畜牧兽医学报  2023, Vol. 54 Issue (10): 4338-4349. DOI: 10.11843/j.issn.0366-6964.2023.10.030    PDF    
大型艾美耳球虫重组蛋白GAPDH对兔的免疫保护效果评价
郑若愚1, 肖洁1, 白鑫1, 陈浩1, 蒲家艳1, 任永军2,3, 杨光友1     
1. 四川农业大学动物医学院, 成都 611130;
2. 四川省畜牧科学研究院, 成都 610066;
3. 动物遗传育种四川省重点实验室, 成都 610066
摘要:本研究旨在评价大型艾美耳球虫重组蛋白(rEm-GAPDH)对兔的免疫保护效果,为大型艾美耳球虫重组亚单位疫苗的研制奠定基础。根据转录组数据筛选出Em-GAPDH基因,进行原核表达与蛋白纯化;将50只45日龄无球虫感染幼兔随机分为5组(空白对照组、不免疫攻虫组、Trx-His-S tag攻虫对照组、Quil-A saponin攻虫对照组和rEm-GAPDH免疫组),分别经颈部皮下注射1 mL PBS、1 mL PBS、1 mL PBS含100 μg pET-32a空载蛋白和1 mg Quil-A、1 mL PBS含1 mg Quil-A、1mL 100 μg rEm-GAPDH含1 mg Quil-A,首免14 d后同等剂量加强免疫,二免14 d后每只兔经口感染1×105个大型艾美耳球虫孢子化卵囊,观察各组兔临床症状,每周固定时间采血和称重,感染14 d后宰杀剖检并测定和统计各组兔的卵囊排出量、相对增重、特异性IgG抗体和细胞因子等。结果成功表达了重组蛋白rEm-GAPDH,大小在59 ku左右,且大部分表达在包涵体。免疫保护试验表明:感染后不免疫攻虫组出现症状,而免疫组症状不明显。rEm-GAPDH免疫组的卵囊减少率达57.16%,相对增重率显著大于不免疫攻虫组(P < 0.05),ACI值为144.96。特异性IgG抗体水平、细胞因子(IFN-γ、IL-2、IL-4、IL-10、TGF-β)水平均与对照组存在显著差异(P < 0.05)。大型艾美耳球虫重组蛋白rEm-GAPDH可以减少增重损失和卵囊排出,能引发宿主体内的细胞免疫和体液免疫应答,具有一定免疫保护作用,可以作为大型艾美耳球虫重组亚单位疫苗的候选抗原。
关键词    大型艾美耳球虫    三磷酸甘油醛脱氢酶    重组蛋白    免疫保护    
Evaluation of the Immunoprotective Effect of Recombinant Protein of Eimeria magna 3-Phosphoglyceraldehyde Dehydrogenase on Rabbits
ZHENG Ruoyu1, XIAO Jie1, BAI Xin1, CHEN Hao1, PU Jiayan1, REN Yongjun2,3, YANG Guangyou1     
1. College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
2. Sichuan Animal Science Academy, Chengdu 610066, China;
3. Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, China
Abstract: The aim of this study was to evaluate the immunoprotective effect of rEm-GAPDH, a recombinant protein of Eimeria magna, on rabbits and to lay the foundation for the development of a recombinant subunit immunization vaccine for rabbits. Screening of Em-GAPDH gene based on transcriptome data for prokaryotic expression and protein purification.Then 50 45-day-old coccidia-free rabbits were randomly divided into 5 groups (Unimmunized and unchallenged group, unimmunized and challenged group, Trx-His-S tag-challenged group, Quil-A saponin-challenged group and rEm-GAPDH immunized group). 1 mL PBS, 1 mL PBS, 1 mL PBS containing 100 μg pET-32a and 1 mg Quil-A, 1 mL PBS containing 1 mg Quil-A, 1 mL 100 μg rEm-GAPDH and 1 mg Quil-A were respectively injected subcutaneously via the neck to the rabbits, and were booster immunized with the same dose 14 d after the first immunization. The clinical manifestations of each group were observed after orally infected 1×105 sporulated oocysts of Eimeria magna to every rabbit, while blood sample and body weight data were collected at regular intervals every week. After 14 d of the challenge, rabbits were dissected, and oocyst output, relative weight gain, cytokines, and specific IgG antibodies were measured and counted for each group. The results showed that the recombinant protein rEm-GAPDH was successfully expressed, with a size of about 59 ku and mostly expressed in the inclusion bodies. The immunoprotection test showed that typical symptoms of rabbit intestinal coccidiosis appeared in the unimmunized and challenged group after infection, while rEm-GAPDH immunized group showed no significant symptoms. rEm-GAPDH immunized group showed 57.16% oocyst reduction, the relative weight gain rate was significantly greater than the unimmunized and challenged group (P < 0.05), specific IgG antibody levels, cytokine (IFN-γ, IL-2, IL-4, IL-10, TGF-β) levels were significantly different from those of the control group (P < 0.05). The ACI of rEm-GAPDH immunized group was 144.96. The recombinant protein rEm-GAPDH of E.magna can reduce weight loss and oocyst excretion, trigger cellular and humoral immune responses in the host, and have certain immunoprotective effects, thus can be used as a candidate antigen for E.magna recombinant subunit vaccine.
Key words: rabbit    Eimeria magna    3-phosphoglyceraldehyde dehydrogenase    recombinant protein    immunoprotection    

大型艾美耳球虫(Eimeria magna)具有明显的致病性,是兔球虫中的常见虫种之一[1-2]。在大型艾美耳球虫裂殖生殖时期,裂殖子进入肠上皮细胞内发育繁殖,新的裂殖子产生后逸出,再进入新的上皮细胞内,如此反复,严重破坏肠道组织,损坏绒毛结构,导致疾病发作[3-4]。药物预防是目前兔业生产中防治兔球虫的主要手段[5-7],但由于球虫耐药性增强以及药物在兔肉中残留等问题,免疫防控越来越受到人们的关注。目前已选育出大型艾美耳球虫的早熟株[8-9],并建立了大型艾美耳球虫转基因虫株[10]。同时,采用基因工程技术来研制安全、有效的兔球虫新型疫苗也是一个很有吸引力的研究方向。其中,重组亚单位疫苗的表达系统较为成熟,该系统具有生产周期短、产量高和生产成本相对较低等优点,而筛选具有良好免疫保护效果的疫苗抗原蛋白,无疑是重组亚单位疫苗研制的关键[11]

三磷酸甘油醛脱氢酶(GAPDH)是催化糖酵解反应中的一个关键酶,该酶在真核生物以及原核生物中广泛存在,且表达水平高[12-13]。日本血吸虫(Schistosoma japonicum)[14-17]、曼氏血吸虫(Schistosoma mansoni)[18-20]、旋盘尾丝虫(Onchocerca volvlus)[21-22]、捻转血矛线虫(Haemonchus contortus)[23]和鸡巨型艾美耳球虫(Eimeria maxima)[24]的GAPDH可作为重组亚单位疫苗候选抗原。目前尚无有关兔大型艾美耳球虫GAPDH的研究报道,本研究基于实验室测定的大型艾美耳球虫转录组数据,筛选出Em-GAPDH基因,通过原核表达获得了重组蛋白rEm-GAPDH,通过动物保护试验评价了rEm-GAPDH的免疫保护效果,为兔大型艾美耳球虫重组亚单位疫苗的研制奠定基础。

1 材料与方法 1.1 实验动物许可与伦理声明

本实验所有程序均按照四川农业大学动物伦理委员会(中国,雅安)实验动物福利与使用规则的要求进行(批准号:2019-189)。

1.2 材料

1.2.1 实验用虫株、cDNA及实验动物   大型艾美耳球虫不同发育阶段的cDNA(未孢子化卵囊、孢子化卵囊、裂殖体和配子体)由四川农业大学动物寄生虫病研究中心提供。

实验动物为四川农业大学动物寄生虫病研究中心自繁自养的无球虫新西兰兔50只(雌雄各半),体重为1.1 kg±0.2 kg。幼兔在18日龄断奶,使用人用婴儿奶粉饲喂至30日龄。实验兔雌雄分开,每2只饲养于不锈钢笼具中,饲养笼经火焰喷烧处理,在底部放置塑料隔板,减少实验兔与粪便的接触。期间提供煮沸的饮水和80 ℃烘烤后的兔饲料,并轮换使用抗球虫药物地克珠利和癸氧喹酯,攻虫前1周实验兔停药并进行检测,后续使用专门定制的未添加抗球虫药物的兔饲料进行饲喂。

1.2.2 主要试剂与仪器   限制性内切酶(BamH I/EcoR I)、pMD19-T载体、T4 DNA Ligase购自宝生物工程(大连)有限公司;大肠杆菌DH5α和BL21(DE3)感受态购自天根生化科技(北京)有限公司;HRP标记羊抗兔IgG抗体购自武汉博士德生物工程有限公司;pET32a(+)质粒由四川农业大学动物寄生虫病研究中心提供;Rabbit IFN-γ ELISA development kit (HRP)试剂盒,购自瑞典Mabtech公司;Rabbit IL-2、IL-4、IL-10、IL-17 ELISA Kit试剂盒,Rabbit Transforming Growth factor β1(TGF-β)ELISA Kit试剂盒,购自武汉CUSABIO BIOTECH公司。

PCR仪:Mastercycler Gradient,eppendorf,美国;中高压层析系统:NGCTM10,Bio-Rad,美国;半干转印槽:SEMIDRYBLOT,Bio-Rad,美国;McMaster计数板,富士平工业株式会社。

1.3 方法

1.3.1 Em-GAPDH基因的克隆测序与生物信息学分析   根据实验室测定的转录组数据筛选出的Em-GAPDH基因,用Primer Premier 5.0软件设计引物:(上游5′-CGGGATCCATGCTCTACGCTGACGTGTAC-3′,BamHI;下游5′-CGGAATTCTTAGTTGCCGTCTTTCTGAGACA-3′,EcoRI)。克隆测序后利用生物信息学软件对氨基酸序列进行分析,使用ExPASy ProtParam工具预测分子量(MW)和等电点(pI),使用SignalP5.0 Server和TMHMM Server v. 2.0.预测该基因信号肽和跨膜区的存在。

1.3.2 Em-GAPDH的表达与纯化   取不同发育阶段虫体cDNA混合液为模板,对目的片段进行PCR扩增。将目的条带与pMD19-T载体连接,以测序结果正确的重组质粒为模板再次进行PCR扩增,产物和pET32a(+)质粒一起双酶切、T4连接后转入感受态BL21(DE3)中,培养阳性菌至菌液OD590 nm至0.6后,加入1.0 mmol·L-1 IPTG,37 ℃诱导表达8 h(110 r·min-1);菌液7 000 r·min-1离心10 min,在菌体沉淀中加入裂解液(50 mmol·L-1 Tris-HCl,pH=8.0)重悬菌体,反复冻融3次后超声破碎。取上清和尿素溶解的沉淀进行SDS-PAGE判断原核表达重组蛋白的可溶性。用镍离子亲和层析的方法纯化重组蛋白,并将纯化后的重组蛋白用PBS进行透析,SDS-PAGE分析纯化效果。

1.3.3 rEm-GAPDH的蛋白免疫印迹分析   人工感染大型艾美耳球虫阳性兔血清与球虫阴性兔血清由四川农业大学动物寄生虫病研究中心提供。所有血清样品均储存于-20 ℃。

样品(40 μL蛋白质和10 μL负载缓冲液)煮沸10 min,12%十二烷基硫酸钠-PAGE分离,在室温下转移到硝酸纤维素膜35 min。膜在Tris-Buffed生理盐水-吐温-(TBST)(20 mmol·L-1 Tris-HCl,150 mmol·L-1氯化钠,0.05% v/v吐温-20,pH 7.4)中清洗3次,每次5 min,包被5%脱脂牛奶2 h,然后与阳性血清孵育过夜(用0.01 mol·L-1 PBS稀释1:200)。再用辣根过氧化物酶(HRP)标记的羊抗兔抗体(1:1 000稀释)孵育2 h,再清洗4次,用二氨基联苯胺试剂检测信号。

1.3.4 rEm-GAPDH的稳定性试验   选择纯化后的重组蛋白rEm-GAPDH,分别保存于4 ℃、-20 ℃和-80 ℃,每周固定时间分别制样,持续7周。SDS-PAGE分析对比7周的蛋白浓度变化。

1.3.5 大型艾美耳球虫rEm-GAPDH对兔的免疫保护效果观察

1.3.5.1 分组和免疫程序  本试验中,50只45日龄的无球虫感染幼兔分组情况如表 1。免疫方式为颈部皮下注射,免疫接种2次,两次免疫时间间隔14 d。加强免疫后14 d,除空白对照组外,其余实验兔均口服感染1×105个孢子化卵囊。

表 1 实验动物的分组和免疫程序 Table 1 Groups of experimental animal and immunization program

1.3.5.2 免疫保护效果评价  观察首免、二免及攻虫后各组实验兔的精神状态、食欲及粪便形状等临床表现。

在首免前、二免前及宰杀前对实验兔逐只称重,免疫后攻虫前平均增重=攻虫前体重-首免前体重;攻虫后平均增重=剖杀前体重-攻虫前体重;相对增重率=(实验各组平均增重/不感染不免疫平均增重)×100%;料肉比=(饲喂前饲料总量-剖杀后剩余饲料总量)/感染后增重总量;试验结束时收集实验兔肠道进行病变计分,ACI=(相对增重率+存活率)-(病变值+卵囊值)。效果判定标准如下:ACI≥180保护效果优秀,160≤ACI < 179保护效果良好,120≤ACI < 160保护效果中等,ACI < 120无保护效果[25-27]

参考动物球虫病诊断技术国家标准(GB/T18647—2020),剖检时,从每只实验兔直肠中收集2 g粪便,使用麦克马斯特法计算每克粪便中的卵囊排出量(oocyst per gram, OPG),并计算卵囊减少率。卵囊减少率=[(不免疫攻虫组OPG-免疫组OPG)/不免疫攻虫组OPG]×100%。

1.3.6 细胞因子及抗体水平的检测   从首免前开始,到攻虫后直至剖杀,每周定时采集实验兔血清。对攻虫前血清中不同细胞因子(IL-2、IL-4、IL-10、IL-17、TGF-β、IFN-γ)水平进行测定,具体操作方法参照试剂盒说明书。使用基于重组蛋白rEm-GAPDH的间接ELISA方法检测实验兔每周的血清中特异性IgG抗体水平(蛋白稀释比1:100,二抗稀释比1:3 000)。

1.3.7 数据处理   使用GraphPad软件(GraphPad Prism版本5.0)制作生成所有图形。使用SPSS Statistics 20.0确定组间的统计学差异,对每个因变量(平均增重、卵囊排出量)的重复测量进行方差分析。

2 结果 2.1 Em-GAPDH基因克隆、生物信息学分析及原核表达

以大型艾美耳球虫cDNA为模板扩增出Em-GAPDH基因,经克隆测序分析,扩增片段与大型艾美耳球虫转录组数据中的序列相似性达100%(GenBank:OQ128328)。Em-GAPDH序列长度为1 149 bp(图 1a),编码382个氨基酸。预测相对分子量为41.19 ku,计算等电点(PI)为7.01。

泳道:M. DNA分子质量标准。a. Em-GAPDH的扩增:1:基因Em-GAPDH扩增结果。b. 双酶切鉴定:1~4. Em-GAPDH的双酶切;5~7. pET32a(+)载体质粒的双酶切。c. 成功构建表达载体:1~5. Em-GAPDH表达载体菌液PCR Lane: M. DNA marker; a. Amplification of Em-GAPDH: 1. Em-GAPDH; b. Double-restriction digestion identification: 1-4. Em-GAPDH; 5-7. pET32a(+) vector; c. Successful construction of expression vector; 1-5. Identification by bacterial liquid PCR 图 1 基因Em-GAPDH的克隆(a)、双酶切鉴定(b)与菌液PCR鉴定(c) Fig. 1 Cloning, enzymatic cleavage and PCR identification of the gene Em-GAPDH

以测序成功的菌液扩增培养后提取质粒,将基因克隆菌的质粒与pET32a(+)质粒一起在37 ℃条件下进行双酶切30 min。酶切反应完成后,其产物进行琼脂糖凝胶电泳(图 1b),并成功与pET-32a(+)载体连接,经转化、涂板及单菌落鉴定,成功构建重组质粒pET-32a(+)-Em-GAPDH(图 1c)。

2.2 rEm-GAPDH的蛋白纯化和免疫印迹分析

重组蛋白rEm-GAPDH在诱导剂IPTG终浓度为1.0 mmol·L-1,37 ℃ 130 r·min-1诱导表达12 h的条件下表达量最高,大小在59 ku左右,且大部分表达在包涵体。重组蛋白经镍离子亲和层析后的纯化效果良好,无明显杂条带(图 2)。同时,rEm-GAPDH能识别兔大型艾美耳球虫阳性血清(图 3),具有良好的免疫反应性。

泳道:M.蛋白质分子量标记(ku);1. 重组菌诱导表达后菌体裂解物上清;2~5. 菌体裂解物先后溶解于2、4、6、8 mol·L-1尿素;6. 诱导表达后未经纯化的rEm-GAPDH;7. 经纯化的rEm-GAPDH Lanes: M. protein molecular weight markers (in ku); 1. soluble protein; 2-5.inclusion body in 2, 4, 6, 8 mol·L-1 urea; 6. non-purified rEm-GAPDH; 7. purified rEm-GAPDH 图 2 重组蛋白rEm-GAPDH的可溶性分析及纯化后效果 Fig. 2 SDS-PAGE of solubility analysis of recombinant protein rEm-GAPDH
泳道:M.蛋白质分子量标记(ku);1.经纯化的rEm-GAPDH与人工感染大型艾美耳球虫兔血清识别反应;2.经纯化的rEm-GAPDH与无球虫感染健康兔血清识别反应 Lanes: M.protein molecular weight markers (in ku); 1.purified rEm-GAPDH detected by serum from naturally infested with Eimeria magna; 2.purified rEm-GAPDH detected by healthy rabbit′s serum 图 3 纯化后重组蛋白rEm-GAPDH的蛋白免疫印迹分析 Fig. 3 Western blotting of purified recombinant protein
2.3 重组蛋白rEm-GAPDH稳定性试验

纯化后重组蛋白各加5%的甘油,混匀后分别保存于-80 ℃、-20 ℃、4℃三种温度下,持续观察7周。由SDS-PAGE结果可知,重组蛋白在7周内浓度恒定,没有出现明显的降低情况(图 4)。所以重组蛋白rEm-GAPDH的稳定性良好。

泳道:M.蛋白质分子量标记(ku);1~7,保存于-80℃下纯化后蛋白0~7周的制样;8~14,保存于-20℃下纯化后蛋白0~7周的制样;15~21,保存于4℃下纯化后蛋白0~7周的制样 Lanes: M.protein molecular weight markers (in ku); 1-7. stored at-80℃ for 0-7 weeks of purified protein preparation; 8-14. stored at-20℃ for 0-7 weeks of purified protein preparation; 15-21. stored at 4℃ for 0-7 weeks of purified protein preparation 图 4 纯化后重组蛋白rEm-GAPDH在不同温度下0~7周制样的SDS-PAGE图 Fig. 4 SDS-Page of purified recombinant protein rEm-GAPDH samples prepared at different temperatures for 0-7 weeks
2.4 rEm-GAPDH对家兔的免疫保护效果

2.4.1 临床表现及剖检病变   在攻虫前各组实验兔体况表现正常,在经口感染1×105个孢子化卵囊后,第1周未有明显症状,感染后第2周不免疫攻虫组出现大型艾美耳肠球虫病的典型症状:食欲轻微减退,精神沉郁,粪便变软不成形;而rEm-GAPDH免疫组症状不明显。

剖检观察肠道病变发现,rEm-GAPDH免疫组整体病变程度相较三个攻虫对照组更轻,病变计分(1.30±0.95)低于不免疫攻虫组(1.70±0.67)、Trx-His-S tag攻虫对照组(1.60±0.97)和Quil-A saponin攻虫对照组(1.60±0.70),但不存在显著差异(P>0.05)。

2.4.2 相对增重   初次免疫、二次免疫和攻虫时各组体重无明显差异。感染14 d后空白对照组平均增重(423.75±39.72 g),与不免疫攻虫组(平均增重183.33±168.39 g)、Trx-His-S tag攻虫对照组(平均增重205.50±72.62 g)和Quil-A saponin攻虫对照组(平均增重191.81±76.98 g)的三个组间呈现显著差异(P<0.05)。rEm-GAPDH免疫组平均增重288.00±41.24 g,与其他对照组之间也存在明显差异(P<0.05)。其中,不免疫攻虫组的相对增重率仅为空白对照的43.26%,感染后第二周甚至有个别试验兔体重出现负增长;而rEm-GAPDH免疫组的相对增重率为67.96%(表 2)。

表 2 rEm-GAPDH对兔感染大型艾美耳球虫的保护效果统计 Table 2 Protective effects of rEm-GAPDH against Eimeria magna infection under different evaluation indicators

2.4.3 卵囊排出量   感染后14 d结束试验并检测每只实验兔的卵囊排出量,空白对照组的粪便样本中未检查到大型艾美耳球虫卵囊;不免疫攻虫组平均OPG达3.15×104,Trx-His-S tag攻虫对照组平均OPG达3.09×104,Quil-A saponin攻虫对照组平均OPG达3.11×104,均不存在显著差异(P>0.05)。而rEm-GAPDH免疫组的平均OPG为1.34×104,与不免疫攻虫组相比显著减少(P<0.05),免疫组的卵囊减少率达57.16%(表 2)。综合上述指标,得到rEm-GAPDH免疫组的ACI值为144.96,具有中等保护效果。

2.4.4 血清中特异性IgG抗体水平的变化   免疫接种后,rEm-GAPDH免疫组实验兔的血清平均特异性IgG抗体水平升高,其平均水平极显著的高于各个对照组的抗体水平(P<0.01);rEm-GAPDH免疫组的血清平均特异性IgG抗体水平在加强免疫后1周达到最高水平,但后续抗体水平未维持在较高水平,在第7周出现较明显的下降(图 5)。

Immunization:第一次和第二次免疫蛋白;challenge:大型艾美耳球虫攻虫 Immunization: first and second immunization with vaccine; challenge: challenge with Eimeria magna 图 5 实验兔血清中特异性IgG抗体水平的变化情况 Fig. 5 Variation of specific IgG antibody levels in sera of immunized rabbits

2.4.5 细胞因子   免疫组除IL-17水平无明显变化外,其他细胞因子(IL-2、IL-4、IL-10、TGF-β和IFN-γ)水平均显著高于不免疫攻虫组及Quil-A saponin攻虫对照组(图 6)。

不同的字母标注的数据间存在显著差异(P < 0.05),相同字母标注的数据间不存在显著差异(P>0.05) There is a statistically significant difference between data labeled with different letters (P < 0.05), and there is no statistically significant difference between data labeled with the same letters (P>0.05) 图 6 两次免疫后实验兔血清中IL-2、IL-4、IL-10、IL-17、TGF-β和IFN-γ的变化情况 Fig. 6 The changes of IL-2, IL-4, IL-10, IL-17, TGF-β and IFN-γ in serum of experimental rabbits after two immunizations
3 讨论

兔球虫基因工程苗的研究主要集中在核酸疫苗[28]、活载体疫苗[29-30]和重组亚单位疫苗[31-32]上,而这些研究的关键在于筛选具有良好免疫保护作用的候选抗原。目前已有研究表明,大型艾美耳球虫重组亚单位疫苗能为家兔提供良好的抗感染保护效果[33-35]

GAPDH除了在糖酵解反应中起到关键作用外,还具有其他多种生物学功能[36-37]。比如与基质蛋白结合,调节宿主免疫反应,在病原毒力和表面定位中发挥作用等[38-40]。GAPDH在鸡的柔嫩艾美耳球虫(Eimeria tenella)子孢子入侵鸡肠上皮细胞的过程中起到正向调控作用[41]。同时,包括恶性疟原虫(Plasmodium falciparum)在内的几种致病原虫不存在三羧酸循环,只依赖糖酵解产生能量,其代谢过程所需的ATP完全来自糖酵解反应,并且进一步通过试验证明了疟原虫子孢子GAPDH与宿主肝细胞相识别,作用于抑制子孢子穿越和感染肝[42-43]。研究表明,GAPDH可以作为预防细菌和寄生虫病的疫苗候选抗原[38]。本研究中动物保护试验表明,重组蛋白rEm-GAPDH免疫实验兔能够有效抵抗大型艾美耳球虫的感染,产生中等保护效果,卵囊减少率达57.16%,为兔的大型艾美耳球虫重组亚单位疫苗的研制提供了候选抗原。

细胞免疫在预防艾美耳球虫感染的保护性免疫反应中发挥着关键作用[44]。鸡体内的IFN-γ可以通过抑制鸡球虫子孢子的生长发育、参与抗原呈递等过程增强宿主的抗球虫感染能力[45]。IL-2可以抑制鸡球虫子孢子和裂殖子的活化增殖[46-47]。如果抑制鸡体内的IL-2产生,其抵抗球虫的能力会下降,因此将IL-2与候选抗原进行融合表达可以增强疫苗效果,其产生的免疫反应特异性更佳,持续时间更长,抗球虫的效果也更好[48]。IL-4、IL-10是介导Th2型反应的细胞因子,在弓形虫感染中,它们能够降低炎症反应,减少宿主的病理变化[49]。TGF-β是一种抗炎性的细胞因子,参与修复受损伤的黏膜上皮细胞,降低宿主的炎性反应[50]。本研究中检测了rEm-GAPDH免疫组细胞因子(IL-2、IL-4、IL-10、IL-17、TGF-β、IFN-γ),除IL-17的浓度水平与对照组无显著差异外,免疫组其余细胞因子水平都存在统计学差异,说明免疫组的重组蛋白能引发细胞因子水平的变化,其中IFN-γ、IL-2水平的上调,可能在抗大型艾美耳球虫感染的过程中起到了一定作用。

本试验检测到免疫组的特异性IgG抗体水平较对照组显著上升。重组蛋白rEm-GAPDH诱发产生的特异性IgG抗体可能引起宿主的免疫保护作用。在鸡球虫重组亚单位疫苗研究中,GAPDH已经被证明是鸡的堆型艾美耳球虫(Eimeria acervulina)和巨型艾美耳球虫(Eimeria maxima)的共同抗原[24]。在鸡的柔嫩艾美耳球虫、堆型艾美耳球虫、巨型艾美耳球虫分别感染及三种球虫混合感染的情况下呈现出较好的保护效果(ACI>160),其中卵囊减少率最高可达79%[51]。而本研究结果显示rEm-GAPDH引发了宿主(兔)体内的细胞免疫和体液免疫应答,免疫组的卵囊减少率达57.16%,具有一定免疫保护作用。Em-GAPDH能否成为对多种兔球虫产生共同保护效果的疫苗抗原,未来还需深入研究。

4 结论

对大型艾美耳球虫GAPDH基因进行了克隆和原核表达获得了重组蛋白,免疫保护试验结果显示,rEm-GAPDH免疫兔后能显著减少增重损失和卵囊排出,可以引发宿主体内的细胞免疫和体液免疫应答。试验结果表明rEm-GAPDH可以作为大型艾美耳球虫重组亚单位疫苗的候选抗原。

参考文献
[1]
RYLEY J F, MILLARD B J, LONG P L. Further studies on the life cycle of Eimeria brunetti Levine 1942[J]. Z Parasitenk, 1972, 40(1): 35-48. DOI:10.1007/BF00329614
[2]
PAKANDL M, LICOIS D, COUDERT P. Electron microscopic study on sporocysts and sporozoites of parental strains and precocious lines of rabbit coccidia Eimeria intestinalis, E. media and E. magna[J]. Parasitol Res, 2001, 87(1): 63-66. DOI:10.1007/s004360000303
[3]
史晓春, 林昆华. 扫描电镜对兔大型艾美耳球虫致病性的研究[J]. 中国兽医寄生虫病, 1995, 3(4): 23-27, 19.
SHI X C, LIN K H. Study on pathogenicity of Eimeria magna in rabbits using a scanning electron microscope[J]. Chinese Journal of Veterinary Parasitology, 1995, 3(4): 23-27, 19. (in Chinese)
[4]
方素芳, 关琛, 崔平, 等. 不同地理株大型艾美耳球虫单卵囊分离及卵囊产量的比较[J]. 河北北方学院学报: 自然科学版, 2019, 35(11): 32-35, 39.
FANG S F, GUAN C, CUI P, et al. Isolation of single oocyst of Eimeria magna and comparison of oocyst yield of different geographical strains[J]. Journal of Hebei North University: Natural Science Edition, 2019, 35(11): 32-35, 39. DOI:10.3969/j.issn.1673-1492.2019.11.007 (in Chinese)
[5]
石团员, 鲍国连, 索勋, 等. 妥曲珠利及其复方制剂对人工感染大型艾美耳球虫病兔的治疗[J]. 中国兽医学报, 2014, 34(12): 1935-1939.
SHI T Y, BAO G L, SUO X, et al. The curative efficacy of toltrazuril and its compound preparations against artificial infection with Eimeria magna in rabbits[J]. Chinese Journal of Veterinary Science, 2014, 34(12): 1935-1939. DOI:10.16303/j.cnki.1005-4545.2014.12.018 (in Chinese)
[6]
柳南星, 方素芳, 顾小龙, 等. 大型艾美耳球虫生物学特性研究[J]. 动物医学进展, 2018, 39(3): 40-44.
LIU N X, FANG S F, GU X L, et al. Study on biological characteristics of Eimeria magna[J]. Progress in Veterinary Medicine, 2018, 39(3): 40-44. DOI:10.16437/j.cnki.1007-5038.2018.03.008 (in Chinese)
[7]
任永军, 罗跃军, 叶勇刚, 等. 中药提取物对兔大型艾美耳球虫的预防效果观察[J]. 中国养兔, 2021(3): 4-6.
REN Y J, LUO Y J, YE Y G, et al. Observation on the preventive effect of traditional Chinese medicine extracts on Eimeria magna in rabbits[J]. Chinese Journal of Rabbit Farming, 2021(3): 4-6. (in Chinese)
[8]
崔平, 方素芳, 顾小龙, 等. 大型艾美耳球虫早熟株的选育及18S rDNA系统发育分析[J]. 中国兽医学报, 2018, 38(7): 1327-1331.
CUI P, FANG S F, GU X L, et al. Selection and phylogenetic analysis of 18S rDNA from precocious line of Eimeria magna[J]. Chinese Journal of Veterinary Science, 2018, 38(7): 1327-1331. (in Chinese)
[9]
BACHENE M S, TEMIM S, AINBAZIZ H, et al. A vaccination trial with a precocious line of Eimeria magna in Algerian local rabbits Oryctolagus cuniculus[J]. Vet Parasitol, 2018, 261: 73-76. DOI:10.1016/j.vetpar.2018.08.013
[10]
TAO G R, SHI T Y, TANG X M, et al. Transgenic Eimeria magna Pérard, 1925 displays similar parasitological properties to the wild-type strain and induces an exogenous protein-specific immune response in rabbits (Oryctolagus cuniculus L.)[J]. Front Immunol, 2017, 8: 2.
[11]
GUPTA S K, SHUKLA P. Advanced technologies for improved expression of recombinant proteins in bacteria: perspectives and applications[J]. Crit Rev Biotechnol, 2016, 36(6): 1089-1098. DOI:10.3109/07388551.2015.1084264
[12]
SIROVER M A. New insights into an old protein: the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase[J]. Biochim Biophys Acta (BBA)-Protein Struct Mol Enzymol, 1999, 1432(2): 159-184. DOI:10.1016/S0167-4838(99)00119-3
[13]
SIROVER M A. On the functional diversity of glyceraldehyde-3-phosphate dehydrogenase: biochemical mechanisms and regulatory control[J]. Biochim Biophys Acta (BBA)-Gen Subj, 2011, 1810(8): 741-751. DOI:10.1016/j.bbagen.2011.05.010
[14]
WAINE G J, BECKER M, YANG W, et al. Cloning, molecular characterization, and functional activity of Schistosoma japonicum glyceraldehyde-3-phosphate dehydrogenase, a putative vaccine candidate against Schistosomiasis japonica[J]. Infect Immun, 1993, 61(11): 4716-4723. DOI:10.1128/iai.61.11.4716-4723.1993
[15]
TANG C L, YANG J F, PAN Q, et al. Anti-CTLA-4 monoclonal antibody improves efficacy of the glyceraldehyde-3-phosphate dehydrogenase protein vaccine against Schistosoma japonicum in mice[J]. Parasitol Res, 2019, 118(7): 2287-2293. DOI:10.1007/s00436-019-06363-1
[16]
TANG C L, XIE Y P, YU W H, et al. Effects of regulatory T cells on glyceraldehyde-3-phosphate dehydrogenase vaccine efficacy against Schistosoma japonicum[J]. Acta Trop, 2020, 202: 105239. DOI:10.1016/j.actatropica.2019.105239
[17]
HUANG W L, GU M J, CHENG W J, et al. Mechanism by which the combination of SjCL3 and SjGAPDH protects against Schistosoma japonicum infection[J]. Parasitol Res, 2021, 120(1): 173-185. DOI:10.1007/s00436-020-06916-9
[18]
ARGIRO L, KOHLSTÄDT S, HENRI S, et al. Identification of a candidate vaccine peptide on the 37 kDa Schistosoma mansoni GAPDH[J]. Vaccine, 2000, 18(19): 2039-2048. DOI:10.1016/S0264-410X(99)00521-6
[19]
ARGIRO L, HENRI S, DESSEIN H, et al. Induction of a protection against S. mansoni with a MAP containing epitopes of Sm37-GAPDH and Sm10-DLC.effect of coadsorption with GM-CSF on alum[J]. Vaccine, 2000, 18(19): 2033-2038. DOI:10.1016/S0264-410X(99)00523-X
[20]
TALLIMA H, DVOȒÁK J, KAREEM S, et al. Protective immune responses against Schistosoma mansoni infection by immunization with functionally active gut-derived cysteine peptidases alone and in combination with glyceraldehyde 3-phosphate dehydrogenase[J]. PLoS Negl Trop Dis, 2017, 11(3): e0005443. DOI:10.1371/journal.pntd.0005443
[21]
ERTTMANN K D, KLEENSANG A, SCHNEIDER E, et al. Cloning, characterization and DNA immunization of an Onchocerca volvulus glyceraldehyde-3-phosphate dehydrogenase (Ov-GAPDH)[J]. Biochim Biophys Acta (BBA)-Mol Basis Dis, 2005, 1741(1-2): 85-94. DOI:10.1016/j.bbadis.2004.12.010
[22]
STEISSLINGER V, KORTEN S, BRATTIG N W, et al. DNA vaccine encoding the moonlighting protein Onchocerca volvulus glyceraldehyde-3-phosphate dehydrogenase (Ov-GAPDH) leads to partial protection in a mouse model of human filariasis[J]. Vaccine, 2015, 33(43): 5861-5867. DOI:10.1016/j.vaccine.2015.07.110
[23]
HAN K K, XU L X, YAN R F, et al. Vaccination of goats with glyceraldehyde-3-phosphate dehydrogenase DNA vaccine induced partial protection against Haemonchus contortus[J]. Vet Immunol Immunopathol, 2012, 149(3-4): 177-185. DOI:10.1016/j.vetimm.2012.06.016
[24]
LIU L R, HUANG X M, LIU J H, et al. Identification of common immunodominant antigens of Eimeria tenella, Eimeria acervulina and Eimeria maxima by immunoproteomic analysis[J]. Oncotarget, 2017, 8(21): 34935-34945. DOI:10.18632/oncotarget.16824
[25]
JOHNSON J, REID W M. Anticoccidial drugs: lesion scoring techniques in battery and floor-pen experiments with chickens[J]. Exp Parasitol, 1970, 28(1): 30-36. DOI:10.1016/0014-4894(70)90063-9
[26]
赵爱云, 段嘉树. 一株和缓艾美耳球虫的致病性和免疫原性[J]. 北京农学院学报, 2006, 21(1): 50-52.
ZHAO A Y, DUAN J S. Pathogenicity and immunogenicity a new isolated strain of E. mitis[J]. Journal of Beijing Agricultural College, 2006, 21(1): 50-52. DOI:10.3969/j.issn.1002-3186.2006.01.013 (in Chinese)
[27]
MCMANUS E C, CAMPBELL W C, CUCKLER A C. Development of resistance to quinoline coccidiostats under field and laboratory conditions[J]. J Parasitol, 1968, 54(6): 1190-1193. DOI:10.2307/3276989
[28]
田依凡, 赵权, 信彩岩, 等. 斯氏艾美耳球虫Rhomboid基因抗原优势区的筛选与鉴定[J]. 黑龙江畜牧兽医, 2017(3): 156-159.
TIAN Y F, ZHAO Q, XIN C Y, et al. Screening and identification of antigenic dominant region of the rhomboid gene of Eimeria stiedai[J]. Heilongjiang Animal Science and Veterinary Medicine, 2017(3): 156-159. (in Chinese)
[29]
孟庆玲, 乔军, 才学鹏, 等. 斯氏艾美耳球虫MIC-5与兔IL-15基因在真核细胞中的共表达[J]. 中国农业科学, 2011, 44(19): 4096-4101.
MENG Q L, QIAO J, CAI X P, et al. Co-expression of MIC-5 gene of Eimeria stiedai and rabbit IL-15 in eucaryotic cell line[J]. Scientia Agricultura Sinica, 2011, 44(19): 4096-4101. (in Chinese)
[30]
孟庆玲, 乔军, 才学鹏, 等. 携带兔斯氏艾美耳球虫MIC-5基因减毒鼠伤寒沙门菌活疫苗的安全性、稳定性与免疫原性[J]. 中国兽医学报, 2011, 31(5): 659-662.
MENG Q L, QIAO J, CAI X P, et al. Safety, stability and immunogenicity of attenuated Salmonella typhimurium carrying MIC-5 gene of Eimeria stieda[J]. Chinese Journal of Veterinary Science, 2011, 31(5): 659-662. (in Chinese)
[31]
景瑾, 张帅, 仇保丰, 等. 斯氏艾美耳球虫热休克蛋白70基因的克隆及表达分析[J]. 黑龙江畜牧兽医, 2017(4): 11-16.
JING J, ZHANG S, QIU B F, et al. Cloning and expression analysis of heat shock protein 70 (HSP70) gene from Eimeria stiedai[J]. Heilongjiang Animal Science and Veterinary Medicine, 2017(4): 11-16. (in Chinese)
[32]
罗跃军, 任永军, 白鑫, 等. 斯氏艾美耳球虫重组表面抗原SAG13和SAG14对兔的免疫保护效果初步观察[J]. 畜牧兽医学报, 2022, 53(3): 883-893.
LUO Y J, REN Y J, BAI X, et al. Preliminary observation on the immunoprotective effects of recombinant surface antigens SAG13 and SAG14 of Eimeria stiedae in rabbits[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(3): 883-893. (in Chinese)
[33]
PU J Y, XIAO J, BAI X, et al. Prokaryotic expression of Eimeria magna SAG10 and SAG11 genes and the preliminary evaluation of the effect of the recombinant protein on immune protection in rabbits[J]. Int J Mol Sci, 2022, 23(18): 10942.
[34]
CHEN H, PU J Y, XIAO J, et al. Evaluation of the immune protective effects of rEmMIC2 and rEmMIC3 from Eimeria magna in rabbits[J]. Parasitol Res, 2023, 122(2): 661-669.
[35]
XIAO J, CHEN H, ZHENG R Y, et al. Recombinant GMA56 and ROP17 of Eimeria magna conferred protection against infection by homologous species[J]. Front Immunol, 2023, 13: 1037949.
[36]
TERAO Y, YAMAGUCHI M, HAMADA S, et al. Multifunctional glyceraldehyde-3-phosphate dehydrogenase of Streptococcus pyogenes is essential for evasion from neutrophils[J]. J Biol Chem, 2006, 281(20): 14215-14223.
[37]
JIN H, AGARWAL S, AGARWAL S, et al. Surface export of GAPDH/SDH, a glycolytic enzyme, is essential for Streptococcus pyogenes virulence[J]. mBio, 2011, 2(3): e00068-11.
[38]
PEREZ-CASAL J, POTTER A A. Glyceradehyde-3-phosphate dehydrogenase as a suitable vaccine candidate for protection against bacterial and parasitic diseases[J]. Vaccine, 2016, 34(8): 1012-1017.
[39]
LAMA A, KUCKNOOR A, MUNDODI V, et al. Glyceraldehyde-3-phosphate dehydrogenase is a surface-associated, fibronectin-binding protein of Trichomonas vaginalis[J]. Infect Immun, 2009, 77(7): 2703-2711.
[40]
ROSINHA G M S, MYIOSHI A, AZEVEDO V, et al. Molecular and immunological characterisation of recombinant Brucella abortus glyceraldehyde-3-phosphate-dehydrogenase, a T-and B-cell reactive protein that induces partial protection when co-administered with an interleukin-12-expressing plasmid in a DNA vaccine formulation[J]. J Med Microbiol, 2002, 51(8): 661-671.
[41]
王璐, 朱顺海, 赵其平, 等. 宿主GAPDH对柔嫩艾美耳球虫子孢子入侵细胞的影响[J]. 畜牧兽医学报, 2019, 50(10): 2088-2096.
WANG L, ZHU S H, ZHAO Q P, et al. Effects of host glyceraldehyde-3-phosphate dehydrogenase on Eimeria tenella sporozoites invasion of cells[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50(10): 2088-2096. (in Chinese)
[42]
BRUNO S, MARGIOTTA M, PINTO A, et al. Selectivity of 3-bromo-isoxazoline inhibitors between human and Plasmodium falciparum glyceraldehyde-3-phosphate dehydrogenases[J]. Bioorg Med Chem, 2016, 24(12): 2654-2659.
[43]
CHA S J, KIM M S, PANDEY A, et al. Identification of GAPDH on the surface of Plasmodium sporozoites as a new candidate for targeting malaria liver invasion[J]. J Exp Med, 2016, 213(10): 2099-2112.
[44]
CHAPMAN H D. Milestones in avian coccidiosis research: a review[J]. Poult Sci, 2014, 93(3): 501-511.
[45]
YUN C H, LILLEHOJ H S, CHOI K D. Eimeria tenella infection induces local gamma interferon production and intestinal lymphocyte subpopulation changes[J]. Infect Immun, 2000, 68(3): 1282-1288.
[46]
LI G X, LILLEHOJ E P, LILLEHOJ H S. Interleukin-2 production in SC and TK chickens infected with Eimeria tenella[J]. Avian Dis, 2002, 46(1): 2-9.
[47]
MIYAMOTO T, MIN W, LILLEHOJ H S. Kinetics of interleukin-2 production in chickens infected with Eimeria tenella[J]. Comp Immunol, Microbiol Infect Dis, 2002, 25(3): 149-158.
[48]
ISOBE T, LILLEHOJ H S. Dexamethasone suppresses T cell-mediated immunity and enhances disease susceptibility to Eimeria mivati infection[J]. Vet Immunol Immunopathol, 1993, 39(4): 431-446.
[49]
GAZZINELLI R T, WYSOCKA M, HIENY S, et al. In the absence of endogenous IL-10, mice acutely infected with Toxoplasma gondii succumb to a lethal immune response dependent on CD4+ T cells and accompanied by overproduction of IL-12, IFN-γ and TNF-α[J]. J Immunol, 1996, 157(2): 798-805.
[50]
ROBINSON P, OKHUYSEN P C, CHAPPELL C L, et al. Transforming growth factor β1 is expressed in the jejunum after experimental Cryptosporidium parvum infection in humans[J]. Infect Immun, 2000, 68(9): 5405-5407.
[51]
TIAN L, LI W Y, HUANG X M, et al. Protective efficacy of coccidial common antigen glyceraldehyde 3-Phosphate dehydrogenase (GAPDH) against challenge with three Eimeria species[J]. Front Microbiol, 2017, 8: 1245.

(编辑   范子娟)