变膜的胆固醇从而减少细菌内化[97]。总之,阻断病原体的黏附或内化是开发新HACs和消除细菌感染的一种高效策略[86, 88, 95, 98]。
4 小结与展望S. suis作为规模化猪场中常见的细菌,其菌株血清型类型众多,在感染中常出现不同血清型混合感染的情况[83];近年来随着饲养过程中大量不规范使用抗生素,使得S. suis耐药性也逐年增加,多数规模化猪场中分离的S. suis菌株对于四环素类、大环内酯类、氨基糖苷类抗生素耐药性已达80%以上,所以进行S. suis耐药性分析是目前防控的重中之重。
S. suis自1951年初次报道后,在全球范围内广泛流行,菌株也在不断发生基因重组、基因整合等过程,这些都会对菌株的耐药性以及感染能力等带来改变:我国猪场中一直以来广泛流行2型S. suis菌株,7型S. suis菌株虽然同2型的毒力基因差异较大,但是其实际的毒力不容小觑,且其中不乏新兴的耐药基因出现[88],这对防控耐药性猪链球菌提出了新的挑战,因此在防控过程中,归纳分析菌株之间的耐药基因差异十分重要。
S. suis感染宿主过程中的机制蛋白在协助其免疫逃避中发挥着重要作用,影响着宿主的免疫能力:蛋白质内肽酶O(S.suis protein endopeptidase O, SsPepO)是新型纤连蛋白结合蛋白,它可以协助S. suis逃避宿主免疫[99];胞壁质酶释放蛋白(muramidase-released protein, MRP)是新型纤维蛋白原结合蛋白,它可增强S. suis在宿主血液中的存活率,从而使得其脑膜炎加重[100];细胞外基质(extracellular matrix, ECM)蛋白作为S. suis和宿主之间连接的桥梁,已经被证明可以同S. suis相互作用、促进机体感染菌株[101]。所以,在预防S. suis感染的过程中,要注意猪场的环境卫生、通风情况,这些都会对猪群的免疫能力造成影响。
除了宿主免疫能力方面,按时对猪群进行免疫接种从而预防S. suis感染的方式在我国已经发展较为成熟:研究人员在疫苗开发过程中采用ECM蛋白、与宿主体内纤维蛋白或浆膜蛋白相互作用的S. suis蛋白作为潜在目标蛋白制备亚单位疫苗来进行防控,根据此设计靶向中和SsPepO蛋白的治疗S. suis方法、制备亚单位疫苗已经被证实具有可行性[102]。
目前为止,广泛应用广谱类抗生素的治疗方法在不合理用药情况下易引发耐药性S. suis的大流行[98, 100],新兴的抗菌药物研发迫在眉睫,研发通过靶向针对S. suis毒力因子[91-92]、中和性抗体和宿主作用的抗菌药物来阻断S. suis的黏附和入侵[93-95, 97]都是可行的方法。本文通过总结国内外已报道的部分规模化猪场的S. suis感染情况以及菌株的耐药性情况, 一方面,定期对猪场病原分离物进行血清型鉴定和流行病学调查能及时了解S. suis的流行情况和基因组变化,有助于预防S. suis相关疾病;另一方面对S. suis病原分离物进行耐药性分析可以对规模化猪场中的用药情况、药品使用情况有一定的了解,进而指导兽医临床用药,来控制耐药性菌株的进一步发展,同时也能为抗菌化合物的研发提供一定的参考。
[1] |
WERTHEIM H F L, NGHIA H D T, TAYLOR W, et al. Streptococcus suis: an emerging human pathogen[J]. Clin Infect Dis, 2009, 48(5): 617-625. DOI:10.1086/596763 |
[2] |
HUANG Y T, TENG L J, HO S W, et al. Streptococcus suis infection[J]. J Microbiol Immunol Infect, 2005, 38(5): 306-313. |
[3] |
WALSH B, WILLIAMS A E, SATSANGI J. Streptococcus suis type 2: pathogenesis and clinical disease[J]. Rev Med Microbiol, 1992, 3: 65-71. |
[4] |
DE MOOR C E. Septicaemic infections in pigs, caused by haemolytic streptococci of new Lancefield groups designated R, S, and T[J]. Antonie Van Leeuwenhoek, 1963, 29: 272-280. DOI:10.1007/BF02046069 |
[5] |
KILPPER-BÄLZ R, SCHLEIFER K H. Streptococcus suis sp. nov., nom. rev[J]. Int J Syst Evol Microbiol, 1987, 37(2): 160-162. |
[6] |
CHATELLIER S, HAREL J, ZHANG Y, et al. Phylogenetic diversity of Streptococcus suis strains of various serotypes as revealed by 16S rRNA gene sequence comparison[J]. Int J Syst Bacteriol, 1998, 48(2): 581-589. DOI:10.1099/00207713-48-2-581 |
[7] |
OKURA M, OSAKI M, NOMOTO R, et al. Current taxonomical situation of Streptococcus suis[J]. Pathogens, 2016, 5(3): 45. DOI:10.3390/pathogens5030045 |
[8] |
HU Y, FU S M, ZOU G, et al. Genome analysis provides insight into hyper-virulence of Streptococcus suis LSM178, a human strain with a novel sequence type 1005[J]. Sci Rep, 2021, 11(1): 23919. DOI:10.1038/s41598-021-03370-0 |
[9] |
马婷婷, 朱远致, 闭璟珊, 等. 广西部分地区猪群中猪链球菌的分离鉴定及耐药性研究[J]. 畜牧与兽医, 2023, 55(2): 103-109. MA T T, ZHU Y Z, ZHOU J S, et al. Isolation, identification and drug resistance of Streptococcus suis from pigs in some parts of the Guangxi area[J]. Animal Husbandry & Veterinary Medicine, 2023, 55(2): 103-109. (in Chinese) |
[10] |
CUONG N V, PADUNGTOD P, THWAITES G, et al. Antimicrobial usage in animal production: a review of the literature with a focus on low- and middle-income countries[J]. Antibiotics (Basel), 2018, 7(3): 75. DOI:10.3390/antibiotics7030075 |
[11] |
RAJKHOWA S, RAJESH J B. Virulence associated gene profiling and antimicrobial resistance pattern of Streptococcus suis isolated from clinically healthy pigs from north east India[J]. Lett Appl Microbiol, 2021, 73(3): 392-397. DOI:10.1111/lam.13531 |
[12] |
KERDSIN A, TAKEUCHI D, NUANGMEK A, et al. Genotypic comparison between Streptococcus suis isolated from pigs and humans in Thailand[J]. Pathogens, 2020, 9(1): 50. DOI:10.3390/pathogens9010050 |
[13] |
BESUNG I N K, SUARJANA I G K, AGUSTINA K K, et al. Isolation and identification of Streptococcus suis from sick pigs in Bali, Indonesia[J]. BMC Res Notes, 2019, 12(1): 795. DOI:10.1186/s13104-019-4826-7 |
[14] |
MA L C, ZHANG W J, MA J Y, et al. Genomic Insight into the antimicrobial resistance of Streptococcus Suis-six countries, 2011-2019[J]. China CDC Wkly, 2021, 3(47): 994-998. DOI:10.46234/ccdcw2021.242 |
[15] |
CHEONG Y, OH C, LEE K, et al. Survey of porcine respiratory disease complex-associated pathogens among commercial pig farms in Korea via oral fluid method[J]. J Vet Sci, 2017, 18(3): 283-289. DOI:10.4142/jvs.2017.18.3.283 |
[16] |
SCHERRER S, ROSATO G, SPOERRY SERRANO N, et al. Population structure, genetic diversity and pathotypes of Streptococcus suis isolated during the last 13 years from diseased pigs in Switzerland[J]. Vet Res, 2020, 51(1): 85. DOI:10.1186/s13567-020-00813-w |
[17] |
ZOUHAROVÁ M, ŠIMEK B, GEBAUER J, et al. Characterisation of Streptococcus suis isolates in the Czech Republic collected from diseased pigs in the years 2018-2022[J]. Pathogens, 2022, 12(1): 5. DOI:10.3390/pathogens12010005 |
[18] |
NEDBALCOVA K, KUCHAROVICOVA I, ZOUHAROVA M, et al. Resistance of Streptococcus suis isolates from the Czech Republic during 2018-2022[J]. Antibiotics (Basel), 2022, 11(9): 1214. DOI:10.3390/antibiotics11091214 |
[19] |
LIANG P J, WANG M L, GOTTSCHALK M, et al. Genomic and pathogenic investigations of Streptococcus suis serotype 7 population derived from a human patient and pigs[J]. Emerg Microbes Infect, 2021, 10(1): 1960-1974. DOI:10.1080/22221751.2021.1988725 |
[20] |
LACOUTURE S, OLIVERA Y R, MARIELA S, et al. Distribution and characterization of Streptococcus suis serotypes isolated from January 2015 to June 2020 from diseased pigs in Québec, Canada[J]. Can J Vet Res, 2022, 86(1): 78-82. |
[21] |
NICHOLSON T L, SHORE S M. Genome sequences of Streptococcus suis isolates obtained from pigs in the United States between 2015 and 2017[J]. Microbiol Resour Announc, 2022, 11(8): e0106721. DOI:10.1128/mra.01067-21 |
[22] |
ESTRADA A A, GOTTSCHALK M, ROSSOW S, et al. Serotype and genotype (Multilocus Sequence Type) of Streptococcus suis isolates from the United States serve as predictors of pathotype[J]. J Clin Microbiol, 2019, 57(9): e00377-19. |
[23] |
MATAJIRA C E C, MORENO L Z, POOR A P, et al. Streptococcus suis in Brazil: genotypic, virulence, and resistance profiling of strains isolated from pigs between 2001 and 2016[J]. Pathogens, 2019, 9(1): 31. DOI:10.3390/pathogens9010031 |
[24] |
赵战勤, 王松华, 王臣, 等. 2011年~2015年河南省及其周边省份猪源链球菌流行病学调查[J]. 中国预防兽医学报, 2017, 39(10): 845-847. ZHAO Z Q, WANG S H, WANG C, et al. Epidemiological investigation of Streptococcus suis in pigs from Henan region during 2011-2015[J]. Chinese Journal of Preventive Veterinary Medicine, 2017, 39(10): 845-847. (in Chinese) |
[25] |
谭美芳, 谭佳, 曾艳兵, 等. 江西省5个规模化猪场健康猪群中猪链球菌的流行病学调查及耐药性研究[J]. 江西农业大学学报, 2020, 42(4): 728-735. TAN M F, TAN J, ZENG Y B, et al. Epidemiological investigation and drug resistance analysis of Streptococcus suis in clinically healthy pigs from five large-scale pig farms in Jiangxi Province[J]. Acta Agriculturae Universitatis Jiangxiensis, 2020, 42(4): 728-735. (in Chinese) |
[26] |
刘琪, 王娟, 周如月, 等. 广东地区健康猪群和发病猪群猪链球菌流行病学调查分析[J]. 中国畜牧兽医, 2017, 44(6): 1825-1831. LIU Q, WANG J, ZHOU R Y, et al. The Streptococcus suis epidemiological analysis of healthy and infected swine in Guangdong Province[J]. China Animal Husbandry & Veterinary Medicine, 2017, 44(6): 1825-1831. (in Chinese) |
[27] |
贺亚楠. 江苏部分地区2016年健康猪群猪链球菌流行病学调查[D]. 南京: 南京农业大学, 2017. HE Y N. The epidemiological investigation of Streptococcus suis in healthy pigs in Jiangsu Province in 2016[D]. Nanjing: Nanjing Agricultural University, 2017. (in Chinese) |
[28] |
都玉, 刘召颖, 彭泽仁, 等. 重庆屠宰场猪链球菌感染的调查[J]. 畜牧与兽医, 2022, 54(6): 58-65. DU Y, LIU Z Y, PENG Z R, et al. Investigation on Streptococcus suis infection in some slaughterhouses of Chongqing[J]. Animal Husbandry & Veterinary Medicine, 2022, 54(6): 58-65. (in Chinese) |
[29] |
徐魁, 王巍, 文心田, 等. 四川主要养猪地区猪2型链球菌血清流行病学调查[J]. 中国预防兽医学报, 2017, 39(5): 370-373. XU K, WANG W, WEN X T, et al. Epidemiological investigation of swine Streptococcus suis type 2 in Sichuan region[J]. Chinese Journal of Preventive Veterinary Medicine, 2017, 39(5): 370-373. (in Chinese) |
[30] |
刘耀川, 高锋, 郭首龙, 等. 2016-2018年辽宁部分地区猪场猪链球菌2型流行病学及大环内酯类耐药基因携带情况调查[J]. 中国兽医杂志, 2020, 56(5): 1-4, 10. LIU Y C, GAO F, GUO S L, et al. The investigation of epidemiology and macrolide resistance genes carrying condition of Streptococcus suis type 2 in Liaoning area from 2016 to 2018[J]. Chinese Journal of Veterinary Medicine, 2020, 56(5): 1-4, 10. (in Chinese) |
[31] |
马婷婷. 2017年广西部分地区猪链球菌2、7、9型流行病学调查[D]. 南宁: 广西大学, 2018. MA T T. Epidemiological survey of streptococcus suis serotype 2, 7, 9 in parts of Guangxi in 2017[D]. Nanning: Guangxi University, 2018. (in Chinese) |
[32] |
ZHU H D, CHANG X J, ZHOU J Z, et al. Co-infection analysis of bacterial and viral respiratory pathogens from clinically healthy swine in Eastern China[J]. Vet Med Sci, 2021, 7(5): 1815-1819. DOI:10.1002/vms3.533 |
[33] |
WANG M L, DU P C, WANG J P, et al. Genomic epidemiology of Streptococcus suis sequence type 7 sporadic infections in the Guangxi Zhuang autonomous region of China[J]. Pathogens, 2019, 8(4): 187. DOI:10.3390/pathogens8040187 |
[34] |
胡彬, 王建平, 徐迎春, 等. 山东省人感染猪链球菌基因组特征分析[J]. 中华预防医学杂志, 2021, 55(10): 1232-1239. HU B, WANG J P, XU Y C, et al. Genomic investigation of human Streptococcus suis infection in Shandong Province[J]. Chi J Prev Med, 2021, 55(10): 1232-1239. DOI:10.3760/cma.j.cn112150-20210127-00084 (in Chinese) |
[35] |
周淑琴, 孙韶华. 蓬莱市新发1例人感染猪链球菌病例流行病学调查[J]. 河南预防医学杂志, 2020, 31(12): 928-930, 939. ZHOU S Q, SUN S H. Epidemiological investigation of a new case of human infection with Streptococcus suis in Penglai City[J]. Henan Journal of Preventive Medicine, 2020, 31(12): 928-930, 939. (in Chinese) |
[36] |
赵梦娇, 张梦寒, 王小龙, 等. 江苏省苏州市1例人感染猪链球菌病例调查[J]. 疾病监测, 2018, 33(7): 614-618. ZHAO M J, ZHANG M H, WANG X L, et al. Epidemiology and etiology of a case of human infection with Streptococcus suis in Suzhou, Jiangsu[J]. Disease Surveillance, 2018, 33(7): 614-618. (in Chinese) |
[37] |
马涛, 刘艳, 王璇, 等. 南京市首例人感染猪链球菌病例调查[J]. 现代预防医学, 2019, 46(16): 3042-3044. MA T, LIU Y, WANG X, et al. Investigation of the first human case infected with streptococcus suis in Nanjing[J]. Modern Preventive Medicine, 2019, 46(16): 3042-3044. (in Chinese) |
[38] |
顾春艳, 朱海波, 陆明艳. 2019年盐城市盐都区1例人感染猪链球菌病例流行病学调查[J]. 江苏预防医学, 2019, 30(4): 445-446. GU C Y, ZHU H B, LU M Y. Epidemiological investigation of a case of human infection with Streptococcus suis in Yandu District, Yancheng City, Yancheng City, China, 2019[J]. Jiangsu Journal of Preventive Medicine, 2019, 30(4): 445-446. (in Chinese) |
[39] |
庞志峰, 章光明, 吴斌. 浙江省金华市首例人感染猪链球菌病流行病学调查[J]. 疾病监测, 2017, 32(8): 700-702. PANG Z F, ZHANG G M, WU B. Epidemiological survey of the first human infection with Streptococcus suis in Jinhua, Zhejiang[J]. Disease Surveillance, 2017, 32(8): 700-702. (in Chinese) |
[40] |
吕静, 潘浩, 朱敏慧, 等. 上海市闵行区首例人感染猪链球菌2型病例流行病及病原学调查[J]. 公共卫生与预防医学, 2020, 31(1): 79-82. LYU J, PAN H, ZHU M H, et al. Epidemiological and pathogenic investigation on the first case of human streptococcus suis type 2 infection in Minhang District, Shanghai[J]. Journal of Public Health and Preventive Medicine, 2020, 31(1): 79-82. (in Chinese) |
[41] |
王宇卓, 刘国良, 邱颖, 等. 河北省首例人感染猪链球菌病流行病学调查[J]. 医学动物防制, 2018, 34(1): 59-60. WANG Y Z, LIU G L, QIU Y, et al. Epidemiological investigation of the first person infected with Streptococcus suis in Hebei Province[J]. Journal of Medical Pest Control, 2018, 34(1): 59-60. (in Chinese) |
[42] |
林桢, 黄林光, 梁家习, 等. 广西巴马县人感染猪链球菌病2例死亡病例调查分析[J]. 医学动物防制, 2020, 36(10): 996-998. LIN Z, HUANG L G, LIANG J X, et al. Investigation and analysis of two deaths of human Streptococcus suis disease in Bama County, Guangxi[J]. Journal of Medical Pest Control, 2020, 36(10): 996-998. (in Chinese) |
[43] |
王福春, 黄德胜, 谢继杰. 广西靖西市一起人感染猪链球菌病疫情调查分析[J]. 医学动物防制, 2017, 33(9): 962-964. WANG F C, HUANG D S, XIE J J. Analysis of Guangxi Jingxi City in 1 cases of human Streptococcus suis infection investigation[J]. Journal of Medical Pest Control, 2017, 33(9): 962-964. (in Chinese) |
[44] |
邓茂铭, 石德慧, 郑颖, 等. 贵州省凯里市首例人感染猪链球菌病的流行病学调查[J]. 医学动物防制, 2017, 33(10): 1107-1108. DENG M M, SHI D H, ZHENG Y, et al. Guizhou kaili case of the first human infection with swine Streptococcus suis epidemiological investigation[J]. Journal of Medical Pest Control, 2017, 33(10): 1107-1108. (in Chinese) |
[45] |
VARELA N P, GADBOIS P, THIBAULT C, et al. Antimicrobial resistance and prudent drug use for Streptococcus suis[J]. Anim Health Res Rev, 2013, 14(1): 68-77. DOI:10.1017/S1466252313000029 |
[46] |
DÍEZ DE LOS RÍOS J, REYNAGA E, GARCÍA-GONZÀLEZ M, et al. Clinical and epidemiological characteristics of Streptococcus suis infections in Catalonia, Spain[J]. Front Med (Lausanne), 2021, 8: 792233. |
[47] |
RENZHAMMER R, LONCARIC I, LADSTÄTTER M, et al. Detection of various Streptococcus spp. and their antimicrobial resistance patterns in clinical specimens from Austrian swine stocks[J]. Antibiotics (Basel), 2020, 9(12): 893. DOI:10.3390/antibiotics9120893 |
[48] |
O'DEA M A, LAIRD T, ABRAHAM R, et al. Examination of Australian Streptococcus suis isolates from clinically affected pigs in a global context and the genomic characterisation of ST1 as a predictor of virulence[J]. Vet Microbiol, 2018, 226: 31-40. DOI:10.1016/j.vetmic.2018.10.010 |
[49] |
WERINDER A, ASPÁN A, BACKHANS A, et al. Streptococcus suis in Swedish grower pigs: occurrence, serotypes, and antimicrobial susceptibility[J]. Acta Vet Scand, 2020, 62(1): 36. DOI:10.1186/s13028-020-00533-3 |
[50] |
SOARES T C S, PAES A C, MEGID J, et al. Antimicrobial susceptibility of Streptococcus suis isolated from clinically healthy swine in Brazil[J]. Can J Vet Res, 2014, 78(2): 145-149. |
[51] |
YONGKIETTRAKUL S, MANEERAT K, ARECHANAJAN B, et al. Antimicrobial susceptibility of Streptococcus suis isolated from diseased pigs, asymptomatic pigs, and human patients in Thailand[J]. BMC Vet Res, 2019, 15(1): 5. DOI:10.1186/s12917-018-1732-5 |
[52] |
DONG X X, CHAO Y, ZHOU Y J, et al. The global emergence of a novel Streptococcus suis clade associated with human infections[J]. EMBO Mol Med, 2021, 13(7): 13810. DOI:10.15252/emmm.202013810 |
[53] |
ZHANG B Z, KU X, YU X X, et al. Prevalence and antimicrobial susceptibilities of bacterial pathogens in Chinese pig farms from 2013 to 2017[J]. Sci Rep, 2019, 9(1): 9908. DOI:10.1038/s41598-019-45482-8 |
[54] |
TAN M F, TAN J, ZENG Y B, et al. Antimicrobial resistance phenotypes and genotypes of Streptococcus suis isolated from clinically healthy pigs from 2017 to 2019 in Jiangxi Province, China[J]. J Appl Microbiol, 2021, 130(3): 797-806. DOI:10.1111/jam.14831 |
[55] |
DONG C L, CHE R X, WU T, et al. New characterization of multi-drug resistance of Streptococcus suis and biofilm formation from swine in Heilongjiang Province of China[J]. Antibiotics (Basel), 2023, 12(1): 132. DOI:10.3390/antibiotics12010132 |
[56] |
ICHIKAWA T, OSHIMA M, YAMAGISHI J, et al. Changes in antimicrobial resistance phenotypes and genotypes in Streptococcus suis strains isolated from pigs in the Tokai area of Japan[J]. J Vet Med Sci, 2020, 82(1): 9-13. DOI:10.1292/jvms.19-0449 |
[57] |
WANG Y, WANG Y X, SUN L Y, et al. Streptococcus suis biofilm: regulation, drug-resistance mechanisms, and disinfection strategies[J]. Appl Microbiol Biotechnol, 2018, 102(21): 9121-9129. DOI:10.1007/s00253-018-9356-z |
[58] |
杨艳北, 许晶, 刘婉萍, 等. 低浓度阿奇霉素对猪链球菌2型蛋白表达、荚膜多糖与药物敏感性的影响[J]. 畜牧兽医学报, 2023, 54(2): 757-765. YANG Y B, XU J, LIU W P, et al. Effects of low-concentration azitromycin on protein expression, capsular polysaccharides and drug susceptibility of Streptococcus suis Type 2[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 757-765. (in Chinese) |
[59] |
ZHANG C Y, ZHANG P, WANG Y, et al. Capsular serotypes, antimicrobial susceptibility, and the presence of transferable oxazolidinone resistance genes in Streptococcus suis isolated from healthy pigs in China[J]. Vet Microbiol, 2020, 247: 108750. DOI:10.1016/j.vetmic.2020.108750 |
[60] |
韩宁, 李杰, 陈佳文, 等. 广东省某猪场链球菌的分离鉴定及耐药性分析[J]. 中国兽医学报, 2022, 42(7): 1405-1410. HAN N, LI J, CHEN J W, et al. Identification and resistance of Streptococcus from a pig farm in Guangdong Province[J]. Chinese Journal of Veterinary Science, 2022, 42(7): 1405-1410. (in Chinese) |
[61] |
刘宝玲, 楚品品, 李春玲, 等. 猪链球菌临床分离株对四环素类抗生素的耐药性和耐药基因分析[J]. 中国畜牧兽医, 2022, 49(7): 2796-2804. LIU B L, CHU P P, LI C L, et al. Analysis of resistance and resistance genes of Streptococcus suis clinical isolates to tetracyclines[J]. China Animal Husbandry & Veterinary Medicine, 2022, 49(7): 2796-2804. (in Chinese) |
[62] |
HADJIRIN N F, MILLER E L, MURRAY G G R, et al. Large-scale genomic analysis of antimicrobial resistance in the zoonotic pathogen Streptococcus suis[J]. BMC Biol, 2021, 19(1): 191. DOI:10.1186/s12915-021-01094-1 |
[63] |
ARNDT E R, FARZAN A, MACINNES J I, et al. Antimicrobial resistance of Streptococcus suis isolates recovered from clinically ill nursery pigs and from healthy pigs at different stages of production[J]. Can Vet J, 2019, 60(5): 519-522. |
[64] |
NICHOLSON T L, BAYLES D O. Comparative virulence and antimicrobial resistance distribution of Streptococcus suis isolates obtained from the United States[J]. Front Microbiol, 2022, 13: 1043529. DOI:10.3389/fmicb.2022.1043529 |
[65] |
YONGKIETTRAKUL S, WONGSURAWAT T, JENJAROENPUN P, et al. Genome sequences of antibiotic-resistant Streptococcus suis strains isolated from human patients and diseased and asymptomatic pigs in Thailand[J]. Infect Genet Evol, 2021, 87: 104674. DOI:10.1016/j.meegid.2020.104674 |
[66] |
LI L L, ZHANG Q, ZHAO X N, et al. Rapid detection of mrp, epf, and sly genes by loop-mediated isothermal amplification in Streptococcus suis[J]. Foodborne Pathog Dis, 2021, 18(4): 290-296. DOI:10.1089/fpd.2020.2868 |
[67] |
CLOUTIER G, D'ALLAIRE S, MARTINEZ G, et al. Epidemiology of Streptococcus suis serotype 5 infection in a pig herd with and without clinical disease[J]. Vet Microbiol, 2003, 97(1-2): 135-151. DOI:10.1016/j.vetmic.2003.09.018 |
[68] |
ARENDS J P, ZANEN H C. Meningitis caused by Streptococcus suis in humans[J]. Rev Infect Dis, 1988, 10(1): 131-137. DOI:10.1093/clinids/10.1.131 |
[69] |
ZHU Y J, ZHU F, BO L H, et al. A rare case of meningitis and septicemia caused by Streptococcus suis in a woman without a history of live pig contact or eating raw pork[J]. Braz J Microbiol, 2021, 52(4): 2007-2012. DOI:10.1007/s42770-021-00619-8 |
[70] |
FONGCOM A, PRUKSAKORN S, MONGKOL R, et al. Streptococcus suis infection in northern Thailand[J]. J Med Assoc Thai, 2001, 84(10): 1502-1508. |
[71] |
韩瑞, 杨行, 张文波, 等. 猪链球菌自溶素的原核表达及其抗体间接ELISA检测方法的建立[J]. 中国畜牧兽医, 2022, 49(9): 3508-3519. HAN R, YANG X, ZHANG W B, et al. Prokaryotic expression of autolysin from Streptococcus suis and establishment of an indirect ELISA method for detection of its antibody[J]. China Animal Husbandry & Veterinary Medicine, 2022, 49(9): 3508-3519. (in Chinese) |
[72] |
乔宏, 龚俊, 栾慧, 等. 基于溶菌酶释放蛋白的猪链球菌间接ELISA抗体检测方法的建立[J]. 中国预防兽医学报, 2020, 49(9): 912-917. QIAO H, GONG J, LUAN H, et al. Establishment of indirect-ELISA method for detection of swine strepto coccosis based on muramidase release protein[J]. Chinese Journal of Preventive Veterinary Medicine, 2020, 49(9): 912-917. (in Chinese) |
[73] |
李建达, 于江, 张玉玉, 等. 猪链球菌2型实时荧光定量PCR检测方法的建立与应用[J]. 中国畜牧兽医, 2016, 43(12): 3107-3113. LI J D, YU J, ZHANG Y Y, et al. Establishment and application of quantitative real-time PCR method to detect Streptococcus suis serotype 2[J]. China Animal Husbandry and Veterinary Medicine, 2016, 43(12): 3107-3113. (in Chinese) |
[74] |
刘艳艳, 吕婷婷, 吴家强, 等. 猪链球菌和猪多杀性巴氏杆菌多重实时荧光PCR方法的建立[J]. 微生物学通报, 2022, 49(12): 5112-5125. LIU Y Y, LÜ T T, WU J Q, et al. Establishment of a multiplex real-time fluorescent PCR method for simultaneous detection of Streptococcus suis and Pasteurella multicide[J]. Microbiology China, 2022, 49(12): 5112-5125. (in Chinese) |
[75] |
吴静波, 南文金, 黄健强, 等. 猪链球菌通用型和2型双重荧光定量PCR快速检测技术的建立和应用[J]. 畜牧兽医学报, 2018, 49(2): 368-377. WU J B, NAN W J, HUANG J Q, et al. Development of a rapid duplex real-time pcr assay for Streptococcus suis and S. suis serotype 2[J]. Acta Veterinaria et Zootechnica Sinica, 2018, 49(2): 368-377. (in Chinese) |
[76] |
ARAI S, TOHYA M, YAMADA R, et al. Development of loop-mediated isothermal amplification to detect Streptococcus suis and its application to retail pork meat in Japan[J]. Int J Food Microbiol, 2015, 208: 35-42. DOI:10.1016/j.ijfoodmicro.2015.05.008 |
[77] |
席小燕, 陈家享, 梁嘉雯, 等. 猪链球菌2型HNB-LAMP检测方法的建立[J]. 韶关学院学报: 自然科学, 2022, 43(12): 50-54. XI X Y, CHEN J X, LIANG J W, et al. Development of HNB-LAMP to detect Streptococcus suis serotype 2[J]. Journal of Shaoguan University: Natural Science, 2022, 43(12): 50-54. (in Chinese) |
[78] |
JIANG X W, ZHU L X, ZHAN D B. Development of a recombinase polymerase amplification assay for rapid detection of Streptococcus suis type 2 in nasopharyngeal swab samples[J]. Diagn Microbiol Infect Dis, 2022, 102(2): 115594. DOI:10.1016/j.diagmicrobio.2021.115594 |
[79] |
张闪闪, 何斌, 李书光, 等. 可视化RPA-LFD技术快速检测猪链球菌[J]. 畜牧兽医学报, 2022, 53(2): 538-547. ZHANG S S, HE B, LI S G, et al. Rapid detection of Streptococcus suis with visual RPA-LFD technology[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(2): 538-547. (in Chinese) |
[80] |
YI L, FAN Q Y, WANG Y X, et al. Evaluation of immune effect of Streptococcus suis biofilm-associated protein PDH[J]. Vet Microbiol, 2021, 263: 109270. DOI:10.1016/j.vetmic.2021.109270 |
[81] |
SEGURA M, ARAGON V, BROCKMEIER S L, et al. Update on Streptococcus suis research and prevention in the era of antimicrobial restriction: 4th international workshop on S. suis[J]. Pathogens, 2020, 9(5): 374. DOI:10.3390/pathogens9050374 |
[82] |
GAO T, YE F, YUAN F Y, et al. Green tea polyphenols inhibit growth, pathogenicity and metabolomics profiles of Streptococcus suis[J]. Microb Pathog, 2022, 164: 105421. DOI:10.1016/j.micpath.2022.105421 |
[83] |
SHEN X, NIU X D, LI G, et al. Amentoflavone ameliorates Streptococcus suis-induced infection in vitro and in vivo[J]. Appl Environ Microbiol, 2018, 84(24): e01804-18. |
[84] |
王金玉, 姜晓文, 王娜, 等. 穿心莲内酯影响猪链球菌生物被膜形成[J]. 畜牧兽医学报, 2018, 49(3): 629-636. WANG J Y, JIANG X W, WANG N, et al. Effect of andrographolide on the biofilm formation of Streptococcus suis[J]. Acta Veterinaria et Zootechnica Sinica, 2018, 49(3): 629-636. (in Chinese) |
[85] |
LIU X Y, LIU F, DING S Y, et al. Sublethal levels of antibiotics promote bacterial persistence in epithelial cells[J]. Adv Sci (Weinh), 2020, 7(18): 1900840. DOI:10.1002/advs.201900840 |
[86] |
DE AGUIAR F C, SOLARTE A L, TARRADAS C, et al. Combined effect of conventional antimicrobials with essential oils and their main components against resistant Streptococcus suis strains[J]. Lett Appl Microbiol, 2019, 68(6): 562-572. DOI:10.1111/lam.13151 |
[87] |
TRAM G, JENNINGS M P, BLACKALL P J, et al. Streptococcus suis pathogenesis—a diverse array of virulence factors for a zoonotic lifestyle[J]. Adv Microb Physiol, 2021, 78: 217-257. |
[88] |
YU Y, FANG J T, ZHENG M, et al. Combination therapy strategies against multiple-resistant Streptococcus Suis[J]. Front Pharmacol, 2018, 15(9): 489. |
[89] |
HE S W, DENG Q, LIANG B B, et al. Suppressing alpha-hemolysin as potential target to screen of flavonoids to combat bacterial coinfection[J]. Molecules, 2021, 26(24): 7577. DOI:10.3390/molecules26247577 |
[90] |
BERCIER P, GOTTSCHALK M, GRENIER D. Streptococcus suis suilysin compromises the function of a porcine tracheal epithelial barrier model[J]. Microb Pathog, 2020, 139: e103913. DOI:10.1016/j.micpath.2019.103913 |
[91] |
贺尚文, 侯思鲁, 李秋月, 等. 黄酮类中药抗细菌溶血素研究进展[J]. 中国兽医学报, 2021, 41(3): 611-617. HE S W, HOU S L, LI Q Y, et al. Advance in the study of Chinese herbal medicine against bacterial hemolysin[J]. Chinese Journal of Veterinary Science, 2021, 41(3): 611-617. (in Chinese) |
[92] |
BONIFAIT L, VEILLETTE M, LETOURNEAU V, et al. Detection of Streptococcus suis in bioaerosols of swine confinement buildings[J]. Appl Environ Microbiol, 2014, 80(11): 3296-3304. DOI:10.1128/AEM.04167-13 |
[93] |
TAWK C, NIGRO G, LOPES I R, et al. Stress-induced host membrane remodeling protects from infection by non-motile bacterial pathogens[J]. EMBO J, 2018, 37(23): e98529. DOI:10.15252/embj.201798529 |
[94] |
刘晓晔, 毛畅思, 朱奎. 宿主导向抗菌药物的研究进展[J]. 中国动物传染病学报, 2021, 29(4): 52-60. LIU X Y, MAO C S, ZHU K. Progress on host-acting antibacterial drugs[J]. Chinese Journal of Animal Infectious Diseases, 2021, 29(4): 52-60. (in Chinese) |
[95] |
LIU X Y, WU Y F, MAO C S, et al. Host-acting antibacterial compounds combat cytosolic bacteria[J]. Trends Microbiol, 2022, 30(8): 761-777. DOI:10.1016/j.tim.2022.01.006 |
[96] |
SUBRAMANIAN K, IOVINO F, TSIKOURKITOUDI V, et al. Mannose receptor-derived peptides neutralize pore-forming toxins and reduce inflammation and development of pneumococcal disease[J]. Embo Mol Med, 2020, 12(11): e12695. DOI:10.15252/emmm.202012695 |
[97] |
ABRAMS M E, JOHNSON K A, PERELMAN S S, et al. Oxysterols provide innate immunity to bacterial infection by mobilizing cell surface accessible cholesterol[J]. Nat Microbiol, 2020, 5(7): 929-942. DOI:10.1038/s41564-020-0701-5 |
[98] |
GOYETTE-DESJARDINS G, AUGER J P, XU J G, et al. Streptococcus suis, an important pig pathogen and emerging zoonotic agent-an update on the worldwide distribution based on serotyping and sequence typing[J]. Emerg Microbes Infect, 2014, 3(1): 1-20. |
[99] |
ZHOU Y, YAN K, SUN C F, et al. Binding of plasminogen to Streptococcus suis protein endopeptidase O facilitates evasion of innate immunity in Streptococcus suis[J]. Front Microbiol, 2021, 12: 694103. DOI:10.3389/fmicb.2021.694103 |
[100] |
PIAN Y, LI X Q, ZHENG Y L, et al. Binding of human fibrinogen to MRP enhances Streptococcus suis survival in host blood in a αXβ2 integrin-dependent manner[J]. Sci Rep, 2016, 6: 26966. DOI:10.1038/srep26966 |
[101] |
LIU F, LI J Q, YAN K, et al. Binding of fibronectin to SsPepO facilitates the development of Streptococcus suis meningitis[J]. J Infect Dis, 2018, 217(6): 973-982. DOI:10.1093/infdis/jix523 |
[102] |
MUSYOKI A M, SHI Z Y, XUAN C L, et al. Structural and functional analysis of an anchorless fibronectin-binding protein FBPS from gram-positive bacterium Streptococcus suis[J]. Proc Natl Acad Sci USA, 2016, 113(48): 13869-13874. DOI:10.1073/pnas.1608406113 |
(编辑 白永平)