在妊娠期和泌乳期,母体为满足胎儿生长和泌乳的需要,各系统(免疫系统、代谢系统)、器官(子宫、乳腺、肺、心血管、胰腺)和微生物均发生一系列的变化,在此期间母体生理变化非常重要,它关系到母体的健康和胎儿的正常发育[1]。在整个繁殖周期,母体营养、激素、免疫系统和微生物等一系列因素协同作用以维持母体生命活动和正常妊娠[2-3]。此外,母体妊娠期间生理代谢和微生物的变化也会影响胎儿组织发育、免疫系统成熟和微生物定植过程。但这一时期也是母体生理代谢高度敏感的时期,极易受内外环境影响而导致生理机能紊乱,这可能会引起一系列代谢性疾病,如妊娠糖尿病、妊娠毒血症和代谢综合征等,继而导致母体健康受到损伤[4-6]。这些代谢性疾病还会对胎儿的健康造成长期的影响。如在出生前发育不良的胎羊,在出生后随着日龄的增加,其负责胰岛素分泌的β细胞数量和功能会发生损伤,并且不能维持相对足够的胰岛素分泌,进而影响健康[7]。因此,本综述探讨了反刍动物妊娠期和泌乳期生理代谢和微生物的变化以及对子代的影响,从而为进一步改善妊娠期和泌乳期反刍动物生理代谢状态和微生物组成、防治妊娠期和泌乳期母体不良代谢状态及降低子代健康风险提供参考。
1 妊娠期和泌乳期母体生理代谢变化母体在妊娠期和泌乳期,免疫、内分泌和代谢状态会发生一系列的变化,这些变化使母体为妊娠、分娩和哺乳做好准备[8]。在妊娠前期,母体会经历胚胎发育和功能性胎盘形成等生理变化过程,而母体子宫内膜容受性的建立是胚胎着床和发育的重要决定因素。其中免疫系统是建立子宫内膜容受性的关键。母体树突状细胞能够识别异于宿主的细胞,当树突状细胞识别外来细胞后,会分泌IL-12导致T辅助淋巴细胞1(Th1)的扩增以及促炎细胞因子的分泌,从而清除外来细胞[9]。而妊娠后的母体会建立对胚胎的免疫耐受性,如在胚胎植入母体子宫的过程中,伴随着半乳糖凝集素在滋养外胚层的分泌,半乳糖凝集素将母体从促炎性Th1活性转变到抗炎性Th2活性[10-11]。Th2淋巴细胞还通过分泌抗炎性IL-4、IL-10和IL-13,抑制Th1活性以限制炎症发生,为母体建立免疫耐受性提供抗炎条件[12-14]。在妊娠前期,水平显著提高的雌激素和孕酮也是子宫内膜容受性建立的关键激素,雌激素刺激子宫内膜发育,孕激素刺激、维持子宫功能、抑制母体免疫并参与调节子宫内膜容受性[15-16]。此外,雌激素和孕激素还可以协同作用,调节子宫雌激素受体的表达,从而促进胚胎的着床[16]。
妊娠前期被认为是一个合成代谢的过程,在此期间,母体血清中的雌激素、孕激素和胰岛素浓度增加、母体胰岛素敏感性增强,这有利于葡萄糖等营养物质合成脂质或糖原进行储存[17]。而妊娠后期是胎儿快速生长和母体乳腺发育的关键时期,在此期间,子宫和乳腺的葡萄糖需求增加,因此,母体肝组织中葡萄糖合成增加,同时,脂肪组织和肌肉的葡萄糖利用减少[18-19]。为满足妊娠后期母体和胎儿葡萄糖的需求,母体会分泌大量的胰高血糖素、生长激素和皮质醇等诱导胰岛素抵抗的激素,使母体处于生理性胰岛素抵抗状态,降低胰岛素靶器官对胰岛素的敏感性,从而保证充足的葡萄糖供应,直到分娩后胰岛素水平大多可自行恢复到正常状态[20-21]。此外,胰岛素抵抗和相对低血糖导致脂肪分解,使母体过渡到分解代谢状态,母体优先使用脂肪作为能量来源,从而为胎儿保留可用的葡萄糖和氨基酸[22-23]。
大多数动物在产仔后能够过渡到更高的能量需求状态。在泌乳期间,母体动用脂肪组织储备,肝中脂质代谢进一步加强,母体血液中非酯化脂肪酸水平上升[24-25]。此外,在泌乳期,母体氨基酸的生物合成、氨基酸代谢和含氮化合物代谢也显著增强[26]。与此同时,母体肝代谢功能的增强伴随着免疫系统指标和矿物质平衡的改变[26-28]。以上这些变化可能反映了从妊娠到泌乳母体的生理性适应过程。
2 妊娠期和泌乳期母体肠道、粪便和产道中微生物变化在整个繁殖周期,母体微生物多样性以及丰度呈动态变化状态[29]。研究发现,妊娠前期绒山羊母羊肠道拟杆菌RF16、梭菌vadinBB60、毛螺菌科UGG_010、厌氧菌科和琥珀弧菌显著富集[30]。在反刍动物中的拟杆菌、梭菌和毛螺菌科的发酵底物主要为碳水化合物,其发酵产物主要为甲酸、丁酸、乙酸和乳酸等,其中,乳酸是胎儿主要能量来源之一[31]。在妊娠早期,母体肠道产生丁酸的细菌数量也会增加,而具有抗炎和免疫调节功能的丁酸在维持母体健康和生育能力方面起重要作用[32]。如初产奶牛在妊娠期间其粪便中瘤胃球菌科的丰度显著提高,瘤胃球菌科是反刍动物胃肠道中丰度最大的丁酸生产菌,这类细菌的发酵产物如丁酸等短链脂肪酸通过调节T细胞改善生殖系统炎症,这对妊娠的建立和维持非常重要[33-34]。在动物生殖系统存在的低丰度乳酸杆菌也对动物生殖系统健康起积极作用,乳酸杆菌通过生产有机酸和细菌素,维持生殖系统酸性环境、抑制常见的病原体。在牛的产道中乳酸杆菌缺乏,但处于发情周期的奶牛在其产道可检测到低丰度的乳酸杆菌,这对抑制不良微生物的增殖,维持产道微生物群的共生具有重要作用[35]。此外,在分娩前将乳酸杆菌注入奶牛子宫和产道,分娩后母牛患子宫炎的几率更低[36]。以上变化可能与母体微生物和免疫调节适应妊娠有关[37]。
妊娠后期,颤螺旋菌科、拟杆菌、Coprococcus_2、Ruminiclostridium_5和Ruminococcaceae_UCG-007在母羊肠道显著富集[38]。颤螺旋菌科的相对丰度与胰高血糖素样肽-1的表达水平呈极显著正相关[39]。胰高血糖素样肽-1是一种来自肠道的肽激素,通过调节胰岛素分泌在维持糖代谢稳态过程中起重要作用[40]。而拟杆菌、Coprococcus_2、Ruminiclostridium_5和Ruminococcaceae_UCG-007的丰度与挥发性脂肪酸的浓度呈正相关[41-42]。分娩后,在母牛肠道和产道样本中,属于瘤胃球菌科的OTU丰度最高,在初乳中栖水菌属OTU丰度最高[43]。瘤胃球菌科和栖水菌属细菌大多属于产酸菌[44]。综合以上结果,从妊娠期到产后微生物组成的变化可能反映了母体特殊时期的代谢和免疫变化。
此外,母体的生理状态,包括母体的激素分泌、免疫状态和代谢发生的巨大变化会导致微生物变化,并且微生物变化可能与免疫、内分泌和代谢状态相协调来维持妊娠和泌乳过程[3]。Oterc等[45]研究发现,处于发情周期的母牛其产道乳酸杆菌的丰度增加与孕酮含量的升高有关。在对人类和小鼠的研究中发现,母体肠道双歧杆菌的丰度受孕酮的影响,在妊娠晚期,母体相对高的孕酮浓度会相应提高肠道双歧杆菌的丰度,而双歧杆菌可能通过调节体重增加、改善胰岛素敏感性和葡萄糖耐量以及增强免疫系统对母体产生积极影响[46]。而Koren等[32]也发现了类似的结果,在妊娠晚期,母体肠道中的变形杆菌和放线杆菌的丰度增加,而这降低了母体的胰岛素敏感性并有利于母体脂肪沉积。
3 妊娠期母体生理代谢变化对胎儿发育的影响 3.1 生长激素-胰岛素样生长因子轴生长激素(growth hormone, GH)和胰岛素样生长因子(insulin-like growth factors, IGFs)是驱动哺乳动物生长发育的重要激素,对动物出生前后的生长和发育至关重要。母体循环中的GH和IGFs都不能穿过胎盘屏障,因此母体循环中的GH和IGFs对胎儿生长的影响是通过母体和胎盘间接作用于胎儿,而不是对胎儿直接产生影响[47]。在妊娠山羊上,随着妊娠时间的增加,母体循环中的GH含量呈持续升高状态[48]。而母体GH浓度升高会增加母体循环中葡萄糖的浓度和胎盘向胎儿转移营养的能力以此来影响胎儿的生长[47]。此外,妊娠期母体适宜剂量的外源GH注射对胎儿的生长发育也具有一定的积极影响。给处于妊娠前期的母羊注射外源性GH会改变其内分泌状态,诱导母体的代谢从脂肪组织沉积向蛋白质合成代谢转变,母体这种营养分配的改变提高了胎儿可利用营养物质(葡萄糖和乳酸盐)浓度并利于子宫胎盘和胎儿生长增强[49]。在妊娠母牛上的研究也发现了类似的结果,Ribeiro等[50]给处于胚胎植入期的母牛注射外源性GH,发现母牛血浆GH和IGF-1的浓度提高,而这有利于胚胎发育。
在妊娠期母体循环中的IGF主要通过母胎界面的交流来调节胎儿生长发育过程。IGF-1是促进胎儿生长的重要因子,对胎儿的出生体重具有显著影响。IGF-1能够直接影响母体组织的生长和新陈代谢,从而调节胎儿生长的营养可用性[51]。在关于妊娠奶牛的研究中发现,妊娠后期母体循环中IGF-1的增加伴随着葡萄糖、非酯化脂肪酸浓度和淋巴细胞数量的增加,这利于胎儿生长和免疫系统发育[52]。因此,母体IGF-1浓度的增加能促进胎儿组织的生长,当IGF-1缺乏时可引起宫内生长迟缓[53]。而IGF-2则直接作用于胎盘,调节其形态发生、营养物质运输和激素分泌能力,从而影响胎盘向胎儿提供营养的能力[51]。外源性IGFs也能够通过提高营养物质利用效率、改变胎盘的功能,对胎儿生长产生积极影响。如妊娠后期的胎羊脐带氨基酸摄取率和胎氧含量较低,使用IGF-1注射治疗后,虽然胎羊胎氧含量和营养物质浓度并未发生改变,但胎羊的器官发生特异性生长,而这可能是由于IGF-1可以促进动物高效地利用营养素来支持胎儿的生长,而不是通过刺激胎盘血流或营养物质转移到胎儿来产生影响[54]。
3.2 甲状腺激素甲状腺激素包括三碘甲状腺原氨酸(T3)和甲状腺素(T4),是胎儿生长发育所必需的激素。胎儿利用的甲状腺激素主要源自母体,母体甲状腺激素向胎儿的传递依赖于胎盘组织上存在的多种与甲状腺激素相关的作用分子,如甲状腺激素转运蛋白(单羧酸转运蛋白8、单羧酸转运蛋白10、有机阴离子转运多肽1A2等),主要在胎盘中转运甲状腺激素,2型碘化甲状腺原氨酸脱碘酶(iodothyronine deiodinase2, Dio2)和Dio3则控制胎盘内甲状腺激素水平,而胎盘组织上的甲状腺激素核受体α1则通过与母体的甲状腺激素结合调控胎儿相关组织基因的转录与表达,进而调节胎儿大脑、心、肺、骨骼、肌肉和神经系统的发育以及体细胞组织的成熟、刺激胎儿合成代谢,并参与胎儿出生后的肺部气体交换、氧气消耗过程,在确保初生动物存活方面发挥重要作用[55-58]。甲状腺激素在子宫内的生物利用度取决于胎儿下丘脑-垂体-甲状腺轴的发育[57]。研究发现,甲状腺功能受损的胎儿血浆T3和T4的浓度、跖骨长度和肌肉的蛋白质含量均低于甲状腺功能正常的胎儿,且由于甲状腺激素浓度影响胎儿线粒体功能的成熟,甲状腺供应不足的胎儿在出生后更易发生氧化应激,从而损伤机体的健康状态[59]。由于胎儿的甲状腺激素在很大程度上依赖于母体通过胎盘为其供应,因此,随着胎儿生长速度的提升,从妊娠中期开始,母体甲状腺激素便处于缓慢上升状态,到妊娠后期达到峰值后保持,直至胎儿出生后其水平仍然很高[[60-63]。而在整个妊娠阶段,母体子宫内营养、内分泌状况和胎盘对母体甲状腺激素的通透性以及胎龄等因素均会影响胎儿体内T3和T4的浓度[62, 64]。如限饲母羊胎盘子叶数减少,T3、T4浓度降低,这影响了母体通过胎盘将营养物质输送到发育中的胎儿,从而对胎儿的生长造成了损伤[62, 65]。
3.3 胰岛素胰岛素是由胰腺内的胰岛β细胞分泌的一种蛋白质激素,具有降血糖,促进糖原、脂肪和蛋白质合成等功能[66]。在妊娠期间,母畜体内的胰岛素靶器官对胰岛素的敏感性处于动态变化过程。在妊娠前期,母体胰岛素敏感性增加,这有利于葡萄糖转化为糖原或脂肪,从而为妊娠后期和泌乳储备能量[18]。随着妊娠的进展,为满足胎儿生长和乳腺发育的能量需求,母体胰岛素敏感性降低,胰岛素水平逐渐增加,这会使母体血糖浓度升高和葡萄糖峰值延长,这促进了葡萄糖通过胎盘转运,从而支持胎儿的快速生长[19]。与此同时,胎儿体内葡萄糖和氨基酸水平的升高,也会刺激其胰腺分泌胰岛素[67-68]。胎儿的胰腺在妊娠中期发育,且在此期间胎儿体内的胰岛素可以被检测到[69]。胎儿体内的胰岛素是其葡萄糖利用和肌肉蛋白质合成的重要调节剂,胎儿胰岛素能够通过调节胰岛素敏感组织(心、肝、骨骼肌和脂肪组织)的葡萄糖和氨基酸利用效率从而提高生长速率[69-70]。
4 妊娠期和泌乳期母体微生物对子代的影响 4.1 妊娠期和泌乳期母体微生物对子代微生物的影响动物对微生物最早接触可能始于母体妊娠期间。如自然分娩犊牛,在出生时胎粪样品中便检测出微生物存在,由于在胎粪中不太可能早期检测到来自母体产道、初乳或环境的微生物,因此,在胎粪中发现的微生物可能具有子宫内起源[43, 71-72]。在关于绒山羊和绵羊母体微生物垂直传播的研究中验证了这一说法。研究发现,在初生羔羊瘤胃、皱胃、胎粪以及分娩后母羊胎盘、羊水中均检测出微生物的存在,并且母仔微生物共享[30]。母胎微生物转移的机制尚不清楚,有研究称免疫细胞可能对机体内微生物转移发挥作用,微生物能够被免疫细胞吞噬,经淋巴或血液循环传播到其他部位,因此,母源性细菌也可以通过胎盘屏障的细胞旁途径转移到胎儿身上[73-74]。然而,由于目前的检测方法有限,且不能保证样本完全不受污染,因此,关于微生物定植是否始于子宫仍存在争议,需要进一步研究。母源微生物是哺乳期动物重要的微生物来源,在关于放牧牦牛微生物来源的研究中发现,哺乳期犊牛瘤胃细菌和古菌与母牛瘤胃液微生物相似性最高,而犊牛瘤胃原虫与母牛唾液原虫结构最为相似[75]。母乳喂养的3日龄羔羊43%肠道微生物来源于母羊的阴道、腹侧皮肤和口腔[76]。此外,母牛粪便微生物可能在小牛肠道微生物的早期定植中起重要作用,Zhang等[7]研究发现,7日龄犊牛88.98%粪便微生物来自母牛粪便,且随着犊牛日龄的增加来自母牛瘤胃液、乳房皮肤的微生物在小牛肠道微生物中所占的比例也随之增加[77]。而哺乳期羔羊(第0~21天)40.81%和17.12%的粪便微生物分别来自母羊的产道和乳汁,但随着羔羊日龄增长母羊粪便微生物所占的比例越来越大(1.32%~21.02%),而羔羊瘤胃细菌组成和VFA浓度与母羊瘤胃相似[78]。
在妊娠期和泌乳期间,母体微生物的代谢产物也可能通过胎盘或母乳喂养转移给子代,这可能影响子代胃肠道微生物的定植过程。许多研究报告了母乳中短链脂肪酸(short-chain fatty acids, SCFAs)的存在,母乳SCFAs可能由胃肠道微生物产生,并通过循环系统运输到乳腺,也可能是由乳汁微生物代谢产生,然而,目前还没有试验证据验证母乳SCFAs的具体来源[79-80]。母乳中的SCFAs与初生动物肠道微生物群的建立有密切关系,母乳中的SCFAs为一些SCFAs依赖性微生物的生长创造合成代谢条件,从而促进此类微生物的生长并调节子代肠道微生物群的组成[81-82]。研究发现,母乳喂养的子代肠道具有较高数量的乳酸杆菌、双歧杆菌和大肠杆菌,而这可能与SCFA介导的喂养效应有关[83]。
4.2 妊娠期和泌乳期母体微生物对子代免疫系统的影响初生动物免疫细胞在功能上与成年动物免疫细胞不同,动物出生后便暴露于复杂的外界环境,因此它们优先发展抗原暴露的耐受性,例如对共生微生物的耐受性[84]。而胎儿时期微生物暴露对于提供抗原刺激至关重要,通过早期触发调节性T细胞分化,从而促进免疫系统成熟,这使子代免疫系统更好地适应未来的抗原暴露[84-85]。妊娠期和泌乳期母体微生物参与了子代免疫系统的发育与成熟。在人类免疫系统的研究中发现,胎儿免疫系统在妊娠早期开始发育,使用16S rRNA基因测序对胎儿器官中的微生物进行了分析,发现在胎儿肠道、皮肤、胎盘和肺部中存在低丰度但一致的微生物信号,且妊娠3个月时在胎儿组织中鉴定出几种活的细菌菌株,包括葡萄球菌和乳酸杆菌,它们通过诱导胎儿肠系膜淋巴结中记忆T细胞的体外活化,对胎儿的免疫启动发挥作用[85]。Yu等[86]给妊娠母羊接种绿色荧光蛋白标记的金黄色葡萄球菌后的4~6 d,在胎盘和胎羊组织中检测到绿色荧光蛋白。而在初生犊牛和羔羊的胎粪中也发现了与母体同源的微生物[30, 43]。以上研究证明了胎儿可以暴露于母体细菌成分,而细菌从母体传播到胎儿,可能会改变子代的免疫能力。De Agüero等[87]研究发现,妊娠小鼠定植特定细菌,增加了其子代肠道淋巴细胞的增殖和上皮抗菌肽的基因表达。产生该结果的原因可能是母体的特定抗体会保留微生物分子,并在怀孕和哺乳期间将其传递给后代。妊娠期和泌乳期母体微生物变化,有助于子代产生免疫刺激,并且早期接触母体微生物能够使子代更好地避免对微生物分子的过度炎症反应,让子代免疫系统为子宫外的生活做好准备[2, 88-89]。
5 小结妊娠期和泌乳期是母体经历的特殊的生理阶段,在此期间,母体生理代谢和微生物组成均发生变化,这对促进母体成功妊娠、顺利泌乳和子代的健康发育至关重要。此外,这段时期也是最早的可调控,且具有重要影响力的发育窗口期,外源性的刺激(营养、激素)能够通过改变母体生理代谢状态和微生物组成对子代的生长产生长期的影响。由于母体生理机制、代谢通路和微生物的复杂性,仍需要进一步的研究探索它们之间相互作用的分子机制,从而为确保母体健康、预防疾病以及通过早期调控使子代达到最佳生产性能开辟新的道路。
[1] |
SHAGANA J A, DHANRAJ M, JAIN A R, et al. Physiological changes in pregnancy[J]. Drug Invent Today, 2018, 10(8): 1594-1597. |
[2] |
NEUMAN H, KOREN O. The pregnancy microbiome[J]. Nestle Nutr Inst Workshop Ser, 2017, 88: 1-9. |
[3] |
ZAKARIA Z Z, AL-RUMAIHI S, AL-ABSI R S, et al. Physiological changes and interactions between microbiome and the host during pregnancy[J]. Front Cell Infect Microbiol, 2022, 12: 824925. DOI:10.3389/fcimb.2022.824925 |
[4] |
成传尚. 妊娠期功能性日粮纤维对母猪围产期代谢综合征和仔猪肠道发育的作用及其机制[D]. 武汉: 华中农业大学, 2019. CHENG C S. Effect and mechanism of functional dietary fiber during pregnancy on perinatal metabolic syndrome in sows and intestinal development in piglets[D]. Wuhan: Huazhong Agricultural University, 2019. (in Chinese) |
[5] |
JOO E H, KIM Y R, KIM N, et al. Effect of endogenic and exogenic oxidative stress triggers on adverse pregnancy outcomes: preeclampsia, fetal growth restriction, gestational diabetes mellitus and preterm birth[J]. Int J Mol Sci, 2021, 22(18): 10122. DOI:10.3390/ijms221810122 |
[6] |
FOTAKIS C, MOROS G, KONTOGEORGOU A, et al. Uncontrolled thyroid during pregnancy alters the circulative and exerted metabolome[J]. Int J Mol Sci, 2022, 23(8): 4248. DOI:10.3390/ijms23084248 |
[7] |
GATFORD K L, MOHAMMAD S N B, HARLAND M L, et al. Impaired β-cell function and inadequate compensatory increases in β-cell mass after intrauterine growth restriction in sheep[J]. Endocrinology, 2008, 149(10): 5118-5127. DOI:10.1210/en.2008-0233 |
[8] |
ADHIKARI B, LEE C N, KHADKA V S, et al. RNA-sequencing based analysis of bovine endometrium during the maternal recognition of pregnancy[J]. BMC Genomics, 2022, 23(1): 494. DOI:10.1186/s12864-022-08720-4 |
[9] |
KAIKO G E, HORVAT J C, BEAGLEY K W, et al. Immunological decision-making: how does the immune system decide to mount a helper T-cell response?[J]. Immunology, 2008, 123(3): 326-338. DOI:10.1111/j.1365-2567.2007.02719.x |
[10] |
CHANEY H L, GROSE L F, LABARBARA J M, et al. Galectin-1 induces gene and protein expression related to maternal-conceptus immune tolerance in bovine endometrium[J]. Biol Reprod, 2022, 106(3): 487-502. DOI:10.1093/biolre/ioab215 |
[11] |
DONG L Y, BAI Q B, SONG W S, et al. Abnormal expression of galectin-1, -3 leading to unexplained infertility by decreasing endometrial receptivity: a retrospective analysis[J]. Am J Transl Res, 2023, 15(1): 493-501. |
[12] |
HAN J, YOO I, LEE S, et al. Interleukin-10 and its receptors at the maternal-conceptus interface: expression, regulation, and implication for t helper 2 cytokine predominance and maternal immune tolerance in the pig, a true epitheliochorial placentation species[J]. Biol Reprod, 2022, 106(6): 1159-1174. DOI:10.1093/biolre/ioac058 |
[13] |
XIAO Y, HUANG Y, JIANG J P, et al. Identification of the prognostic value of Th1/Th2 ratio and a novel prognostic signature in basal-like breast cancer[J]. Hereditas, 2023, 160(1): 2. DOI:10.1186/s41065-023-00265-0 |
[14] |
LEBER A, TELES A, ZENCLUSSEN A C. REVIEW ARTICLE: regulatory T cells and their role in pregnancy[J]. Am J Reprod Immunol, 2010, 63(6): 445-459. DOI:10.1111/j.1600-0897.2010.00821.x |
[15] |
秦雪, 沙懿文, 杨梦豪, 等. 非编码RNA调控哺乳动物子宫内膜容受性和蜕膜化的研究进展[J]. 畜牧兽医学报, 2023, 54(4): 1347-1358. QIN X, SHA Y W, YANG M H, et al. Advances in regulation of non-coding RNA on mammalian endometrial receptivity and decidualization[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(4): 1347-1358. (in Chinese) |
[16] |
刘爱. BCL2L15调控山羊子宫内膜容受性的作用及机制[D]. 武汉: 华中农业大学, 2021. LIU A. The role and mechanism of BCL2L15 in regulating goats endometrial receptivity[D]. Wuhan: Huazhong Agricultural University, 2021. (in Chinese) |
[17] |
STEINHAUSER C B, ASKELSON K, LAMBO C A, et al. Lipid metabolism is altered in maternal, placental, and fetal tissues of ewes with small for gestational age fetuses[J]. Biol Reprod, 2021, 104(1): 170-180. DOI:10.1093/biolre/ioaa180 |
[18] |
BELL A W, BAUMAN D E. Adaptations of glucose metabolism during pregnancy and lactation[J]. J Mammary Gland Biol Neoplasia, 1997, 2(3): 265-278. DOI:10.1023/A:1026336505343 |
[19] |
何健闻. 妊娠后期热应激的母体生理响应及肠道菌群作用与机制[D]. 南京: 南京农业大学, 2020. HE J W. A study on the function and mechanism of intestinal microbiota involved in the maternal physiological response to late gestational heat stress[D]. Nanjing: Nanjing Agricultural University, 2020. (in Chinese) |
[20] |
SANTAROSA B P, FERREIRA D O L, HOOPER H B, et al. Endocrine-metabolic adaptations in dorper ewes: comparison between single and twin pregnancies during gestation, parturition, and postpartum[J]. Trop Anim Health Prod, 2022, 54(5): 307. DOI:10.1007/s11250-022-03306-4 |
[21] |
VEJRAZKOVA D, VCELAK J, VANKOVA M, et al. Steroids and insulin resistance in pregnancy[J]. J Steroid Biochem Mol Biol, 2014, 139: 122-129. DOI:10.1016/j.jsbmb.2012.11.007 |
[22] |
BARRETT H L, NITERT M D, D'EMDEN M, et al. Capillary triglycerides in late pregnancy-challenging to measure, hard to interpret: a cohort study of practicality[J]. Nutrients, 2021, 13(4): 1266. DOI:10.3390/nu13041266 |
[23] |
GRIFFITH R J, ALSWEILER J, MOORE A E, et al. Interventions to prevent women from developing gestational diabetes mellitus: an overview of cochrane reviews[J]. Cochrane Database Syst Rev, 2020, 6(6): CD012394. |
[24] |
CUI Y Z, SHAN Z R, HOU L T, et al. Effect of natural Chinese herbal supplements (TCMF4) on lactation performance and serum biomarkers in peripartal dairy cows[J]. Front Vet Sci, 2022, 8: 801418. DOI:10.3389/fvets.2021.801418 |
[25] |
ROCHE J R, FRIGGENS N C, KAY J K, et al. Invited review: body condition score and its association with dairy cow productivity, health, and welfare[J]. J Dairy Sci, 2009, 92(12): 5769-5801. DOI:10.3168/jds.2009-2431 |
[26] |
郭启勇. 奶牛产后瘤胃液代谢组与血液生化指标、炎性因子变化规律研究[D]. 银川: 宁夏大学, 2020. GUO Q Y. Changes of rumen fluid metabolome, blood biochemical indexes and inflammatory factors in postpartum dairy cows[D]. Yinchuan: Ningxia University, 2020. (in Chinese) |
[27] |
SPAANS O K, KUHN-SHERLOCK B, HICKEY A, et al. Temporal profiles describing markers of inflammation and metabolism during the transition period of pasture-based, seasonal-calving dairy cows[J]. J Dairy Sci, 2022, 105(3): 2669-2698. DOI:10.3168/jds.2021-20883 |
[28] |
汪雅哲. 围产期健康奶牛和脂肪肝奶牛血液代谢谱的比较分析[D]. 长春: 吉林大学, 2020. WANG Y Z. Comparison and evalation of blood metabolism profiles in peripartum healthy and fatty liver dairy cows[D]. Changchun: Jilin University, 2020. (in Chinese) |
[29] |
DENG F L, MCCLURE M, RORIE R, et al. The vaginal and fecal microbiomes are related to pregnancy status in beef heifers[J]. J Anim Sci Biotechnol, 2019, 10(1): 92. DOI:10.1186/s40104-019-0401-2 |
[30] |
张科. 妊娠期-泌乳期山羊母体微生物垂直影响子代胃肠道菌群与肠道功能的研究[D]. 杨凌: 西北农林科技大学, 2022. ZHANG K. Vertical effects of maternal microbiota on the GIT microbiome and gut function of offspring during pregnancy and lactation period in female goats[D]. Yangling: Northwest A&F University, 2022. (in Chinese) |
[31] |
焦万洪, 李莉. 牛瘤胃内主要细菌结构与功能探查[J]. 中国畜禽种业, 2016, 12(2): 84. JIAO W H, LI L. Investigation on the structure and function of main bacteria in the rumen of cattle[J]. The Chinese Livestock and Poultry Breeding, 2016, 12(2): 84. DOI:10.3969/j.issn.1673-4556.2016.02.063 (in Chinese) |
[32] |
KOREN O, GOODRICH J K, CULLENDER T C, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy[J]. Cell, 2012, 150(3): 470-480. DOI:10.1016/j.cell.2012.07.008 |
[33] |
MAO S Y, ZHANG M L, LIU J H, et al. Characterising the bacterial microbiota across the gastrointestinal tracts of dairy cattle: membership and potential function[J]. Sci Rep, 2015, 5: 16116. DOI:10.1038/srep16116 |
[34] |
JIA X B, HE Y, KANG Z, et al. Comparison of fecal microbiota communities between primiparous and multiparous cows during non-pregnancy and pregnancy[J]. Animals, 2023, 13(5): 869. DOI:10.3390/ani13050869 |
[35] |
QUEREDA J J, BARBA M, MOCÉ M L, et al. Vaginal microbiota changes during estrous cycle in dairy heifers[J]. Front Vet Sci, 2020, 7: 371. DOI:10.3389/fvets.2020.00371 |
[36] |
GENÍS S, CERRI R L A, BACH À, et al. Pre-calving intravaginal administration of lactic acid bacteria reduces metritis prevalence and regulates blood neutrophil gene expression after calving in dairy cattle[J]. Front Vet Sci, 2018, 5: 135. DOI:10.3389/fvets.2018.00135 |
[37] |
TARDÓN D C, HOFFMANN C, SANTOS F C R, et al. Relationships among indicators of metabolism, mammary health and the microbiomes of periparturient holstein cows[J]. Animals, 2022, 12(1): 3. |
[38] |
SHI Y, MIAO Z Y, SU J P, et al. Shift of maternal gut microbiota of tibetan antelope (Pantholops hodgsonii) during the periparturition period[J]. Curr Microbiol, 2021, 78(2): 727-738. DOI:10.1007/s00284-020-02339-y |
[39] |
张卓, 黄金秀, 杨飞云, 等. 早期粪菌移植对仔猪肠道发育、肠道菌群组成和肠道激素分泌的影响[J]. 动物营养学报, 2021, 33(7): 3745-3758. ZHANG Z, HUANG J X, YANG F Y, et al. Effects of early fecal microbiota transplantation on intestinal development, intestinal microbiota composition and intestinal hormone secretion of piglets[J]. Chinese Journal of Animal Nutrition, 2021, 33(7): 3745-3758. DOI:10.3969/j.issn.1006-267x.2021.07.017 (in Chinese) |
[40] |
CHONG S C, SUKOR N, ROBERT S A, et al. Endogenous GLP-1 levels play an important role in determining the efficacy of DPP-IV Inhibitors in both prediabetes and type 2 diabetes[J]. Front Endocrinol, 2022, 13: 1012412. DOI:10.3389/fendo.2022.1012412 |
[41] |
ZHANG K, FUJITA Y, CHANG L J, et al. Abnormal composition of gut microbiota is associated with resilience versus susceptibility to inescapable electric stress[J]. Transl Psychiatry, 2019, 9(1): 231. DOI:10.1038/s41398-019-0571-x |
[42] |
KELLY T N, BAZZANO L A, AJAMI N J, et al. Gut microbiome associates with lifetime cardiovascular disease risk profile among bogalusa heart study participants[J]. Circ Res, 2016, 119(8): 956-964. DOI:10.1161/CIRCRESAHA.116.309219 |
[43] |
KLEIN-JÖBSTL D, QUIJADA N M, DZIECIOL M, et al. Microbiota of newborn calves and their mothers reveals possible transfer routes for newborn calves' gastrointestinal microbiota[J]. PLoS One, 2019, 14(8): e0220554. DOI:10.1371/journal.pone.0220554 |
[44] |
徐晓锋, 郭成. 淀粉诱导奶牛乳脂下降后奶牛瘤胃细菌菌群变化[J]. 浙江农业学报, 2019, 31(10): 1591-1598. XU X F, GUO C. Changes of rumen bacterial flora after starch induced milk fat depression in dairy cows[J]. Acta Agriculturae Zhejiangensis, 2019, 31(10): 1591-1598. DOI:10.3969/j.issn.1004-1524.2019.10.03 (in Chinese) |
[45] |
OTERC C, DE RUIZ C S, IBAÑEZ R, et al. Lactobacilli and enterococci isolated from the bovine vagina during the estrous cycle[J]. Anaerobe, 1999, 5(3-4): 305-307. DOI:10.1006/anae.1999.0245 |
[46] |
NURIEL-OHAYON M, NEUMAN H, ZIV O, et al. Progesterone increases Bifidobacterium relative abundance during late pregnancy[J]. Cell Rep, 2019, 27(3): 730-736. e3. DOI:10.1016/j.celrep.2019.03.075 |
[47] |
HARDING J E, EVANS P C, GLUCKMAN P D. Maternal growth hormone treatment increases placental diffusion capacity but not fetal or placental growth in sheep[J]. Endocrinology, 1997, 138(12): 5352-5358. DOI:10.1210/endo.138.12.5584 |
[48] |
赵晓娥, 宋爱爱, 孙念琴, 等. 配种时间对母羊妊娠期生殖激素与生长激素的影响[J]. 家畜生态学报, 2018, 39(2): 75-78, 93. ZHAO X E, SONG A A, SUN N Q, et al. Effect of mating time on reproductive hormone and growth hormone of preganant ewes[J]. Acta Ecologae Animalis Domastici, 2018, 39(2): 75-78, 93. DOI:10.3969/j.issn.1673-1182.2018.02.015 (in Chinese) |
[49] |
WALLACE J M, MILNE J S, AITKEN R P. Maternal growth hormone treatment from day 35 to 80 of gestation alters nutrient partitioning in favor of uteroplacental growth in the overnourished adolescent sheep1[J]. Biol Reprod, 2004, 70(5): 1277-1285. DOI:10.1095/biolreprod.103.023853 |
[50] |
RIBEIRO E S, BRUNO R G S, FARIAS A M, et al. Low doses of bovine somatotropin enhance conceptus development and fertility in lactating dairy cows[J]. Biol Reprod, 2014, 90(1): 10. |
[51] |
SFERRUZZI-PERRI A N, SANDOVICI I, CONSTANCIA M, et al. Placental phenotype and the insulin-like growth factors: resource allocation to fetal growth[J]. J Physiol, 2017, 595(15): 5057-5093. DOI:10.1113/JP273330 |
[52] |
CARDOSO C L, SOMWE D, ESPOSITO G. 0776 neonate immunity, growth, and puberty in dairy calves: influence of dietary conjugated linoleic acid supplementation of the dam[J]. J Anim Sci, 2016, 94(S5): 373. |
[53] |
MAZURKIEWICZ D, BRONKOWSKA M. Circulating insulin and IGF-1 and frequency of food consumption during pregnancy as predictors of birth weight and length[J]. Nutrients, 2021, 13(7): 2344. DOI:10.3390/nu13072344 |
[54] |
STREMMING J, HEARD S, WHITE A, et al. IGF-1 infusion to fetal sheep increases organ growth but not by stimulating nutrient transfer to the fetus[J]. Am J Physiol Endocrinol Metab, 2021, 320(3): E527-E538. DOI:10.1152/ajpendo.00453.2020 |
[55] |
CHEN Z L, MEIMA M E, PEETERS R P, et al. Thyroid hormone transporters in pregnancy and fetal development[J]. Int J Mol Sci, 2022, 23(23): 15113. DOI:10.3390/ijms232315113 |
[56] |
CARVALHO D P, DIAS A F, SFERRUZZI-PERRI A N, et al. Gaps in the knowledge of thyroid hormones and placental biology[J]. Biol Reprod, 2022, 106(6): 1033-1048. DOI:10.1093/biolre/ioac006 |
[57] |
FORHEAD A J, FOWDEN A L. Thyroid hormones in fetal growth and prepartum maturation[J]. J Endocrinol, 2014, 221(3): R87-R103. DOI:10.1530/JOE-14-0025 |
[58] |
钟俊洁, 杨桂芳, 刘帅, 等. 甲状腺激素受体α在猪有腔卵泡发育和孤雌激活胚胎发育过程中表达模式[J]. 畜牧兽医学报, 2014, 45(6): 901-909. ZHONG J J, YANG G F, LIU S, et al. Expression pattern analysis of thyroid hormone receptor alpha in pig antral follicles and parthenogenetic early embryos[J]. Acta Veterinaria et Zootechnica Sinica, 2014, 45(6): 901-909. (in Chinese) |
[59] |
DAVIES K L, CAMM E J, ATKINSON E V, et al. Development and thyroid hormone dependence of skeletal muscle mitochondrial function towards birth[J]. J Physiol, 2020, 598(12): 2453-2468. DOI:10.1113/JP279194 |
[60] |
EERDEKENS A, VERHAEGHE J, DARRAS V, et al. The placenta in fetal thyroid hormone delivery: from normal physiology to adaptive mechanisms in complicated pregnancies[J]. J Matern Fetal Neonatal Med, 2020, 33(22): 3857-3866. DOI:10.1080/14767058.2019.1586875 |
[61] |
CHENG P K, CHEN H C, KUO P L, et al. Associations between oxidative/nitrosative stress and thyroid hormones in pregnant women-Tainan birth cohort study (TBCS)[J]. Antioxidants (Basel), 2022, 11(2): 334. DOI:10.3390/antiox11020334 |
[62] |
VONNAHME K A, NEVILLE T L, PERRY G A, et al. Maternal dietary intake alters organ mass and endocrine and metabolic profiles in pregnant ewe lambs[J]. Anim Reprod Sci, 2013, 141(3-4): 131-141. DOI:10.1016/j.anireprosci.2013.07.010 |
[63] |
姚路连. 奶牛围产期血清相关激素水平动态变化的研究[D]. 扬州: 扬州大学, 2014. YAO L L. Study on dynamic changes of serum hormone indexes in perinatal dairy cows[D]. Yangzhou: Yangzhou University, 2014. (in Chinese) |
[64] |
CAMACHO L E, MEYER A M, NEVILLE T L, et al. Neonatal hormone changes and growth in lambs born to dams receiving differing nutritional intakes and selenium supplementation during gestation[J]. Reproduction, 2012, 144(1): 23-35. DOI:10.1530/REP-11-0302 |
[65] |
LEMLEY C O, MEYER A M, NEVILLE T L, et al. Dietary selenium and nutritional plane alter specific aspects of maternal endocrine status during pregnancy and lactation[J]. Domest Anim Endocrinol, 2014, 46: 1-11. DOI:10.1016/j.domaniend.2013.09.006 |
[66] |
SARMIENTO-ORTEGA V E, MORONI-GONZÁLEZ D, DIAZ A, et al. Hepatic insulin resistance model in the male wistar rat using exogenous insulin glargine administration[J]. Metabolites, 2023, 13(4): 572. DOI:10.3390/metabo13040572 |
[67] |
BRIT H B, LAURA D B, STEPHANIE R W, et al. A chronic fetal leucine infusion potentiates fetal insulin secretion and increases pancreatic islet size, vascularity, and β cells in late-gestation sheep[J]. J Nutr, 2020, 150(8): 2061-2069. DOI:10.1093/jn/nxaa138 |
[68] |
VAUGHAN O R, ROSARIO F J, POWELL T L, et al. Regulation of placental amino acid transport and fetal growth[J]. Prog Mol Biol Transl Sci, 2017, 145: 217-251. |
[69] |
HAY W W Jr. Recent observations on the regulation of fetal metabolism by glucose[J]. J Physiol, 2006, 572(1): 17-24. DOI:10.1113/jphysiol.2006.105072 |
[70] |
JOVANDARIC M Z, MILENKOVIC S J, BABOVIC I R, et al. The effect of glucose metabolism and breastfeeding on the intestinal microbiota of newborns of women with gestational diabetes mellitus[J]. Medicina (Kaunas), 2022, 58(3): 413. DOI:10.3390/medicina58030413 |
[71] |
BI Y L, TU Y, ZHANG N F, et al. Multiomics analysis reveals the presence of a microbiome in the gut of fetal lambs[J]. Gut, 2021, 70(5): 853-864. DOI:10.1136/gutjnl-2020-320951 |
[72] |
ALIPOUR M J, JALANKA J, PESSA-MORIKAWA T, et al. The composition of the perinatal intestinal microbiota in cattle[J]. Sci Rep, 2018, 8(1): 10437. DOI:10.1038/s41598-018-28733-y |
[73] |
UHLIG H H, POWRIE F. Dendritic cells and the intestinal bacterial flora: a role for localized mucosal immune responses[J]. J Clin Invest, 2003, 112(5): 648-651. DOI:10.1172/JCI19545 |
[74] |
RESCIGNO M, URBANO M, VALZASINA B, et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria[J]. Nat Immunol, 2001, 2(4): 361-367. DOI:10.1038/86373 |
[75] |
郭伟. 放牧牦牛瘤胃微生物发育模式研究[D]. 兰州: 兰州大学, 2021. GUO W. The development model of microbiota in the rumen of grazing yaks[D]. Lanzhou: Lanzhou University, 2021. (in Chinese) |
[76] |
BI Y L, COX M S, ZHANG F, et al. Feeding modes shape the acquisition and structure of the initial gut microbiota in newborn lambs[J]. Environ Microbiol, 2019, 21(7): 2333-2346. DOI:10.1111/1462-2920.14614 |
[77] |
ZHANG J B, LIANG Z Y, KAO R D, et al. Maternal fecal microbes contribute to shaping the early life assembly of the intestinal microbiota of co-inhabiting yak and cattle calves[J]. Front Microbiol, 2022, 13: 916735. DOI:10.3389/fmicb.2022.916735 |
[78] |
GUO J Z, LI P F, ZHANG K, et al. Distinct stage changes in early-life colonization and acquisition of the gut microbiota and its correlations with volatile fatty acids in goat kids[J]. Front Microbiol, 2020, 11: 584742. DOI:10.3389/fmicb.2020.584742 |
[79] |
SANTILLO A, FIGLIOLA L, CILIBERTI M G, et al. Focusing on fatty acid profile in milk from different species after in vitro digestion[J]. J Dairy Res, 2018, 85(2): 257-262. DOI:10.1017/S0022029918000274 |
[80] |
STINSON L F, GAY M C L, KOLEVA P T, et al. Human milk from atopic mothers has lower levels of short chain fatty acids[J]. Front Immunol, 2020, 11: 1427. DOI:10.3389/fimmu.2020.01427 |
[81] |
CHOW J, PANASEVICH M R, ALEXANDER D, et al. Fecal metabolomics of healthy breast-fed versus formula-fed infants before and during in vitro batch culture fermentation[J]. J Proteome Res, 2014, 13(5): 2534-2542. DOI:10.1021/pr500011w |
[82] |
JIANG T M, LIU B, LI J F, et al. Association between sn-2 fatty acid profiles of breast milk and development of the infant intestinal microbiome[J]. Food Funct, 2018, 9(2): 1028-1037. DOI:10.1039/C7FO00088J |
[83] |
LI Y P, REN L, WANG Y Y, et al. The effect of breast milk microbiota on the composition of infant gut microbiota: a cohort study[J]. Nutrients, 2022, 14(24): 5397. DOI:10.3390/nu14245397 |
[84] |
GENSOLLEN T, IYER S S, KASPER D L, et al. How colonization by microbiota in early life shapes the immune system[J]. Science, 2016, 352(6285): 539-544. DOI:10.1126/science.aad9378 |
[85] |
MISHRA A, LAI G C, YAO L J, et al. Microbial exposure during early human development primes fetal immune cells[J]. Cell, 2021, 184(13): 3394-3409. e20. DOI:10.1016/j.cell.2021.04.039 |
[86] |
YU K, RODRIGUEZ M D, PAUL Z, et al. Proof of principle: physiological transfer of small numbers of bacteria from mother to fetus in late-gestation pregnant sheep[J]. PLoS One, 2019, 14(6): e0217211. DOI:10.1371/journal.pone.0217211 |
[87] |
DE AGVERO M G, GANAL-VONARBURG S C, FUHRER T, et al. The maternal microbiota drives early postnatal innate immune development[J]. Science, 2016, 351(6279): 1296-1302. DOI:10.1126/science.aad2571 |
[88] |
KAO H F, WANG Y C, TSENG H Y, et al. Goat milk consumption enhances innate and adaptive immunities and alleviates allergen-induced airway inflammation in offspring mice[J]. Front Immunol, 2020, 11: 184. DOI:10.3389/fimmu.2020.00184 |
[89] |
WANG K, HU C J, TANG W, et al. The enhancement of intestinal immunity in offspring piglets by maternal probiotic or synbiotic supplementation is associated with the alteration of gut microbiota[J]. Front Nutr, 2021, 8: 686053. DOI:10.3389/fnut.2021.686053 |
(编辑 郭云雁)