畜牧兽医学报  2023, Vol. 54 Issue (10): 4083-4094. DOI: 10.11843/j.issn.0366-6964.2023.10.008    PDF    
动物肠缺氧模型研究进展
戴文1, 卞苏舒1,2, 张聚民2, 宋厚辉1, 周莹珊1, 刘萍1, 王晓杜1     
1. 浙江农林大学动物科技学院·动物医学院 浙江省畜禽绿色生态健康养殖应用技术研究重点实验室 动物健康互联网检测技术浙江省工程研究中心 浙江省动物医学与健康管理国际科技合作基地 中澳动物健康大数据分析联合实验室, 杭州 311300;
2. 杭州市临安区畜牧农机发展中心, 杭州 311300
摘要:肠缺氧是肠组织氧气需求量高于供应量的病理现象,是多种肠道疾病的直接诱发因素、预警信号和关键特征之一。建立真实可靠的肠缺氧状态动物模型或者能模拟肠缺氧的细胞模型,对肠缺氧相关疾病的病理机制研究至关重要。本文综述了近年来适用于构建肠缺氧模型的方法,重点围绕循环性、化学性和环境性肠缺氧动物模型,物理法和化学法诱导的离体肠细胞缺氧模型和离体肠道类器官缺氧模型的构建策略、模型优劣及应用场景进行分析,为动物肠缺氧疾病的发病机制研究及治疗药物的发掘和临床药效学评价提供参考。
关键词肠缺氧    细胞模型    动物模型    肠道类器官    
Research Progress of Intestinal Hypoxia Models in Animals
DAI Wen1, BIAN Sushu1,2, ZHANG Jumin2, SONG Houhui1, ZHOU Yingshan1, LIU Ping1, WANG Xiaodu1     
1. China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China;
2. Development Center of Animal Husbandry and Agricultural Machinery in Hangzhou Lin'an District, Hangzhou 311300, China
Abstract: Intestinal hypoxia is a pathological phenomenon in which the oxygen demand of intestinal tissues is higher than the oxygen supply. It is one of the direct triggers, early warning signals and key features of various intestinal diseases. The establishment of real and reliable animal models of intestinal hypoxia or cellular models that can simulate intestinal hypoxia is essential for the study of the pathological mechanisms of intestinal hypoxia-related diseases. The methods applicable to the construction of intestinal hypoxia models in recent years are reviewed in this paper, Focused on the construction strategies, advantages and disadvantages, and application scenarios of models including circulatory, chemical and environmental animal models of intestinal hypoxia, physically and chemically induced cellular models of intestinal hypoxia in vitro, as well as isolated intestinal organoid models of hypoxia in vitro, in the hope of providing reference for the study of the pathogenesis of intestinal hypoxia diseases in animals and the discovery and clinical pharmacodynamic evaluation of therapeutic drugs.
Key words: intestinal hypoxia    cellular models    animal models    intestinal organoids    

肠缺氧(intestinal hypoxia)是由不同因素(如失血、感染、炎症或肿瘤等)导致的肠组织氧气需求量高于供应量的病理现象[1]。缺氧是造成细胞损伤的主要原因之一[2-3],会诱发肠道组织代谢、功能和形态结构的改变,是动物感染性腹泻、肠梗阻、肠扭转、炎性肠病以及肠肿瘤等疾病中主要的诱发因素、预警信号和关键病理特征[4-6]。生理状态下,肠黏膜上皮位于厌氧肠腔和血液循环丰富、氧气供应较充足的肠黏膜层之间,形成了肠黏膜上皮中陡峭变化的氧梯度[1, 7]。肠腔内的肠道菌群通过短链脂肪酸等代谢产物介导氧敏感性靶点和肠道上皮屏障功能的调控,保证了肠黏膜组织氧含量的相对平衡[8]。随着禽畜养殖规模化和集约化程度的提高,饲料污染、抗生素滥用、肠道传染病、代谢、应激和畜舍环境不佳等因素会直接或间接造成动物肠组织氧稳态的破坏,引起不同程度的肠缺氧[9-12],轻则影响动物肠道消化吸收,重则导致动物死亡,严重影响了动物福利以及养殖业经济效益。因此,建立真实可靠的肠缺氧状态的动物模型或者能模拟肠缺氧的细胞模型,对动物肠缺氧疾病的病理及临床研究至关重要。目前,国内尚无动物肠缺氧模型的系统报道,本文就近年来肠缺氧模型的构建方法作一综述,为肠缺氧研究提供参考。

1 肠缺氧动物模型

肠缺氧动物模型能比较全面的反映肠缺氧动物机体的系统性变化。目前,肠缺氧动物模型主要有循环性肠缺氧、化学性肠缺氧和环境性肠缺氧三类(表 1)。在肠缺氧动物模型的建立过程中,可通过对实验动物的肠道疾病活动指数、肠黏膜通透性、肠组织微观形态病理变化等指标进行评估,以及检测低氧诱导因子(hypoxia-inducible factor,HIF)等氧稳态核心调控因子含量[13],从多个层面评估该模型是否建立成功[11, 14-15]

表 1 肠缺氧动物模型 Table 1 Animal model of intestinal hypoxia
1.1 循环性肠缺氧动物模型

循环性肠缺氧动物模型建立的原理是将实验动物的肠系膜上动脉(superior mesenteric artery,SMA)暂时性或永久性闭塞,以减少肠道局部血流量,可造成小肠、结肠和盲肠缺氧。目前,此法是最常用的诱导肠道缺血损伤的方法[15]。其构建方法是对实验动物进行开腹手术,暴露右腹腔和主要负责回肠、盲肠和近端结肠供血的SMA,根据试验目的对SMA进行暂时性闭塞(用非创伤性微血管钳)或者永久性闭塞(结扎)一定时间,待肠系膜搏动停止、肠道变白后即可认定SMA闭塞,即成功建立了循环性肠缺氧动物模型,其具体缺血时间可通过预试验和损伤评分确定。有些循环性肠缺氧动物模型还会涉及到对缺氧动物SMA暂时性闭塞后再灌注,可在模型建立之前对试验动物静脉注射肝素,以防止SMA内血栓形成,确保在拆除非创伤性微血管钳进行再灌注时可重新建立循环。Murthy等[21]研究发现,当SMA阻断60 min,缺氧大鼠的结肠血管通透性上调了3倍,肠黏膜通透性上调16倍。在Ji等[22]的研究中,大鼠SMA阻断60 min后,小肠绒毛损伤严重,而泛素特异性蛋白酶22与肠缺氧损伤后细胞增殖和组织再生密切相关。Yin等[35]对肠缺血再灌注小鼠(SMA缺血45 min;再灌注90 min)进行了单细胞RNA测序,鉴定了4万多个细胞中的9个主要细胞群,新发现了多个亚群细胞,为肠缺氧疾病中细胞异质性和细胞通讯等研究提供了数据支持。Deng等[18]的研究表明,SMA缺血再灌注的小鼠结肠微生物群组成发生变化,拟杆菌门和厚壁菌门相对丰度增加,而疣状分枝杆菌丰度降低。Deng等[19]通过代谢组学研究发现,SMA缺血再灌注(SMA缺血60 min;再灌注2 h)小鼠的次生代谢产物以及多糖生物合成和代谢途径的基因组丰度都显著降低。Dai等[36]对肠缺血再灌注大鼠模型(SMA闭塞120 min;再灌注6/72 h)进行了系统性多组学研究,发现肠缺氧大鼠肠道屏障受损,肠道内容物泄漏进入外周血和远端器官,引起全身性炎症反应,且伴随着肠道代谢物和肠道微生物群组成的明显改变。此法能较好模拟肠缺氧状态,可靠性较高,但对操作者的技术要求较高,且造模时间过长容易诱发全身性病变。一旦SMA结扎时间过长,其对肠道的损伤不可修复,甚至可能诱发肺部实质性损伤和呼吸衰竭,必要时需切除闭塞肠段[37]。肠道过度缺氧会引起毛细血管通透性增加和间质水肿,在移除止血钳时,缺氧时产生的黄嘌呤氧化酶会促使大量活性氧生成,诱导炎性因子产生和细胞凋亡,加重肠黏膜损伤[12, 24]。考虑到肠道血流恢复后会造成进一步的实质性损伤,研究者应当在止血钳移除前完成组织样品采集。动物临床中,循环性肠缺氧发生在多种肠道疾病和肠外疾病中,如坏死性小肠或结肠炎、肠疝、肠扭转、肠套叠、机械性肠梗阻、严重肠胀气、急性肠系膜缺血、失血性休克以及心肺疾病导致的血栓阻塞等[15]。因此,在畜牧兽医领域,循环性肠缺氧动物模型普遍适用于由肠道供血不足导致的动物急性肠缺氧疾病及其防治策略研究。如Gao等[23]的研究发现,L-半胱氨酸能有效改善肠缺血再灌注(SMA闭塞45 min;再灌注4 h)导致的C57BL6/J小鼠回肠肠肌层神经元损伤。Parlar和Arslan[25]研究发现,白藜芦醇有效改善了肠缺血再灌注(SMA闭塞30 min;再灌注150 min和24 h)诱导的大鼠肠道功能障碍,逆转了肠平滑肌收缩能力受损,降低了MPO、IL-1β和TNF-α等炎性因子的表达。

1.2 化学性肠缺氧动物模型

化学性肠缺氧动物模型建立的原理是:使血液中的低铁血红蛋白氧化成高铁血红蛋白,引起高铁血红蛋白症,进而降低肠道局部氧供应。其构建方法是给实验动物口服强氧化剂亚硝酸钠,待亚硝酸钠进入消化系统并吸收入血引起高铁血红蛋白症,导致肠道氧供应不足,即可建立化学性肠缺氧动物模型。Ansari等[29]的研究发现,给实验动物口服60 mg·kg-1 BW的亚硝酸钠24 h后,大鼠十二指肠损伤明显,主要表现为肠黏膜局灶性坏死和充血,伴随固有层淋巴细胞浸润,而抗氧化剂肌肽和N-乙酰半胱氨酸可以保护肠道免受亚硝酸钠诱导的损伤。在Khatun等[30]的研究中,使用光谱漫反射法以非接触性方式监测了不同剂量亚硝酸钠诱导的体内高铁血红蛋白浓度和氧饱和度水平,用以评估高铁血红蛋白期间的低氧血症。此法的优点在于监测方便,且对动物创伤较小,但对监测设备要求较高,而且亚硝酸钠对人体有毒性,操作者在使用过程中要注意安全防护。同时,低剂量的亚硝酸钠在酸性环境下会被还原生成一氧化氮,因此要充分考虑动物敏感性和使用剂量。在畜牧兽医领域,由于农业中氮肥的过度使用、工业废物的不当处理以及大气氮污染,极大增加了养殖过程中动物对亚硝酸盐的接触和摄入,导致不同程度的生理和神经功能障碍[29]。因此,化学性肠缺氧动物模型适用于(环境或饲料中)亚硝酸盐不当摄入或其他因素诱发的高铁血红蛋白症导致的动物肠缺氧疾病及其防治策略研究,应用范围相对局限。

1.3 环境性肠缺氧动物模型

环境性肠缺氧动物模型的建立原理是通过降低动物饲养环境的气压和氧气含量,减少肠组织氧气供应以诱发肠缺氧。其构建方法有两种,一是高原实地造模;二是采用低压氧舱设备模拟高海拔高原环境。造模过程中,当实验动物出现焦躁不安、鼻唇和四肢末梢轻微发绀以及呼吸急促等缺氧表现时,则判断环境性缺氧动物模型构建成功[38]。在Cheng等[39]的研究中,将C57BL/6J小鼠放置在海拔4 010 m的高原(青海玉树)进行实地造模,发现高海拔环境能引起小鼠结肠组织显著缺氧,出现结肠隐窝间距增大、黏膜上皮脱落以及紧密连接蛋白表达降低等一系列肠屏障破坏的表现,并伴随HIF-1α表达的增加。因此,高原实地造模能较好模拟低氧低压环境诱导的肠缺氧,但其不足之处在于耗时耗力、成本较高,且容易诱发肠外的肺水肿、脑水肿或心血管疾病。因此,低压氧舱造模法对于非高原地区的研究者来说可操作性更强,重复性较好,且造模效果比较接近自然条件下缺血缺氧的病理性过程。罗涵[32]研究发现,低压舱模拟海拔7 000 m低压性缺氧环境即有良好的肠缺氧造模效果,能有效诱导SD大鼠肠损伤及细菌移位,其主要表现为肠道微绒毛损伤、上皮细胞和血管内皮细胞间紧密连接破坏以及细胞内各细胞器损伤。赫玉宝[34]在模拟急进高原缺氧研究中发现,随着海拔升高(3 000、4 500和6 000 m)和缺氧造模时间延长(24、48和72 h),缺氧大鼠的肠损伤情况逐渐加重。在环境性肠缺氧动物模型建立过程中,需注意造模时间的控制,以免造模时间过长导致脑损伤。大脑是机体中耗氧量最高的器官,对长期缺氧的耐受性较低[40-42],但在急进入高原环境后,机体会经历一定的高原习服状态(如心脏供血能力上升),短暂的缺氧暴露(1 d内)不会造成显著的脑水肿和认知功能障碍[34]。造模结束后应在操作者能够适应的最大海拔高度进行现场取材,以尽可能减少降压后采样对检测指标的影响。在畜牧兽医领域,环境性肠缺氧动物模型适用于低压低氧环境下(如高原气候)动物的肠缺氧疾病,或因跨地域运输引起的养殖环境所处海拔、气压和氧浓度变化而诱发的动物急性肠缺氧疾病及其防治策略研究,亦可应用于心肺疾病和休克等多器官功能障碍导致的肠缺氧损伤机制研究。如李龙等[43]研究了益生菌对高原缺氧环境下肉鸡生产性能、肠道消化酶活性和肠道形态的影响,证明益生菌(Lactobacillus plantarum JM113菌株)可以提高缺氧肉鸡肠道中的消化酶活性,并改善肠道形态,为益生菌作为抗高海拔低氧环境日粮添加的研究提供了理论基础。

2 离体肠细胞缺氧模型

传统的肠缺氧动物模型研究能较好模拟动物体内肠缺氧的系统性变化,但其受影响因素较多、成本较高,且操作更复杂和耗时。研究人员逐渐将目光转移到离体肠细胞缺氧模型,通过物理法或化学法改变细胞培养环境中氧气含量或者降低细胞对氧气的利用率,以稳定诱导离体肠细胞缺氧模型(表 2)。建立离体肠细胞缺氧模型过程中,可通过细胞形态学观察,检测细胞活力、无氧酵解过程中产生的乳酸脱氢酶(LDH)活性和HIF等指标,衡量离体肠细胞缺氧模型建立的情况[8, 44-45]

表 2 离体肠细胞缺氧模型 Table 2 Isolated intestinal cell hypoxia model
2.1 物理法诱导肠细胞缺氧模型

三气培养箱法:此法的构建方法是将肠组织细胞置于密闭缺氧环境(如1% O2、94% N2和5% CO2)的三气培养箱中,模拟不同程度的缺氧环境,以制造离体肠细胞缺氧模型。此法能较好地模拟体内肠缺氧环境,操作简便,是目前最常用的物理法诱导细胞缺氧的方法。将肠上皮细胞置于三气培养箱低氧环境(O2含量1%或者5%)中培养6 h即可造成细胞缺氧性反应[46-47]。如Gao等[48]采用肠上皮细胞IEC-6诱导肠上皮细胞缺氧损伤模型(5% CO2,95% N2环境中培养12 h/24 h),探究了耗牛乳源性外泌体miRNA缓解肠屏障应激的机制。张秀杨等[49]采用结肠腺癌细胞系Caco-2诱导肠上皮细胞缺氧模型(1% O2,5% CO2,94% N2环境中培养12 h;复氧2 h),研究发现HIF-1α蛋白诱导肠上皮细胞单羧酸转运蛋白1的表达,介导了短链脂肪酸对肠屏障的保护。如今,随着培养箱制造工艺的不断进步,可做到实时监控三气培养箱培养液溶解氧浓度变化,并及时反馈和调节特定试验条件下培养箱的氧气供给,以维持培养液溶解氧的恒定浓度,能更好地模拟体内肠缺氧状态。但此改进方案成本较高,且不能保证脱离培养箱后的试验环境保持在持续的低氧/无氧状态,细胞培养瓶一旦离开培养箱后细胞容易造成复氧,导致造模失败。目前还有一种选择是使用更大的配备手套箱的缺氧培养箱,可在持续的缺氧环境中完成细胞缺氧诱导,然而相应设备购置和维护费用也更加高昂。如果研究涉及对氧依赖性蛋白HIF-1的检测,需严格做到检测流程的快速和高效。

安宁包法:通过安宁包缺氧系统实现物理诱导细胞缺氧,该系统由安宁包和密闭培养盒组成,通过安宁包氧化降解吸收O2生成CO2,达到降低密闭环境中O2含量的目的。Fachi等[52]采用分离的肠先天淋巴样细胞(ILC3)诱导细胞缺氧模型(安宁包缺氧环境中培养3 h),发现缺氧环境促进了ILC3的增殖和激活。此法较三气培养箱法的设备要求低,操作简便,但其不足之处在于无法精确监测氧气含量。可以根据不同试验需求,选择不同厌氧规格的安宁包。安宁包在使用1 h后可将密闭培养罐中的氧气含量降低至0.1%,且不改变培养基pH[65]。通过密闭培养盒内氧气指示剂的颜色变化,来判断培养环境缺氧程度。

2.2 化学法诱导肠细胞缺氧模型

氯化钴法:此法目前公认的作用原理是氯化钴(CoCl2)中氧亲和力较低的Co2+可以取代脯氨酸羟化酶(PHDs)中的Fe2+,导致常氧状态下HIF降解被抑制,并激活了下游一系列缺氧相关信号通路[66]。在细胞培养液中添加一定浓度的氯化钴,就可以导致细胞缺氧。此法作用机制与氧浓度无关,造模效果较物理法更稳定,且操作简便,成本低廉,重复性良好,常用于肠细胞缺氧模型的构建。但需要注意的是,CoCl2对人体或细胞有潜在危害,在操作过程中需注意安全防护。罗红敏[54]的研究采用Caco-2细胞系构建体外肠上皮细胞缺氧模型(1 mmol·L-1 CoCl2作用24 h),检测到细胞HIF-1α蛋白表达显著升高,并证实了丙戊酸钠通过抑制HIF-1表达以及下调下游靶蛋白肌球蛋白轻链激酶和血管内皮生长因子表达,延长失血、烧伤及脓毒性休克动物生存时间。Xie和Collins[53]采用大鼠肠上皮细胞IEC-6诱导了细胞缺氧模型(200 μmol·L-1 CoCl2作用60 h),揭示了缺氧条件下肠上皮细胞铜转运atp酶(Atp7a)的调控机制。

连二亚硫酸钠法:连二亚硫酸钠是一种氧清除剂,能迅速清除培养液中的溶解氧[45, 67]。2 mmol·L-1连二亚硫酸钠培养液可维持培养液的无氧状态1 h左右[67]。其主要机制与激活兴奋性氨基酸N-甲基-D-天冬氨酸受体有关,促使氧自由基大量蓄积,使细胞存活率、酶性自由基清除剂超氧化物歧化酶活性下降,引起细胞氧化功能障碍导致缺氧[3]。此法有着操作简便、成本低廉的优点,但连二亚硫酸钠对人体或细胞有潜在危害,在试验操作过程中需注意安全防护。Dong等[59]研发了一种可靠的活细胞内实时连二亚硫酸钠可视化荧光成像技术,可用于细胞内缺氧情况的实时监测。同时,Tian等[60]设计并合成了针对二亚硫酸钠造成的缺氧具有高灵敏度和选择性的荧光探针,并采用连二亚硫酸钠诱导人结直肠癌细胞HCT116缺氧模型,荧光成像监测细胞缺氧情况,为“肠-肝轴”相关疾病病理机制及其治疗研究提供支持。

HIF调节剂法:HIF是介导细胞缺氧的核心转录因子,其蛋白表达和基因转录水平的上升是细胞缺氧模型构建成功与否的核心指标。HIF的化学调节剂如二甲基草酰甘氨酸(DMOG)或去铁胺可通过抑制以HIF为靶点的脯氨酰羟化酶(PHDs)降解,稳定HIF并促进其在胞浆中不断蓄积,向细胞核转移并激活下游基因的转录,模拟细胞缺氧过程中的一系列信号通路激活[66, 68-69]。如在Muenchau等[50]的研究中,采用DMOG作用6 h诱导了人结肠腺癌肺转移细胞T84缺氧模型,细胞能稳定表达HIF-1α/2α。Zeitouni等[64]采用肠上皮细胞Caco-2诱导肠细胞缺氧模型(450 μmol·L-1 DMOG作用7 h),研究了缺氧对小肠结肠炎耶尔森氏菌侵袭肠上皮细胞的影响,发现DMOG处理与缺氧环境(1% O2)对耶尔森氏菌侵袭的影响类似,都减少了耶尔森氏菌侵袭并降低了β整合素蛋白表达。此法操作简单,但在试验设计时需要充分考虑HIF调节剂对细胞有无毒性作用,是否会存在非氧依赖性途径参与细胞调控,影响造模效果。

3 离体肠道类器官缺氧模型

肠道类器官作为新兴实验模型,是干细胞或含有干细胞的隐窝在体外不断增殖分化形成的三维细胞复合体[70],能高度模拟肠上皮组织,较好地保留了与肠上皮组织相似的形态表型、组织细胞功能和生物学行为[71-72]。近年来,肠道类器官在肠道营养学、病理生理学、毒理学和药理学等领域显示出巨大的应用前景,其引入可以极大地减少实验动物的使用,具有积极的伦理意义[70-71, 73]。近年来,研究者在肠缺氧研究领域也有采用肠道类器官的尝试(表 3)。建立离体肠道类器官缺氧模型过程中,可通过肠道类器官形态学观察、活力检测、LDH活性、E-cadherin(上皮细胞标记物)、富含亮氨酸重复序列G蛋白偶联受体5(LGR5,干细胞标记物)、嗜铬粒蛋白A(CGA,神经内分泌细胞标记物)、溶菌酶(LYZ,潘氏细胞标记物)和黏蛋白(MUC,杯状细胞标记物)、紧密连接蛋白(如Occludin、ZO-l)、Ki67(增殖标记物)以及HIF-1等指标,来衡量离体肠道类器官缺氧模型建立的情况[71, 74]。如Hill等[75]建立人类多能干细胞来源的人肠道类器官缺氧模型(1% O2环境中培养24 h),研究了人肠道类器官与人类肠道的相似性。在Deng等[16]的研究中,以小肠类器官和Ⅱ型先天淋巴样细胞(ILC2)共培养模型为材料,建立肠道类器官缺氧/复氧模型(缺氧12 h;复氧4 h),证实了肠道微生物代谢产物普伐他汀介导IL-33/ST2信号通路促进ILC2释放IL-13从而减轻肠道缺血再灌注损伤的机制。Kip等[76-77]建立人肠道类器官缺氧模型(小于1% O2环境中培养12 h;复氧30/120 min),基于蛋白质组学技术研究了缺氧对人肠道类器官的影响,及未折叠蛋白反应在其中发挥的作用。De Lange等[78]建立人肠道类器官缺氧模型(1% O2环境中培养24/48 h),研究了缺氧驱动的肠道类器官模型变化及水解乳清的保护作用。Koike等[79]建立小鼠肠道类器官缺氧损伤模型(5% O2环境中培养48 h),研究了羊水干细胞对肠道缺血再灌注损伤的作用机制。Walaas等[80]建立人结肠类器官缺氧模型(2% O2环境中培养14 d),研究了生理性缺氧对人肠道上皮类器官的生长和功能分化的影响。结合肠道类器官技术,基于离体肠细胞缺氧模型的多种建立方法,可以稳定诱导离体肠道类器官缺氧模型。

表 3 动物肠道类器官缺氧模型 Table 3 Intestinal organoid hypoxia models in animals
4 展望

目前,国内外对于肠缺氧模型的研究较少,此模型仍有研究和发展的空间。当下对具体缺氧程度的评定还没有一个公认的“金标准”,临床上往往仅区分开轻度和中度缺氧[81],这对结构和功能都相对复杂的肠道来说,无疑增加了一定的造模难度和评价标准。而且肠缺氧不是一个单独的病理现象,现有的肠缺氧模型构建条件大多比较单一,不足以充分反映真实的肠缺氧病理特征。理想并可靠的实验模型应具备重复性好、可操作性强,以及病变发展尽可能与动物疾病过程相似等特点。研究人员需要根据自己的研究目的择优选择,采用适当的试验指标来确定缺氧模型是否构建成功。动物缺氧模型中,除了文中提及的三种模型,常压缺氧模型也较为常用。与低压缺氧模型相比,实验动物对常压缺氧的耐受时间更长,但这类模型往往以脑缺氧和心肌缺氧为关键观察指标,缺少肠缺氧相关试验数据支撑[82-83]。同时,创伤(如烧伤)亦可使全身血流重新分配,导致肠道缺血缺氧。有研究发现,用酒精灌胃小鼠4 h后并诱导Ⅲ级烧伤,能观察到小鼠缺氧诱导因子表达的增加和肠屏障功能的损伤[84-85],但此类方法有着较大的动物福利相关争议。此外,利用造血系统尚未成熟的新生小鼠多次采血也能间接诱导肠道屏障破坏和肠缺氧,此法对幼龄小鼠的多次放血亦不符合动物福利的要求[86-87],故皆不多做讨论。试验方案的可选择性往往比研究者想象的大,研究者应该利用这种多样性,并充分考虑试验的人道性和可行性,选择合适的试验方案[88]。在过去十年中,畜禽肠道类器官的培养方法已在猪、牛、兔、马、羊和鸡中开发出来[89],但目前关于畜禽动物肠道类器官缺氧模型领域的研究相对空白,未来可基于高度还原肠道功能的畜禽动物肠道类器官构建肠缺氧模型。相信随着相关领域的进一步发展,肠缺氧模型会突破当前研究所面临的困难和限制,在动物肠道病生理机制研究和动物肠道健康保障中发挥重要作用。

参考文献
[1]
COLGAN S P, TAYLOR C T. Hypoxia: an alarm signal during intestinal inflammation[J]. Nat Rev Gastroenterol Hepatol, 2010, 7(5): 281-287. DOI:10.1038/nrgastro.2010.39
[2]
ELTZSCHIG H K, ECKLE T. Ischemia and reperfusion-from mechanism to translation[J]. Nat Med, 2011, 17(11): 1391-1401. DOI:10.1038/nm.2507
[3]
马殿伟, 谢学军, 李晓微. 缺氧实验模型研究进展[J]. 医学综述, 2007, 13(23): 1795-1798.
MA D W, XIE X J, LI X W. Research development of experimental model with hypoxia[J]. Medical Recapitulate, 2007, 13(23): 1795-1798. (in Chinese)
[4]
TAYLOR C T, COLGAN S P. Regulation of immunity and inflammation by hypoxia in immunological niches[J]. Nat Rev Immunol, 2017, 17(12): 774-785. DOI:10.1038/nri.2017.103
[5]
VAN WELDEN S, SELFRIDGE A C, HINDRYCKX P. Intestinal hypoxia and hypoxia-induced signalling as therapeutic targets for IBD[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(10): 596-611. DOI:10.1038/nrgastro.2017.101
[6]
ROBRAHN L, JIAO L, CRAMER T. Barrier integrity and chronic inflammation mediated by HIF-1 impact on intestinal tumorigenesis[J]. Cancer Lett, 2020, 490: 186-192. DOI:10.1016/j.canlet.2020.07.002
[7]
TAYLOR C T, COLGAN S P. Hypoxia and gastrointestinal disease[J]. J Mol Med (Berl), 2007, 85(12): 1295-1300. DOI:10.1007/s00109-007-0277-z
[8]
PRAL L P, FACHI J L, CORRȆA R O, et al. Hypoxia and HIF-1 as key regulators of gut microbiota and host interactions[J]. Trends Immunol, 2021, 42(7): 604-621. DOI:10.1016/j.it.2021.05.004
[9]
温爽. 复方中药对腹水综合征肉鸡空肠紧密连接和炎症因子的影响[D]. 晋中: 山西农业大学, 2019.
WEN S. Effect of compound traditional Chinese medicine on jejunum tight junction and inflammatory factors in broilers with Ascitic Syndrome[D]. Jinzhong: Shanxi Agricultural University, 2019. (in Chinese)
[10]
GLOVER L E, LEE J S, COLGAN S P. Oxygen metabolism and barrier regulation in the intestinal mucosa[J]. J Clin Invest, 2016, 126(10): 3680-3688. DOI:10.1172/JCI84429
[11]
陆逸, 蔡杰, 王迪铭, 等. 动物低氧应激与线粒体功能机制[J]. 动物营养学报, 2020, 32(11): 5046-5052.
LU Y, CAI J, WANG D M, et al. Hypoxic stress and mitochondrial function mechanism in animals[J]. Chinese Journal of Animal Nutrition, 2020, 32(11): 5046-5052. (in Chinese)
[12]
GRANGER D N, HOLM L, KVIETYS P. The gastrointestinal circulation: physiology and pathophysiology[J]. Compr Physiol, 2015, 5(3): 1541-1583.
[13]
杨硕菲, 吴性江. 缺氧诱导因子在肠缺氧中的研究进展[J]. 肠外与肠内营养, 2015, 22(5): 307-311.
YANG S F, WU X J. Research advancement of hypoxia-inducible factor in intestinal hypoxia[J]. Parenteral & Enteral Nutrition, 2015, 22(5): 307-311. DOI:10.16151/j.1007-810x.2015.05.015 (in Chinese)
[14]
WAN Z Q, ZHANG X F, JIA X H, et al. Lactobacillus johnsonii YH1136 plays a protective role against endogenous pathogenic bacteria induced intestinal dysfunction by reconstructing gut microbiota in mice exposed at high altitude[J]. Front Immunol, 2022, 13: 1007737. DOI:10.3389/fimmu.2022.1007737
[15]
GONZALEZ L M, MOESER A J, BLIKSLAGER A T. Animal models of ischemia-reperfusion-induced intestinal injury: progress and promise for translational research[J]. Am J Physiol Gastrointest Liver Physiol, 2015, 308(2): G63-G75. DOI:10.1152/ajpgi.00112.2013
[16]
DENG F, HU J J, YANG X, et al. Gut microbial metabolite pravastatin attenuates intestinal ischemia/reperfusion injury through promoting IL-33 release from type Ⅱ innate lymphoid cells via IL-33/ST2 signaling[J]. Front Immunol, 2021, 12: 704836. DOI:10.3389/fimmu.2021.704836
[17]
GUO J F, LOU X K, GONG W Y, et al. The effects of different stress on intestinal mucosal barrier and intestinal microecology were discussed based on three typical animal models[J]. Front Cell Infect Microbiol, 2022, 12: 953474. DOI:10.3389/fcimb.2022.953474
[18]
DENG F, LIN Z B, SUN Q S, et al. The role of intestinal microbiota and its metabolites in intestinal and extraintestinal organ injury induced by intestinal ischemia reperfusion injury[J]. Int J Biol Sci, 2022, 18(10): 3981-3992. DOI:10.7150/ijbs.71491
[19]
DENG F, ZHAO B C, YANG X, et al. The gut microbiota metabolite capsiate promotes Gpx4 expression by activating TRPV1 to inhibit intestinal ischemia reperfusion-induced ferroptosis[J]. Gut Microbes, 2021, 13(1): 1902719. DOI:10.1080/19490976.2021.1902719
[20]
TIAN Y, SHU R, LEI Y, et al. Somatostatin attenuates intestinal epithelial barrier injury during acute intestinal ischemia-reperfusion through Tollip/Myeloiddifferentiationfactor 88/Nuclear factor kappa-B signaling[J]. Bioengineered, 2022, 13(3): 5005-5020. DOI:10.1080/21655979.2022.2038450
[21]
MURTHY S, QING H Q, SAKAI T, et al. Ischemia/reperfusion injury in the rat colon[J]. Inflammation, 1997, 21(2): 173-190. DOI:10.1023/A:1027318203971
[22]
JI A L, LI T, ZU G, et al. Ubiquitin-specific protease 22 enhances intestinal cell proliferation and tissue regeneration after intestinal ischemia reperfusion injury[J]. World J Gastroenterol, 2019, 25(7): 824-836. DOI:10.3748/wjg.v25.i7.824
[23]
GAO Y F, ZHANG H J, WANG Y J, et al. L-cysteine alleviates myenteric neuron injury induced by intestinal ischemia/reperfusion via inhibitin the macrophage NLRP3-IL-1β pathway[J]. Front Pharmacol, 2022, 13: 899169. DOI:10.3389/fphar.2022.899169
[24]
LIU C L, DING R W, HUANG W J, et al. Sevoflurane protects against intestinal ischemia-reperfusion injury by activating peroxisome proliferator-activated receptor gamma/nuclear factor-κB pathway in rats[J]. Pharmacology, 2020, 105(3-4): 231-242. DOI:10.1159/000503727
[25]
PARLAR A, ARSLAN S O. Resveratrol normalizes the deterioration of smooth muscle contractility after intestinal ischemia and reperfusion in rats associated with an antioxidative effect and modulating tumor necrosis factor alpha activity[J]. Ann Vasc Surg, 2019, 61: 416-426. DOI:10.1016/j.avsg.2019.06.027
[26]
LIU C L, SHEN Z W, LIU Y H, et al. Sevoflurane protects against intestinal ischemia-reperfusion injury partly by phosphatidylinositol 3 kinases/Akt pathway in rats[J]. Surgery, 2015, 157(5): 924-933. DOI:10.1016/j.surg.2014.12.013
[27]
TURAN I, OZACMAK H S, OZACMAK V H, et al. Agmatine attenuates intestinal ischemia and reperfusion injury by reducing oxidative stress and inflammatory reaction in rats[J]. Life Sci, 2017, 189: 23-28. DOI:10.1016/j.lfs.2017.08.032
[28]
SAYHAN M B, OGUZ S, SALT Ö, et al. Sesamin ameliorates mucosal tissue injury of mesenteric ischemia and reperfusion in an experimental rat model[J]. Arch Med Sci, 2019, 15(6): 1582-1588. DOI:10.5114/aoms.2017.68535
[29]
ANSARI F A, KHAN A A, MAHMOOD R. Protective effect of carnosine and N-acetylcysteine against sodium nitrite-induced oxidative stress and DNA damage in rat intestine[J]. Environ Sci Pollut Res Int, 2018, 25(20): 19380-19392. DOI:10.1007/s11356-018-2133-9
[30]
KHATUN F, AIZU Y, NISHIDATE I. Transcutaneous monitoring of hemoglobin derivatives during methemoglobinemia in rats using spectral diffuse reflectance[J]. J Biomed Opt, 2021, 26(3): 033708.
[31]
BAI X, LIU G Q, YANG J X, et al. Changes in the gut microbiota of rats in high-altitude hypoxic environments[J]. Microbiol Spectr, 2022, 10(6): e01626-22.
[32]
罗涵. TLR4/NF-κB在低氧暴露下大鼠肠道屏障功能损伤及细菌移位中的作用研究[D]. 重庆: 第三军医大学, 2013.
LUO H. Role of TLR4/NF-κB in damage to intestinal mucosa barrier function and bacterial translocation in rats exposed to hypoxia[D]. Chongqing: Third Military Medical University, 2013. (in Chinese)
[33]
JI Q R, ZHANG Y, ZHOU Y L, et al. Effects of hypoxic exposure on immune responses of intestinal mucosa to Citrobacter colitis in mice[J]. Biomed Pharmacother, 2020, 129: 110477. DOI:10.1016/j.biopha.2020.110477
[34]
赫玉宝. 模拟急进高原缺氧对大鼠肠黏膜的损伤及缺氧相关蛋白的影响[D]. 兰州: 甘肃中医药大学, 2018.
HE Y B. Effect of simulated acute plateau hypoxia on intestinal mucosa injury and hypoxia-related protein in rats[D]. Lanzhou: Gansu University of Chinese Medicine, 2018. (in Chinese)
[35]
YIN L H, GAO M, XU L N, et al. Single-cell analysis of cellular heterogeneity and interactions in the ischemia-reperfusion injured mouse intestine[J/OL]. J Pharm Anal, 2023[2022-11-11]. . https://www.sciencedirect.com/science/article/pii/S2095177923000059.
[36]
DAI D, DAI F D, CHEN J C, et al. Integrated multi-omics reveal important roles of gut contents in intestinal ischemia-reperfusion induced injuries in rats[J]. Commun Biol, 2022, 5(1): 938. DOI:10.1038/s42003-022-03887-8
[37]
AHMED M. Ischemic bowel disease in 2021[J]. World J Gastroenterol, 2021, 27(29): 4746-4762. DOI:10.3748/wjg.v27.i29.4746
[38]
余鸿, 吴雨岭, 韩艺, 等. 缺氧条件下鼠胚软骨c-Fos和巢蛋白表达及当归的保护作用[J]. 中国临床康复, 2006, 10(11): 111-113.
YU H, WU Y L, HAN Y, et al. Effect of Chinese angelica on the expression of c-Fos and nidogen in embryonic cartilage of rats during hypoxia stage[J]. Chinese Journal of Clinical Rehabilitation, 2006, 10(11): 111-113. (in Chinese)
[39]
CHENG J F, SUN Y M, HE J X, et al. The mechanism of colon tissue damage mediated by HIF-1α/NF-κB/STAT1 in high-altitude environment[J]. Front Physiol, 2022, 13: 933659. DOI:10.3389/fphys.2022.933659
[40]
王黎, 史清海, 胡科妍, 等. 优化及复氧对急进高原缺氧大鼠认知功能障碍的改善作用[J]. 华南国防医学杂志, 2018, 32(1): 5-7, 41.
WANG L, SHI Q H, HU K Y, et al. Improvement of optimization and reoxygenation on cognitive dysfunction in plateau hypoxia rats[J]. Military Medical Journal of South China, 2018, 32(1): 5-7, 41. DOI:10.13730/j.issn.1009-2595.2018.01.002 (in Chinese)
[41]
BURTSCHER J, MALLET R T, BURTSCHER M, et al. Hypoxia and brain aging: neurodegeneration or neuroprotection?[J]. Ageing Res Rev, 2021, 68: 101343. DOI:10.1016/j.arr.2021.101343
[42]
RIECH S, KALLENBERG K, MOERER O, et al. The pattern of brain microhemorrhages after severe lung failure resembles the one seen in high-altitude cerebral edema[J]. Crit Care Med, 2015, 43(9): e386-e389. DOI:10.1097/CCM.0000000000001150
[43]
李龙, 刘锁珠, 王宏辉, 等. 益生菌对高海拔缺氧条件下肉鸡生产性能和肠道功能的影响[J]. 家畜生态学报, 2018, 39(7): 25-29.
LI L, LIU S Z, WANG H H, et al. Effects of probiotics on growth performance and intestine function of broiler reared at hypoxic environment in high altitude[J]. Acta Ecologiae Animalis Domastici, 2018, 39(7): 25-29. DOI:10.3969/j.issn.1673-1182.2018.07.006 (in Chinese)
[44]
滕文彬, 李玉红, 祝胜美. 低氧诱导因子的调控途径和在肠道疾病中的作用[J]. 中国病理生理杂志, 2019, 35(10): 1894-1900.
TENG W B, LI Y H, ZHU S M. Regulatory pathway of hypoxia-inducible factor and its role in intestinal diseases[J]. Chinese Journal of Pathophysiology, 2019, 35(10): 1894-1900. (in Chinese)
[45]
马雪, 史清海. 缺氧动物及细胞实验模型的研究进展[J]. 西北国防医学杂志, 2016, 37(8): 535-538.
MA X, SHI Q H. Research progress of hypoxic animal and cell experimental models[J]. Medical Journal of National Defending Forces in Northwest China, 2016, 37(8): 535-538. DOI:10.16021/j.cnki.1007-8622.2016.08.015 (in Chinese)
[46]
杨松巍. NF-κB/HIF-1α通路在IFN-γ诱导的肠上皮屏障损害中的机制研究[D]. 重庆: 第三军医大学, 2014.
YANG S W. NF-κB/HIF-1α pathway involved in IFN-γ induced intestinal epithelial barrier disfunction[D]. Chongqing: Third Military Medical University, 2014. (in Chinese)
[47]
王彬彬. 模拟高原缺氧大鼠肠上皮细胞损伤自噬调控机制的研究[D]. 兰州: 甘肃中医药大学, 2016.
WANG B B. Research mechanism of autophagy in rat intestinal epithelial cells injury induced by simulated altitude hypoxia[D]. Lanzhou: Gansu University of Chinese Medicine, 2016. (in Chinese)
[48]
GAO H N, REN F Z, WEN P C, et al. Yak milk-derived exosomal microRNAs regulate intestinal epithelial cells on proliferation in hypoxic environment[J]. J Dairy Sci, 2021, 104(2): 1291-1303. DOI:10.3168/jds.2020-19063
[49]
张秀杨, 张龙飞, 陈世远, 等. 缺氧诱导因子1α介导单羧酸转运蛋白1表达参与短链脂肪酸对肠道缺氧保护作用的研究[J]. 中华普通外科学文献, 2023, 17(1): 18-23.
ZHANG X Y, ZHANG L F, CHEN S Y, et al. Hypoxia-inducible factor-1α mediating the expression of monocarboxylate transporter-1 and participating in the protective effect of short-chain fatty acids on intestinal hypoxia[J]. Chinese Archives of General Surgery (Electronic Edition), 2023, 17(1): 18-23. (in Chinese)
[50]
MUENCHAU S, DEUTSCH R, DE CASTRO I J, et al. Hypoxic environment promotes barrier formation in human intestinal epithelial cells through regulation of microRNA 320a expression[J]. Mol Cell Biol, 2019, 39(14): e00553-18.
[51]
LI Y, FENG D C, WANG Z Y, et al. Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion[J]. Cell Death Differ, 2019, 26(11): 2284-2299. DOI:10.1038/s41418-019-0299-4
[52]
FACHI J L, PRAL L P, DOS SANTOS J A C, et al. Hypoxia enhances ILC3 responses through HIF-1α-dependent mechanism[J]. Mucosal Immunol, 2021, 14(4): 828-841. DOI:10.1038/s41385-020-00371-6
[53]
XIE L W, COLLINS J F. Transcription factors Sp1 and Hif2α mediate induction of the copper-transporting ATPase (Atp7a) gene in intestinal epithelial cells during hypoxia[J]. J Biol Chem, 2013, 288(33): 23943-23952. DOI:10.1074/jbc.M113.489500
[54]
罗红敏. 丙戊酸钠对严重烫伤后肠屏障功能的保护作用及机制研究[D]. 北京: 中国人民解放军医学院, 2014.
LUO H M. The protective effects of valproic acid on gut barrier function after major burn injury and its underlying mechanisms[D]. Beijing: People's Liberation Army Medical College, 2014. (in Chinese)
[55]
BASAVARAJU A M, SHIVANNA N, YADAVALLI C, et al. Ameliorative effect of Ananas comosus on cobalt chloride-induced hypoxia in Caco2 cells via HIF-1α, GLUT 1, VEGF, ANG and FGF[J]. Biol Trace Elem Res, 2021, 199(4): 1345-1355. DOI:10.1007/s12011-020-02278-6
[56]
BONCLER M, LUKASIAK M, DASTYCH J, et al. Differentiated mitochondrial function in mouse 3T3 fibroblasts and human epithelial or endothelial cells in response to chemical exposure[J]. Basic Clin Pharmacol Toxicol, 2019, 124(2): 199-210. DOI:10.1111/bcpt.13117
[57]
DIGUILIO K M, VALENZANO M C, RYBAKOVSKY E, et al. Cobalt chloride compromises transepithelial barrier properties of CaCo-2 BBe human gastrointestinal epithelial cell layers[J]. BMC Gastroenterol, 2018, 18(1): 2. DOI:10.1186/s12876-017-0731-5
[58]
LIU Y L, WANG C H, WANG Y H, et al. Cobalt chloride decreases fibroblast growth factor-21 expression dependent on oxidative stress but not hypoxia-inducible factor in Caco-2 cells[J]. Toxicol Appl Pharmacol, 2012, 264(2): 212-221. DOI:10.1016/j.taap.2012.08.003
[59]
DONG B L, SONG W H, KONG X Q, et al. Visualizing cellular sodium hydrosulfite (Na2S2O4) using azo-based fluorescent probes with a high signal-to-noise ratio[J]. J Mater Chem B, 2019, 7(5): 730-733. DOI:10.1039/C8TB02487A
[60]
TIAN Y, LI Y F, WANG W X, et al. Novel strategy for validating the existence and mechanism of the "Gut-Liver Axis" in vivo by a hypoxia-sensitive NIR fluorescent probe[J]. Anal Chem, 2020, 92(6): 4244-4250. DOI:10.1021/acs.analchem.9b04578
[61]
KHONG T L, THAIRU N, LARSEN H, et al. Identification of the angiogenic gene signature induced by EGF and hypoxia in colorectal cancer[J]. BMC Cancer, 2013, 13: 518. DOI:10.1186/1471-2407-13-518
[62]
CUMMINS E P, SEEBALLUCK F, KEELY S J, et al. The hydroxylase inhibitor dimethyloxalylglycine is protective in a murine model of colitis[J]. Gastroenterology, 2008, 134(1): 156-165. DOI:10.1053/j.gastro.2007.10.012
[63]
DENGLER F, GÄBEL G. The fast lane of hypoxic adaptation: Glucose transport is modulated via a HIF-hydroxylase-AMPK-axis in jejunum epithelium[J]. Int J Mol Sci, 2019, 20(20): 4993. DOI:10.3390/ijms20204993
[64]
ZEITOUNI N E, DERSCH P, NAIM H Y, et al. Hypoxia decreases invasin-mediated Yersinia enterocolitica internalization into Caco-2 cells[J]. PLoS One, 2016, 11(1): e0146103. DOI:10.1371/journal.pone.0146103
[65]
KAMIYA T, KOWN A H, KANEMAKI T, et al. A simplified model of hypoxic injury in primary cultured rat hepatocytes[J]. In Vitro Cell Dev Biol Anim, 1998, 34(2): 131-137. DOI:10.1007/s11626-998-0095-9
[66]
MUÑOZ-SÁNCHEZ J, CHÁNEZ-CÁRDENAS M E. The use of cobalt chloride as a chemical hypoxia model[J]. J Appl Toxicol, 2019, 39(4): 556-570. DOI:10.1002/jat.3749
[67]
许蜀闽, 王培勇, 马红英. 连二亚硫酸钠在建立培养细胞的无氧环境中的应用[J]. 第三军医大学学报, 2005, 27(4): 359-360.
XU S M, WANG P Y, MA H Y. Preparation of hypoxic surroundings with sodium dihionite for cell culture[J]. Acta Academiae Medicinae Militaris Tertiae, 2005, 27(4): 359-360. DOI:10.3321/j.issn:1000-5404.2005.04.025 (in Chinese)
[68]
SWEET R, PAUL A, ZASTRE J. Hypoxia induced upregulation and function of the thiamine transporter, SLC19A3 in a breast cancer cell line[J]. Cancer Biol Ther, 2010, 10(11): 1101-1111. DOI:10.4161/cbt.10.11.13444
[69]
SABUI S, RAMAMOORTHY K, ROMERO J M, et al. Hypoxia inhibits colonic uptake of the microbiota-generated forms of vitamin B1 via HIF-1α-mediated transcriptional regulation of their transporters[J]. J Biol Chem, 2022, 298(2): 101562. DOI:10.1016/j.jbc.2022.101562
[70]
王修启, 谢文文, 周加义. 农业动物肠道类器官研究进展[J]. 饲料工业, 2022, 43(18): 1-7.
WANG X Q, XIE W W, ZHOU J Y. Recent advances in intestinal organoids of farm animals[J]. Feed Industry, 2022, 43(18): 1-7. DOI:10.13302/j.cnki.fi.2022.18.001 (in Chinese)
[71]
ZUR BRUEGGE T F, LIESE A, DONATH S, et al. Intestinal organoids in colitis research: focusing on variability and cryopreservation[J]. Stem Cells Int, 2021, 2021: 9041423.
[72]
BURCLAFF J, BLITON R J, BREAU K A, et al. A proximal-to-distal survey of healthy adult human small intestine and colon epithelium by single-cell transcriptomics[J]. Cell Mol Gastroenterol Hepatol, 2022, 13(5): 1554-1589. DOI:10.1016/j.jcmgh.2022.02.007
[73]
WÖRSDÖRFER P, ERGVN S. The impact of oxygen availability and multilineage communication on organoid maturation[J]. Antioxid Redox Signal, 2021, 35(3): 217-233. DOI:10.1089/ars.2020.8195
[74]
ZHAO D, FARNELL M B, KOGUT M H, et al. From crypts to enteroids: establishment and characterization of avian intestinal organoids[J]. Poult Sci, 2022, 101(3): 101642. DOI:10.1016/j.psj.2021.101642
[75]
HILL D R, HUANG S, NAGY M S, et al. Bacterial colonization stimulates a complex physiological response in the immature human intestinal epithelium[J]. eLife, 2017, 6: e29132. DOI:10.7554/eLife.29132
[76]
KIP A M, SOONS Z, MOHREN R, et al. Proteomics analysis of human intestinal organoids during hypoxia and reoxygenation as a model to study ischemia-reperfusion injury[J]. Cell Death Dis, 2021, 12(1): 95. DOI:10.1038/s41419-020-03379-9
[77]
KIP A M, GROOTJANS J, MANCA M, et al. Temporal transcript profiling identifies a role for unfolded protein stress in human gut ischemia-reperfusion injury[J]. Cell Mol Gastroenterol Hepatol, 2022, 13(3): 681-694. DOI:10.1016/j.jcmgh.2021.11.001
[78]
DE LANGE I H, VAN GORP C, MASSY K R I, et al. Hypoxia-driven changes in a human intestinal organoid model and the protective effects of hydrolyzed whey[J]. Nutrients, 2023, 15(2): 393. DOI:10.3390/nu15020393
[79]
KOIKE Y, LI B, LEE C, et al. The intestinal injury caused by ischemia-reperfusion is attenuated by amniotic fluid stem cells via the release of tumor necrosis factor-stimulated gene 6 protein[J]. FASEB J, 2020, 34(5): 6824-6836. DOI:10.1096/fj.201902892RR
[80]
WALAAS G A, GOPALAKRISHNAN S, BAKKE I, et al. Physiological hypoxia improves growth and functional differentiation of human intestinal epithelial organoids[J]. Front Immunol, 2023, 14: 1095812. DOI:10.3389/fimmu.2023.1095812
[81]
ALLWOOD M A, EDGETT B A, EADIE A L, et al. Moderate and severe hypoxia elicit divergent effects on cardiovascular function and physiological rhythms [J]. J Physiol, 2018, 596(15): 3391-3410. DOI:10.1113/JP275945
[82]
王艺博, 王峰, 肖智勇, 等. 大株红景天胶囊提高小鼠耐常压缺氧能力和抗疲劳作用[J]. 中国药理学与毒理学杂志, 2021, 35(6): 420-426.
WANG Y B, WANG F, XIAO Z Y, et al. Large plant Rhodiola capsules improve normobaric hypoxia tolerance and anti-fatigue action in mice[J]. Chinese Journal of Pharmacology and Toxicology, 2021, 35(6): 420-426. (in Chinese)
[83]
董晓敏, 孙笑语, 童学红, 等. 机能学实验中常压与低压缺氧环境下小鼠耐受性的比较[J]. 继续医学教育, 2018, 32(12): 72-73.
DONG X M, SUN X Y, TONG X H, et al. Comparison of tolerance between hypobaric hypoxia and normobaric hypoxia in medical functional teaching experiment[J]. Continuing Medical Education, 2018, 32(12): 72-73. (in Chinese)
[84]
MORRIS N L, CANNON A R, LI X L, et al. Protective effects of PX478 on gut barrier in a mouse model of ethanol and burn injury[J]. J Leukoc Biol, 2021, 109(6): 1121-1130. DOI:10.1002/JLB.3A0820-323RR
[85]
CHOUDHRY M A, BA Z F, RANA S N, et al. Alcohol ingestion before burn injury decreases splanchnic blood flow and oxygen delivery[J]. Am J Physiol Heart Circ Physiol, 2005, 288(2): H716-H721. DOI:10.1152/ajpheart.00797.2004
[86]
WALLIN D J, TKAC I, STUCKER S, et al. Phlebotomy-induced anemia alters hippocampal neurochemistry in neonatal mice[J]. Pediatr Res, 2015, 77(6): 765-771.
[87]
ARTHUR C M, NALBANT D, FELDMAN H A, et al. Anemia induces gut inflammation and injury in an animal model of preterm infants[J]. Transfusion, 2019, 59(4): 1233-1245.
[88]
BALLS M. It's time to reconsider the principles of humane experimental technique[J]. Altern Lab Anim, 2020, 48(1): 40-46.
[89]
BEAUMONT M, BLANC F, CHERBUY C, et al. Intestinal organoids in farm animals[J]. Vet Res, 2021, 52(1): 33.

(编辑   范子娟)