2. 国家肉牛改良中心, 杨凌 712100
2. National Beef Cattle Improvement Center, Yangling 712100, China
非编码RNA(long non-coding RNA、micro-RNA、circRNA)作为转录后重要的调控因子,参与多种生物代谢过程。1976年环状RNA首次作为类病毒被报道,并于1979年首次用电子显微镜在人类HeLa细胞中观察到[1-2]。CircRNA由pre-RNA通过反向剪接使5′尾端和3′polyA端通过共价结合的形式形成环状RNA,通常由100到4 000个核苷酸组成的,包含2到5个的外显子,它们主要存在于真核生物的细胞质中[3-4]。在非编码RNA研究早期,由于circRNA在细胞中的表达量少,被人们认为是转录“噪音”而忽视。现随着circRNA各方面技术的成熟,大量的circRNA作为真核生物蛋白编码基因的产物被发现。此外,circRNAs可以作为信使,在不同的组织、发育阶段和细胞条件下携带不同类型的时空生物信息。circRNA具有序列保守性、时序表达特异性和组织表达特异性,相较于mRNA有更强的稳定性,不易被RNase降解[3]。
早在1970年,m6A就已被报道。同DNA和组蛋白的甲基化一样,细胞中的m6A修饰是一个动态可逆过程,受到多种蛋白的调节,包括甲基转移酶复合物(writers)、m6A去甲基酶(erasers)和m6A阅读蛋白(readers)[5]。m6A修饰的发生是RNA的腺嘌呤核苷第6位氮原子发生甲基化。m6A作为主要的表观遗传修饰,其在真核生物中广泛存在,并且参与机体生物各个生物学过程[6]。近几年报道m6A也影响circRNA的稳定性、翻译、出核以及circRNA的免疫反应等过程,同时circRNA也可以通过影响甲基转移酶、去甲基酶以及阅读蛋白进而调控m6A修饰[7-9]。本文阐述了circRNA的生物学合成、作用机制及m6A修饰对circRNA的调控作用,以期为研究circRNA提供新的思路。
1 circRNA的生物合成机制在真核生物中,pre-mRNA会经历一个去除内含子并将外显子连接成mRNA的“规范剪接”过程。circRNA的形成与mRNA形成类似,pre-mRNA通过“反向剪接”形成共价环状RNA[10]。环状RNA的形成可与pre-mRNA的“规范剪接”在先后顺序上相互竞争,且这种竞争存在组织特异性和物种保守性[11]。现已发现有3种机制可以驱动环状RNA的形成,即套索驱动环化、内含子驱动环化和RNA结合蛋白(RNA-bindings proteins, RBPs)驱动环化。CircRNA可由外显子和内含子产生,即外显子产生的称为外显子RNA(ecRNA), 内含子产生的为内含子RNA(ciRNA),外显子和内含子共同产生的为外显子-内含子RNA(ElciRNA),ecRNA和ciRNA主要存在于细胞质中而ElciRNA主要存在于细胞核中[12-13]。
1.1 套索驱动环化外显子套索环化形成的机制有两种。一是在RNA转录过程中,部分RNA发生折叠,相邻的外显子5′供体和3′受体结合形成套索结构,套索结构形成后将内含子剪切,最终形成包含2或3个外显子的环状RNA[14]。二是pre-mRNA相邻的两个内含子互补配对,进而拉近相应外显子的距离,使得外显子5′供体和3′受体结合形成套索结构,再剪切内含子,最终形成circRNA。这些被剪切后的内含子会被外切酶降解。然而, 当pre-mRNA的一个外显子附近有富含7 nt鸟嘌呤(G)和尿嘧啶(U)的序列、另一个外显子附近富含11 nt胞嘧啶(C)的序列时,在套索驱动的环化反应中,内含子可以避免被降解并环化形成环状RNA[15]。酵母基因组很少有重复序列,因此套索驱动环化是酵母基因组环状RNA形成的主要机制。在酵母基因Mrsp1中,已经证明环状RNA是由套索驱动形成的[16]。
1.2 内含子驱动环化内含子含有反向互补的顺式作用元件,如ALU序列,通过碱基互补直接配对,使pre-mRNA的剪接位点在空间上相互靠近,形成不去内含子的ElciRNA或去内含子的ecRNA。Jeck等[12]首次发现,哺乳动物circRNA中有重复片段ALU,特别是在反方向上富集,因此推测内含子重复片段ALU促进RNA环化。其后Kramer等[17]发现果蝇laccase2基因的环化受内含子重复序列ALU和反式剪接因子调控。进一步为内含子重复片段促进RNA环化提供证据。后研究又证实circRNA的形成主要由侧翼内含子ALU序列决定,破坏ALU序列的碱基配对可抑制环状RNA的生成[18]。内含子包含多个重复序列,存在碱基配对竞争性,因此内含子重复序列不总驱动环化[19]。其次只有不同内含子的重复序列发生碱基配对才能产生环状RNA,单个内含子内部发生碱基配对时会发生“规范剪接”产生线性RNA[19]。
1.3 RNA结合蛋白(RNA-binding proteins, RBPs)驱动环化RBPs可以识别并锚定内含子中的特定基因序列,并通过蛋白质相互作用或形成二聚体,在附近的外显子两端形成剪接位点,使剪接受体和剪接供体之间共价连接[20]。Quaking (QKI)属于含有KH结构域的RNA结合蛋白STAR家族,能够结合单个RNA分子的两个区域,因此QKI可以使pre-mRNA外显子靠近形成环状RNA[21]。在上皮-间充质转化(epithelial-mesenchymal transition,EMT)过程中,Conn等[20]发现许多环状RNA的形成主要由QKI调控,QKI与位于pre-mRNA剪接位点附近的识别元件结合形成二聚体,从而诱导环状RNA的形成。与QKI类似的是Drosophila Muscleblind (MBL)蛋白,MBL蛋白同样与自身pre-mRNA中的内含子识别元件特异性结合,拉近剪接位点的距离,以促进环状RNA的产生,从而内源性调节宿主基因的表达[11]。除RBPs驱动环化的作用外,RBPs还可作用于内含子重复序列,抑制环状RNA的生成。NF90/NF110和RNA解旋酶(DHX9)作用于内含子并且以“中间体”的形式招募RNA腺苷脱氨酶(ADAR),ADAR使腺苷转化为肌苷,从而影响环状RNA的形成[22]。
2 circRNA的作用机制 2.1 circRNA海绵miRNAcircRNA的功能之一是海绵miRNA,形成circRNA-miRNA-mRNA的竞争性内源RNA网络(competing endogenous RNA, ceRNA),直接或间接调控靶基因[23]。成熟的miRNA通常在细胞质中形成RNA诱导沉默复合物(RISC),与靶标mRNA的3′UTR碱基配对,影响mRNA的稳定性,抑制其翻译。CircRNA可作为miRNA的“海绵”吸附miRNA从而间接调控靶基因的表达[24]。circRNA-miRNA-mRNA形成的ceRNA网络广泛存在各种真核生物中。研究表明拟南芥中检测到5%的circRNA具有海绵miRNA的能力[25]。水稻中约25%的circRNA海绵miRNA[26],玉米中约20%的circRNA海绵miRNA[27]。同样地,circRNA在动物生长发育中也多发挥海绵作用(表 1)。前体脂肪细胞的分化是影响动物脂肪沉积的主要因素,Wang等[28]利用高通量测序技术在前体脂肪细胞分化0和3 d筛选出141个表达差异的circRNAs,并且发现circ-PLXNA1通过海绵miR-214调控动物脂肪细胞的分化。肌肉组织是机体最丰富的组织,约占总体重的50%。肌细胞的增殖、分化是影响肌肉组织生长发育的主要因素。Yan等[29]发现, bta-circ-03789-1以及bta-circ-05453-1通过海绵miRNA调控肉牛背长肌的发育。
|
|
表 1 circRNA的功能:海绵miRNA Table 1 The function of circRNA: sponge miRNA |
RBPs在基因表达中发挥关键作用,参与组织发育和紊乱。RBPs组装核糖核蛋白(RNP)复合物,与特定的顺式调控元件相互作用,从而结合RNA序列并影响RNA的表达和功能[43]。RBPs可以与circRNA相互作用,并在circRNA剪接、加工、折叠、稳定和定位中发挥作用[44]。MBL可以触发补体激活和抗原调理。circMBL侧翼内含子中含有保守的MBL结合位点。因此MBL结合蛋白可以和circMBL结合,影响circMBL外显子的环化率。反过来,circMBL的表达异常会影响MBL的靶mRNA的形成,并调节亲本基因的转录[11]。含有双链RNA结合域的免疫因子NF90/NF110结合域是circRNA生物发生的关键调节因子。NF90/NF110通过与内含子RNA相互作用促进细胞核中环状RNA的产生,同时NF90/NF110也与细胞质中的成熟环状RNA相互作用动态调控circRNA的稳定[22]。Li等[22]研究表明,病毒感染细胞后,环状RNA表达降低,部分原因是NF90/NF110核输出到细胞质从而影响到circRNA的生成。circRNA可以竞争性地与RBPs结合,通过充当RBPs的海绵、RBPs组装平台和超级转运体连接的特定成分而调节RBPs功能[45]。在细胞周期进程中,CDK2与周期蛋白A(Cyclin A)和周期蛋白E(Cyclin E)相互作用以促进细胞周期的进入,p21则抑制CDK2和Cyclin A、Cyclin E的相互作用并阻止细胞周期进程。circ-Foxo3的异常表达可以结合CDK2和p21形成circ-Foxo3-p21-CDK2三元复合物,因此阻碍了CDK2的功能并抑制细胞周期进程[46]。丙酮酸激酶作为糖酵解的三大限速酶之一包括了4种同工酶,其中m2型丙酮酸激酶(PKM2)主要表达于快速增殖的细胞。赖氨酸去甲基化酶8 (lysine demethylase 8, KDM8)可直接与PKM2相互作用,诱导PKM2二聚体调控糖代谢[47-48]。Song等[49]发现,过表达ZCRB1促进ALU介导的circHEATR5B的形成。此外,circHEATR5B编码的新蛋白HEATR5B-881aa可以直接和赖氨酸去甲基化酶8的同源物JMJD5相互作用。敲除JMJD5可增加PKM2的活性,抑制糖酵解和GBM细胞的增殖。
2.3 circRNA翻译作用核糖体扫描机制假说认为mRNA的翻译是由eIF4F复合物启动的帽依赖翻译。CircRNA呈环状,无3′polyA和5′帽端,因此被认为不参与RNA的翻译。之后随着翻译需要内部核糖体进入位点(IRES)及circRNA存在IRES位点的发现,说明circRNA可以被翻译。circRNA上的IRES位点可以直接被eIF4G蛋白识别从而启动翻译。在此基础上,许多研究表明,当5′帽依赖的起始机制被阻断时,IRESs也可以翻译特定类型的mRNA[50]。IRES依赖机制在翻译过程中发挥作用的同时也受到IRES反式作用因子(ITAF)和特定蛋白质的调控[51],Yang等[52]发现P27的TP53调节器TRMP(TP53-regulated modulator of p27, TRMP)通过竞争p27 mRNA与多聚嘧啶区结合蛋白1 (PTBP1)的结合来抑制依赖IRES p27的翻译。不存在IRES的circRNA有一个相同的序列“RACH”(R=G、A; H=A、C、U),RACH中含有m6A修饰结构,YTHDF3可以识别m6A修饰位点并能招募eIF4G2到m6A从而起始circRNA翻译[53]。同线性RNA一样,circRNA能编码出有独立功能的蛋白质[54]。circZNF609在人和小鼠肌肉发育中差异性表达,并且具有物种保守性。circZNF609含有从起始密码子开始到终止密码子结束的753 nt开放阅读框,可以通过IRES起始翻译,编码蛋白质[55-56]。circ-AKT3可以编码一个由174个氨基酸组成的蛋白质AKT3-1744aa,该蛋白质在BMC细胞中可发挥作用,当过表达AKT3-174aa时,抑制BMC细胞的增殖,辐射抗性等[54]。circPPP1R12A同样含有216 nt开放阅读框,可以编码出一个由74个氨基酸组成的蛋白质circPPP1R12A-73aa,该蛋白质可促进结肠癌细胞的增殖和代谢[56]。
2.4 circRNA转录作用非编码RNA的一个中心作用是调控基因表达。EciRNA位于细胞核中能与U1 snRNP相互作用形成RNA-RNA复合物,该复合物能与亲本基因启动子上的Pol Ⅱ转录复合物相互作用而调控亲本基因的转录[57]。其次在细胞核中,circRNA可以与亲本基因形成RNA-DNA杂交链或R-loop环进而调控宿主基因的表达。Conn等[58]报道拟南芥中来源于SEPALLATA3第6个外显子的环状RNA可与同源的DNA位点形成R-loop环导致亲本基因转录终止。而线性RNA与同源DNA的结合力很弱。Xu等[59]发现,circSMARCA5在乳腺癌细胞系和乳腺癌样本中表达明显降低,且circSMARCA5是直接与宿主基因形成R-loop环导致宿主基因第15个外显子的转录终止,而非其他研究所述是作为miRNA的海绵发挥作用的。Feng等[60]发现,circ0005276和靶基因XIAP在前列腺癌样中表达上调,circ0005276可以正向调控XIAP的表达并且circ0005276和XIAP能以协同作用促进前列腺癌细胞的增殖、迁移等。其次在机制上,Feng等[60]研究认为circ0005276与FUS结合蛋白相互作用,从而激活XIAP的转录。Chen等[61]在肝癌组织中发现一种功能性的circRNA(cia-MAF)可以结合到MAFF启动子上从而招募TIP60复合物到MAFF,促进MAFF表达。
3 m6A修饰DNA的甲基化已被证明可发挥多种作用。随着2011年RNA表观遗传学的提出,RNA的甲基化逐渐进入大众视野。目前发现RNA的修饰接近170种,这也被认为是“外延组学”[62]。其中m6A是真核生物RNA中最丰富的修饰之一,约占所有修饰的60%。m6A修饰在mRNA、tRNA、rRNA、miRNA等不同类型的RNA中被证实是转录后的调控标记物[63]。m6A是一种存在于许多真核生物中的可逆转录组修饰。在RNA的翻译、剪接、染色体易位、染色体高度螺旋中起重要作用[64],其次越来越多的研究表明m6A在基因表达、细胞增殖、免疫反应等过程起调控作用[65-67]。随着高通量测序技术的发展,2012年第一次在转录组中检测到m6A。Dominissini等[68]利用m6A-seq技术在超过7 000个基因转录本种检测出超过12 000个m6A修饰位点。m6A修饰位点通常在终止密码子和3′ UTR附近富集,与mRNA的3′ UTR位点有关联[69]。现有的m6A位点检测技术有RNA甲基化免疫共沉淀(MeRIP)、MAZTER-seq、DART-seq、PA-m6A-seq、miCLIP等。MAZTER-seq和DART-seq技术可以量化单个位点的m6A[70-71]。这些m6A检测技术的发展为m6A修饰提供了重要的技术支撑,同时也为m6A修饰非编码RNA提供重要技术支撑。
3.1 甲基转移酶复合物(writers)甲基化修饰一般情况下在细胞核中发生,但在一些特殊的情况下也可以在细胞质中发生[72]。甲基化实现的过程是腺苷甲硫氨酸作甲基供体,在甲基复合酶复合物(MTC)的作用下完成。甲基酶复合物的组分有METTL3、METTL14、WTAP、KIAA1429、RBM15/RBM15B、含CCH结构的锌指蛋白(ZC3H13)等。METTL3及METTL14形成一个稳定的二聚体,在哺乳动物体内高度保守[73]。WTAP蛋白作为载体,在KIAA1429、RBM15/RBM15B等蛋白的作用下完成甲基化[74]。METTL3在胚胎发育、精子发生及减数分裂等起重要作用[75-76]。敲除METTL3、METTL1和WATP均可以降低m6A修饰。单个组分对m6A修饰的作用不显著。但这些组分可协同发挥作用。R-loop是核苷酸的三级结构,在DNA复制、染色体分离、免疫球蛋白转化等过程发挥作用。在细胞核中,R-loop是Pol Ⅱ的重要调节因子[77]。Yang等[78]发现,R-loop存在m6A位点,m6A修饰可影响R-loop的形成和降解。当敲低单个组分YTHDC1时,对R-loop的形成影响很小,然而协同敲除METTL3、METTL14、WTAP等组分时,可以抑制R-loop形成。
3.2 m6A去甲基酶(erasers)m6A去甲基酶是以亚铁离子为辅助因子,α-酮戊二酸为辅助底物,通过去除甲基基团解除m6A修饰[79]。目前发现的去甲基酶有FTO和ALKBH5等[80]。Jia等[81-82]发现与甲基化脱氧核糖核苷酸相比,FTO对核糖核苷酸具有更高的活性,暗示FTO是RNA中3-甲基尿苷(m3U)的去甲基化酶,随后的研究显示,FTO对mRNA中对m6A的去甲基酶活性更高,因此认为m6A是FTO的真正底物。紧接着Mauer等[83]发现m7G帽附近的m6Am在体内和体外都能被FTO转化为Am,敲除或过表达FTO能有效控制含有m6Am的mRNA丰度,进一步证明m6Am是FTO的首选底物。snRNA包含一个受调控的可逆核苷酸修饰,导致它们以两种不同的甲基异构体m1和m2存在。FTO可以选择性地去甲基m2亚型,调控m1和m2的相对亚型。当FTO被抑制时m2-snRNA水平会升高。高水平m2-snRNA的细胞会发生可变剪接模式的改变[84]。Wu等[85]发现,沉默FTO后CCNA2和CDK2的m6A水平显著上调,YTHDF2识别并衰减CCNA2和CDK2上的m6A水平导致蛋白表达量降低,从而延缓细胞周期进程抑制脂肪生成。ALKBH5定位在细胞核内,影响mRNA的运输、RNA代谢及核内mRNA的加工因子的组装。敲除ALKBH5,小鼠体内的mRNA的m6A水平增加[86]。重金属与肿瘤发生相关,Li等[87]发现金属铊会通过METLL3/METTL14/ALKBH5-ATP13A3 a轴增加ATP13A3上的异常m6A修饰从而促进结肠癌的发生。Sun等[88]发现在卵巢癌中过表达ALKBH5会逆转ITGB1 mRNA的m6A修饰,导致ITGB1表达增加。
3.3 m6A阅读蛋白(readers)m6A读取蛋白主要由YTH域家族构成,在YTH域家族中有两个亚型,分别是YTHDFs、YTHDCs。YTHDFs包含YTHDF1、YTHDF2、YTHDF3成员。YTHDF1可以促进mRNA的翻译和通过与起始因子结合促进蛋白的合成[89]。YTHDF2可以通过与mRNA的m6A修饰位点结合招募到mRNA的衰败位点从而诱导转录终止[90]。YTHDF3可以与YTHDF1结合促进mRNA翻译,与YTHDF2结合促进mRNA的降解[91]。YTHDFs包含YTHDC1、YTHDC2成员。YTHDC1主要在细胞运输和RNA剪接方面发挥作用[92]。YTHDC2增强mRNA的翻译效率[92]。除YTH域家族外,m6A读取蛋白还有eIFs和IGFBPs。在癌症研究中,IGFBPs可以识别靶基因SOX2编码序列的m6A修饰位点,抑制SOX2降解。在胰腺癌中,过表达IGFBP2后DNA水平的甲基化修饰减低[93]。eIFs作为重要的起始因子,在基因表达和circRNA翻译中发挥重要作用[94]。
4 m6A修饰调控circRNAm6A修饰广泛存在于真核生物中,修饰mRNA的剪接、出核、降解以及功能等。在非编码RNA中m6A修饰也逐渐被报道,调控机制依然为“readers、erasers、writers”。在环状RNA中,m6A通过调控circRNA的出核、翻译、降解以及响应免疫反应发挥作用。
4.1 介导circRNA的出核CircRNA的剪接发生在细胞核中,然而细胞质中存在大量的circRNA。Zhang等[95]发现,circRNA有和线性RNA相似的核输出机制,通过分析HepG2细胞的环状RNA发现富集在细胞质的环状RNA含有可以被核输出RBPs识别的基序。DDX39家族是进化上保守DExD-box解旋酶的家族成员,参与pre-mRNA转录、剪接和核输出[96]。Huang等[96]和Shen[97]发现,果蝇的Hel25E及其人类同源物UAP56 (DDX39B)或URH49 (DDX39A) 是circRNA定位的关键调节因子,通过感知成熟circRNA的长度来控制细胞的核输出效率。在线性RNA中,阅读蛋白YTHDC1可以和SRSF3相互作用将m6A修饰的mRNA运送到核输出通道中,调控mRNA的出核反应[92]。此外研究发现,YTHDC1也可促进m6A修饰的环状RNA出核[8]。Chen等[8]发现,YTHDC1可识别细胞核中circNSUN2的m6A位点并促进circNSUN2的核输出。输送到细胞质中的circNSUN2可以和IGF2BP及HMGA2形成circNSUN2-IGF2BP2-HMGA2的RNA-蛋白三元复合物,增强circNSUN2的稳定性。同样在肝癌细胞(HCC)中METTL3可介导m6A修饰的circHPS5形成。YTHDC1促进了m6A修饰的circHPS5出核,加快HCC的转移[9]。
4.2 介导circRNA的翻译与IRES翻译机制一样,当m6A存在于5′非翻译区域(5′UTR)时,一个单独的m6A位点被称为“m6A诱导的内部核糖体进入位点(MIRES)”[98]。MIRES和IRES都是RNA5′帽端非独立翻译的依赖因子。在circRNA的翻译中起重要作用。一个单一的m6A位点就足以驱动翻译起始。m6A驱动的翻译需要起始因子eIF4G2和m6A阅读蛋白YTHDF3。这种翻译起始机制会被甲基转移酶METTL3和METTL14增强、脱甲基酶FTO抑制。m6A也具有一定的翻译调节能力[99]。在热休克条件下,YTHDF2可从细胞质转移到细胞核中抑制FTO的功能,从而增加m6A翻译[100]。其次通过多聚体分析技术和质谱技术分析表明,m6A驱动翻译在circRNA中广泛存在[53]。circ-ZNF609包含一个开放阅读框(ORF),依赖MIRES机制起始翻译, YTHDF3和eIF4G2蛋白是介导circ-ZNF609翻译的重要因素。当m6A修饰的两个位点发生突变时, circZNF609的翻译会降低50%[101]。阅读蛋白IGF2BP1可以识别circMAP3K4的m6A位点,并促进其翻译为circMAP3K4-455aa, circMAP3K4-455aa通过泛素-蛋白酶E3连接酶(MIB1)途径降解[102]。
4.3 调控circRNA的降解CircRNA是一类闭环RNA,较线性RNA更稳定,不易降解。部分circRNA可通过吸附miRNA后依赖Ago2-切片方式降解[103]。GW182是P-body和RNAi通路中的重要因子,含有ABD(Ago结合域),可以在RNAi通路中与Ago相互作用[104]。Jia等[105]发现,GW182的缺失会导致内源性circRNA转录本的积累,表明GW182可以一种依赖于Ago切片的方式调控circRNA的降解。最近的研究显示m6A修饰的环状RNA可通过YTHDF2-HRSP12-RNase P/MRP轴被内切核糖核酸酶降解。YTHDF2识别circRNA的m6A位点,HRSP12是一个适配器连接YTHDF2和RNase P/MRP,形成一个YTHDF2-HRSP12-RNase P/MRP复合物[106]。Guo等[107]发现,circ3823上存在m6A修饰位点,阅读蛋白YTHDF3和去甲基酶ALKBH5与circ3823的表达在HCT116细胞中呈负相关, 推测m6A修饰调控circRNA的降解。Liu等[108]发现,在OA软骨细胞中circRERE下调,而m6A修饰增加,说明中circRERE易于通过YTHDF2-HRSP12-RNase P/MRP轴降解。
4.4 识别并参与circRNA介导的免疫反应PKR(RNA蛋白酶激活激酶)可以识别小于30bp的短链dsRNAs,并起始免疫反应[108-109]。在机体内,自身会产生一类circRNA,该类circRNA会形成一段16-26bp的dsRNAs,其可以作为双链RNA蛋白酶激活激酶(PKR)的抑制剂去响应免疫反应[110]。有研究显示circRNA较其它化学物质而言,抑制PKR激活的效果可高达103~106倍,从而降低细胞的免疫反应[110]。研究表明,在自身免疫疾病中,如红斑狼疮等,可检测到环状RNA的表达明显降低、PKR的表达明显升高[111]。哺乳动物自身免疫依赖模式识别受体(PRRs)识别病毒和细菌,RIG-1以及MD5s是机体感知外源核酸的PRRs,其中MD5s识别长链dsRNAs,RIG-1识别短链dsRNAs[112]。在环状RNA的研究中发现, 外源导入circRNA可以直接激活RIG-1。但是当这些circRNA被修饰时,激活RIG-1的作用会明显降低。研究发现circRNA被m6A修饰时,可以激活RIG-1但会抑制RIG-1的成丝反应。阅读蛋白YTHDF2通过其N端无序结构域将m6A修饰的RNA引入RIG-1中,进而抑制RIG-1的成丝反应[113-114]。其次YTHDF可以通过N端无序结构域介导circRNA避免自身免疫反应[115]。
5 结论和展望CircRNA的生物合成、作用机制和降解已被大量报道,其在细胞增殖、分化、凋亡等多种活动发挥作用。主要作用方式有:作为miRNA的“海绵”;与RBPs相互作用;拥有独特的翻译起始位点起始翻译;参与并调控亲本基因的转录。m6A修饰是真核生物中最广泛的表观修饰之一,其不仅在mRNA中发挥作用,而且在非编码RNA中也发挥功能。在环状RNA中,m6A修饰可以调控circRNA的出核反应,通过MIRES起始翻译,在细胞质中形成YTHDF2-HRSP12-RNase P/MRP轴介导circRNA降解以及响应机体的免疫反应(图 1)。然而关于m6A修饰在环状RNA研究的展开时间较短,m6A修饰在环状RNA调控的具体机制目前并不明确,需要深入探究。且有关甲基化和circRNA的研究主要集中于m6A修饰调控circRNA的代谢,而关于circRNA调控m6A修饰相关蛋白的研究仍有待补充。其次关于circRNA的m6A修饰数据库尚为空缺,需要挖掘补充。
|
①.circRNA的生物合成:pre-RNA通过反向剪接形成circRNA;②.circRNA的生物学功能:海绵miRNA,调控亲本基因表达,翻译成蛋白质;③.circRNA的生物降解: 依赖Ago2-切片方式降解及YTHDF2-HRSP12-RNase P/MRP轴降解 ①.circRNA biogenesis: CircRNA is formed by pre-RNA via backsplicing; ②.Biological function of circRNA: miRNA sponging, transcriptional regulation and translation into proteins; ③.Degradation of circRNA: degradation by Ago2-sectioning method and YTHDF2-HRSP12-RNase P/MRP axis 图 1 circRNA的生物合成、功能和降解 Fig. 1 Biogenesis, function and degradation of circRNA |
现在最常用的m6A位点检测技术是MeRIP,MeRIP可以实现全基因组范围内m6A的检测,但MeRIP技术做不到单核苷酸定位分析且对样品需求量大,不利于珍贵样品的检测。MAZTER-seq、DART-seq虽可以实现单核苷酸分析,但MAZTER-seq技术只能识别ACA位点的甲基化修饰,而ACA只占DRACH的16%[70]。DART-seq只能识别mRNA的m6A位点,不能识别circRNA的m6A修饰[71]。期待随着测序技术的进步,circRNA的m6A位点检测技术能够在不依赖抗体的情况下实现全基因组检测。
| [1] |
SANGER H L, KLOTZ G, RIESNER D, et al. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures[J]. Proc Natl Acad Sci U S A, 1976, 73(11): 3852-3856. DOI:10.1073/pnas.73.11.3852 |
| [2] |
GROSS H J, DOMDEY H, LOSSOW C, et al. Nucleotide sequence and secondary structure of potato spindle tuber viroid[J]. Nature, 1978, 273(5659): 203-208. DOI:10.1038/273203a0 |
| [3] |
WILUSZ J E. A 360° view of circular RNAs: From biogenesis to functions[J]. Wiley Interdiscip Rev RNA, 2018, 9(4): e1478. DOI:10.1002/wrna.1478 |
| [4] |
ZHANG X O, DONG R, ZHANG Y, et al. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs[J]. Genome Res, 2016, 26(9): 1277-1287. DOI:10.1101/gr.202895.115 |
| [5] |
SUN T, WU R Y, MING L. The role of m6A RNA methylation in cancer[J]. Biomed Pharmacother, 2019, 112: 108613. DOI:10.1016/j.biopha.2019.108613 |
| [6] |
DESROSIERS R, FRIDERICI K, ROTTMAN F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells[J]. Proc Natl Acad Sci U S A, 1974, 71(10): 3971-3975. DOI:10.1073/pnas.71.10.3971 |
| [7] |
AN M J, ZHENG H H, HUANG J, et al. Aberrant nuclear export of circNCOR1 underlies SMAD7-mediated lymph node metastasis of bladder cancer[J]. Cancer Res, 2022, 82(12): 2239-2253. DOI:10.1158/0008-5472.CAN-21-4349 |
| [8] |
CHEN R X, CHEN X, XIA L P, et al. N6-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis[J]. Nat Commun, 2019, 10(1): 4695. DOI:10.1038/s41467-019-12651-2 |
| [9] |
RONG D W, WU F, LU C, et al. m6A modification of circHPS5 and hepatocellular carcinoma progression through HMGA2 expression[J]. Mol Ther Nucl Acids, 2021, 26: 637-648. DOI:10.1016/j.omtn.2021.09.001 |
| [10] |
BARRETT S P, WANG P L, SALZMAN J. Circular RNA biogenesis can proceed through an exon-containing lariat precursor[J]. eLife, 2015, 4: e07540. DOI:10.7554/eLife.07540 |
| [11] |
ASHWAL-FLUSS R, MEYER M, PAMUDURTI N R, et al. circRNA biogenesis competes with pre-mRNA splicing[J]. Mol Cell, 2014, 56(1): 55-66. DOI:10.1016/j.molcel.2014.08.019 |
| [12] |
JECK W R, SORRENTINO J A, WANG K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats[J]. RNA, 2013, 19(2): 141-157. DOI:10.1261/rna.035667.112 |
| [13] |
ZHANG Y, ZHANG X O, CHEN T, et al. Circular intronic long noncoding RNAs[J]. Mol Cell, 2013, 51(6): 792-806. DOI:10.1016/j.molcel.2013.08.017 |
| [14] |
ZHANG X O, DONG R, ZHANG Y, et al. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs[J]. Genome Res, 2016, 26(9): 1277-1287. DOI:10.1101/gr.202895.115 |
| [15] |
EGER N, SCHOPPE L, SCHUSTER S, et al. Circular RNA splicing[J]. Adv Exp Med Biol, 2018, 1087: 41-52. |
| [16] |
SCHINDEWOLF C, BRAUN S, DOMDEY H. In vitro generation of a circular exon from a linear pre-mRNA transcript[J]. Nucl Acids Res, 1996, 24(7): 1260-1266. DOI:10.1093/nar/24.7.1260 |
| [17] |
KRAMER M C, LIANG D M, TATOMER D C, et al. Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins[J]. Genes Dev, 2015, 29(20): 2168-2182. DOI:10.1101/gad.270421.115 |
| [18] |
LIANG D M, WILUSZ J E. Short intronic repeat sequences facilitate circular RNA production[J]. Genes Dev, 2014, 28(20): 2233-2247. DOI:10.1101/gad.251926.114 |
| [19] |
ZHANG X O, WANG H B, ZHANG Y, et al. Complementary sequence-mediated exon circularization[J]. Cell, 2014, 159(1): 134-147. DOI:10.1016/j.cell.2014.09.001 |
| [20] |
CONN S J, PILLMAN K A, TOUBIA J, et al. The RNA binding protein quaking regulates formation of circRNAs[J]. Cell, 2015, 160(6): 1125-1134. DOI:10.1016/j.cell.2015.02.014 |
| [21] |
TEPLOVA M, HAFNER M, TEPLOV D, et al. Structure-function studies of STAR family Quaking proteins bound to their in vivo RNA target sites[J]. Genes Dev, 2013, 27(8): 928-940. DOI:10.1101/gad.216531.113 |
| [22] |
LI X, LIU C X, XUE W, et al. Coordinated circRNA biogenesis and function with NF90/NF110 in viral infection[J]. Mol Cell, 2017, 67(2): 214-227.e7. DOI:10.1016/j.molcel.2017.05.023 |
| [23] |
HANSEN T B, JENSEN T I, CLAUSEN B H, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013, 495(7441): 384-388. DOI:10.1038/nature11993 |
| [24] |
林晓冰, 梁小锋, 彭智燊, 等. 环状RNA在系统性红斑狼疮中的研究进展[J]. 现代免疫学, 2022, 42(6): 541-546. LIN X B, LIANG X F, PENG Z S, et al. Research progress of circular RNAs in systematic lupus erythematosus[J]. Current Immunology, 2022, 42(6): 541-546. (in Chinese) |
| [25] |
YE C Y, CHEN L, LIU C, et al. Widespread noncoding circular RNAs in plants[J]. New Phytol, 2015, 208(1): 88-95. DOI:10.1111/nph.13585 |
| [26] |
LU T T, CUI L L, ZHOU Y, et al. Transcriptome-wide investigation of circular RNAs in rice[J]. RNA, 2015, 21(12): 2076-2087. DOI:10.1261/rna.052282.115 |
| [27] |
CHEN L, ZHANG P, FAN Y, et al. Circular RNAs mediated by transposons are associated with transcriptomic and phenotypic variation in maize[J]. New Phytol, 2018, 217(3): 1292-1306. DOI:10.1111/nph.14901 |
| [28] |
WANG L D, LIANG W S, WANG S S, et al. Circular RNA expression profiling reveals that circ-PLXNA1 functions in duck adipocyte differentiation[J]. PLoS One, 2020, 15(7): e0236069. DOI:10.1371/journal.pone.0236069 |
| [29] |
YAN X M, ZHANG Z, MENG Y, et al. Genome-wide identification and analysis of circular RNAs differentially expressed in the longissimus dorsi between Kazakh cattle and Xinjiang brown cattle[J]. PeerJ, 2020, 8: e8646. |
| [30] |
SHEN X M, TANG J, HUANG Y Z, et al. CircRNF111 contributes to adipocyte differentiation by elevating PPARγ expression via miR-27a-3p[J]. Epigenetics, 2023, 18(1): 2145058. DOI:10.1080/15592294.2022.2145058 |
| [31] |
ZHANG X Y, YANG S L, KANG Z H, et al. circMEF2D negatively regulated by HNRNPA1 inhibits proliferation and differentiation of myoblasts via miR-486-PI3K/AKT axis[J]. J Agric Food Chem, 2022, 70(26): 8145-8163. DOI:10.1021/acs.jafc.2c01888 |
| [32] |
QI A, RU W X, YANG H Y, et al. Circular RNA ACTA1 acts as a sponge for miR-199a-5p and miR-433 to regulate bovine myoblast development through the MAP3K11/MAP2K7/JNK pathway[J]. J Agric Food Chem, 2022, 70(10): 3357-3373. DOI:10.1021/acs.jafc.1c07762 |
| [33] |
YANG Z X, SONG C C, JIANG R, et al. CircNDST1 regulates bovine myoblasts proliferation and differentiation via the miR-411a/Smad4 axis[J]. J Agric Food Chem, 2022, 70(32): 10044-10057. DOI:10.1021/acs.jafc.1c08167 |
| [34] |
FAN Y X, ZHANG Z, DENG K P, et al. CircUBE3A promotes myoblasts proliferation and differentiation by sponging miR-28-5p to enhance expression[J]. Int J Biol Macromol, 2023, 226: 730-745. DOI:10.1016/j.ijbiomac.2022.12.064 |
| [35] |
ZHANG Z, FAN Y X, DENG K P, et al. Circular RNA circUSP13 sponges miR-29c to promote differentiation and inhibit apoptosis of goat myoblasts by targeting IGF1[J]. FASEB J, 2022, 36(1): e22097. |
| [36] |
JIAO P X, ZHANG M M, WANG Z W, et al. Circ003429 regulates unsaturated fatty acid synthesis in the dairy goat mammary gland by interacting with miR-199a-3p, targeting the YAP1 gene[J]. Int J Mol Sci, 2022, 23(7): 4068. DOI:10.3390/ijms23074068 |
| [37] |
ZHAO J Y, SHEN J C, WANG Z Y, et al. CircRNA-0100 positively regulates the differentiation of cashmere goat SHF-SCs into hair follicle lineage via sequestering miR-153-3p to heighten the KLF5 expression[J]. Arch Anim Breed, 2022, 65(1): 55-67. DOI:10.5194/aab-65-55-2022 |
| [38] |
ZHUANG X N, LIN Z K, XIE F, et al. Identification of circRNA-associated ceRNA networks using longissimus thoracis of pigs of different breeds and growth stages[J]. BMC Genomics, 2022, 23(1): 294. DOI:10.1186/s12864-022-08515-7 |
| [39] |
SUN D, AN J Q, CUI Z X, et al. CircCSDE1 regulates proliferation and differentiation of C2C12 myoblasts by sponging miR-21-3p[J]. Int J Mol Sci, 2022, 23(19): 12038. DOI:10.3390/ijms231912038 |
| [40] |
ZOU Q, WANG X, YUAN R, et al. Circ004463 promotes fibroblast proliferation and collagen I synthesis by sponging miR-23b and regulating CADM3/MAP4K4 via activation of AKT/ERK pathways[J]. Int J Biol Macromol, 2023, 226: 357-367. DOI:10.1016/j.ijbiomac.2022.12.029 |
| [41] |
DING N, ZHANG Y, HUANG M N, et al. Circ-CREBBP inhibits sperm apoptosis via the PI3K-Akt signaling pathway by sponging miR-10384 and miR-143-3p[J]. Commun Biol, 2022, 5(1): 1339. DOI:10.1038/s42003-022-04263-2 |
| [42] |
TIAN W H, ZHANG B, ZHONG H A, et al. Dynamic expression and regulatory network of circular RNA for abdominal preadipocytes differentiation in chicken (Gallus gallus)[J]. Front Cell Dev Biol, 2021, 9: 761638. DOI:10.3389/fcell.2021.761638 |
| [43] |
JANGA S C, MITTAL N. Construction, structure and dynamics of post-transcriptional regulatory network directed by RNA-binding proteins[J]. Adv Exp Med Biol, 2011, 722: 103-117. |
| [44] |
JANAS T, JANAS M M, SAPOŃ K, et al. Mechanisms of RNA loading into exosomes[J]. FEBS Lett, 2015, 589(13): 1391-1398. DOI:10.1016/j.febslet.2015.04.036 |
| [45] |
DU W W, ZHANG C, YANG W N, et al. Identifying and characterizing circRNA-protein interaction[J]. Theranostics, 2017, 7(17): 4183-4191. DOI:10.7150/thno.21299 |
| [46] |
CHEN H M, KONG Y, YAO Q, et al. Three hypomethylated genes were associated with poor overall survival in pancreatic cancer patients[J]. Aging (Albany NY), 2019, 11(3): 885-897. |
| [47] |
MAZUREK S, BOSCHEK C B, HUGO F, et al. Pyruvate kinase type M2 and its role in tumor growth and spreading[J]. Semin Cancer Biol, 2005, 15(4): 300-308. DOI:10.1016/j.semcancer.2005.04.009 |
| [48] |
WANG H J, HSIEH Y J, CHENG W C, et al. JMJD5 regulates PKM2 nuclear translocation and reprograms HIF-1α-mediated glucose metabolism[J]. Proc Natl Acad Sci U S A, 2014, 111(1): 279-284. DOI:10.1073/pnas.1311249111 |
| [49] |
SONG J, ZHENG J, LIU X B, et al. A novel protein encoded by ZCRB1-induced circHEATR5B suppresses aerobic glycolysis of GBM through phosphorylation of JMJD5[J]. J Exp Clin Cancer Res, 2022, 41(1): 171. DOI:10.1186/s13046-022-02374-6 |
| [50] |
LACERDA R, MENEZES J, ROMÃO L. More than just scanning: the importance of cap-independent mRNA translation initiation for cellular stress response and cancer[J]. Cell Mol Life Sci, 2017, 74(9): 1659-1680. DOI:10.1007/s00018-016-2428-2 |
| [51] |
GODET A C, DAVID F, HANTELYS F, et al. IRES trans-acting factors, key actors of the stress response[J]. Int J Mol Sci, 2019, 20(4): 924. DOI:10.3390/ijms20040924 |
| [52] |
YANG Y, WANG C F, ZHAO K L, et al. TRMP, a p53-inducible long noncoding RNA, regulates G1/S cell cycle progression by modulating IRES-dependent p27 translation[J]. Cell Death Dis, 2018, 9(9): 886. DOI:10.1038/s41419-018-0884-3 |
| [53] |
YANG Y, FAN X J, MAO M W, et al. Extensive translation of circular RNAs driven by N6-methyladenosine[J]. Cell Res, 2017, 27(5): 626-641. DOI:10.1038/cr.2017.31 |
| [54] |
XIA X, LI X X, LI F Y, et al. A novel tumor suppressor protein encoded by circular AKT3 RNA inhibits glioblastoma tumorigenicity by competing with active phosphoinositide-dependent Kinase-1[J]. Mol Cancer, 2019, 18(1): 131. DOI:10.1186/s12943-019-1056-5 |
| [55] |
LEGNINI I, DI TIMOTEO G, ROSSI F, et al. Circ-ZNF609 is a circular RNA that can Be translated and functions in myogenesis[J]. Mol Cell, 2017, 66(1): 22-37.e9. DOI:10.1016/j.molcel.2017.02.017 |
| [56] |
ZHENG X, CHEN L J, ZHOU Y, et al. A novel protein encoded by a circular RNA circPPP1R12A promotes tumor pathogenesis and metastasis of colon cancer via Hippo-YAP signaling[J]. Mol Cancer, 2019, 18(1): 47. DOI:10.1186/s12943-019-1010-6 |
| [57] |
LI Z Y, HUANG C, BAO C, et al. Exon-intron circular RNAs regulate transcription in the nucleus[J]. Nat Struct Mol Biol, 2015, 22(3): 256-264. DOI:10.1038/nsmb.2959 |
| [58] |
CONN V M, HUGOUVIEUX V, NAYAK A, et al. A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation[J]. Nat Plants, 2017, 3: 17053. DOI:10.1038/nplants.2017.53 |
| [59] |
XU X L, ZHANG J W, TIAN Y H, et al. CircRNA inhibits DNA damage repair by interacting with host gene[J]. Mol Cancer, 2020, 19(1): 128. DOI:10.1186/s12943-020-01246-x |
| [60] |
FENG Y, YANG Y X, ZHAO X D, et al. Circular RNA circ0005276 promotes the proliferation and migration of prostate cancer cells by interacting with FUS to transcriptionally activate XIAP[J]. Cell Death Dis, 2019, 10(11): 792. DOI:10.1038/s41419-019-2028-9 |
| [61] |
CHEN Z Z, LU T K, HUANG L, et al. Circular RNA cia-MAF drives self-renewal and metastasis of liver tumor-initiating cells via transcription factor MAFF[J]. J Clin Invest, 2021, 131(19): e148020. DOI:10.1172/JCI148020 |
| [62] |
SALETORE Y, MEYER K, KORLACH J, et al. The birth of the Epitranscriptome: deciphering the function of RNA modifications[J]. Genome Biol, 2012, 13(10): 175. DOI:10.1186/gb-2012-13-10-175 |
| [63] |
LIU N, PAN T. N6-methyladenosine-encoded epitranscriptomics[J]. Nat Struct Mol Biol, 2016, 23(2): 98-102. DOI:10.1038/nsmb.3162 |
| [64] |
ZACCARA S, RIES R J, JAFFREY S R. Reading, writing and erasing mRNA methylation[J]. Nat Rev Mol Cell Biol, 2019, 20(10): 608-624. DOI:10.1038/s41580-019-0168-5 |
| [65] |
EDENS B M, VISSERS C, SU J, et al. FMRP modulates neural differentiation through m6A-dependent mRNA nuclear export[J]. Cell Rep, 2019, 28(4): 845-854.e5. DOI:10.1016/j.celrep.2019.06.072 |
| [66] |
ZHAO B S, ROUNDTREE I A, HE C. Post-transcriptional gene regulation by mRNA modifications[J]. Nat Rev Mol Cell Biol, 2017, 18(1): 31-42. |
| [67] |
YU R Q, LI Q M, FENG Z H, et al. m6A reader YTHDF2 regulates LPS-induced inflammatory response[J]. Int J Mol Sci, 2019, 20(6): 1323. DOI:10.3390/ijms20061323 |
| [68] |
DOMINISSINI D, MOSHITCH-MOSHKOVITZ S, SCHWARTZ S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq[J]. Nature, 2012, 485(7397): 201-206. DOI:10.1038/nature11112 |
| [69] |
MEYER K D, SALETORE Y, ZUMBO P, et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons[J]. Cell, 2012, 149(7): 1635-1646. DOI:10.1016/j.cell.2012.05.003 |
| [70] |
LINDER B, GROZHIK A V, OLARERIN-GEORGE A O, et al. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome[J]. Nat Methods, 2015, 12(8): 767-772. DOI:10.1038/nmeth.3453 |
| [71] |
MEYER K D. DART-seq: an antibody-free method for global m6A detection[J]. Nat Methods, 2019, 16(12): 1275-1280. DOI:10.1038/s41592-019-0570-0 |
| [72] |
IMAM H, KHAN M, GOKHALE N S, et al. N6-methyladenosine modification of hepatitis B virus RNA differentially regulates the viral life cycle[J]. Proc Natl Acad Sci U S A, 2018, 115(35): 8829-8834. DOI:10.1073/pnas.1808319115 |
| [73] |
PING X L, SUN B F, WANG L, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase[J]. Cell Res, 2014, 24(2): 177-189. DOI:10.1038/cr.2014.3 |
| [74] |
SCHÖLLER E, WEICHMANN F, TREIBER T, et al. Interactions, localization, and phosphorylation of the m6A generating METTL3-METTL14-WTAP complex[J]. RNA, 2018, 24(4): 499-512. DOI:10.1261/rna.064063.117 |
| [75] |
BODI Z, ZHONG S L, MEHRA S, et al. Adenosine methylation in Arabidopsis mRNA is associated with the 3' end and reduced levels cause developmental defects[J]. Front Plant Sci, 2012, 3: 48. |
| [76] |
XU K, YANG Y, FENG G H, et al. Mettl3-mediated m6A regulates spermatogonial differentiation and meiosis initiation[J]. Cell Res, 2017, 27(9): 1100-1114. DOI:10.1038/cr.2017.100 |
| [77] |
KABECHE L, NGUYEN H D, BUISSON R, et al. A mitosis-specific and R loop-driven ATR pathway promotes faithful chromosome segregation[J]. Science, 2017, 359(6371): 108-114. |
| [78] |
YANG X, LIU Q L, XU W, et al. m6A promotes R-loop formation to facilitate transcription termination[J]. Cell Res, 2019, 29(12): 1035-1038. DOI:10.1038/s41422-019-0235-7 |
| [79] |
FEDELES B I, SINGH V, DELANEY J C, et al. The AlkB family of Fe(Ⅱ)/α-ketoglutarate-dependent dioxygenases: repairing nucleic acid alkylation damage and beyond[J]. J Biol Chem, 2015, 290(34): 20734-20742. DOI:10.1074/jbc.R115.656462 |
| [80] |
史源钧, 米思远, 俞英. m6A表观遗传修饰及其调控机制研究进展[J]. 中国畜牧兽医, 2022, 49(1): 197-207. SHI Y J, MI S Y, YU Y. Research progress on m6A epigenetic modification and its regulation mechanism[J]. China Animal Husbandry & Veterinary Medicine, 2022, 49(1): 197-207. (in Chinese) |
| [81] |
JIA G F, YANG C G, YANG S D, et al. Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO[J]. FEBS Lett, 2008, 582(23-24): 3313-3319. DOI:10.1016/j.febslet.2008.08.019 |
| [82] |
JIA G F, FU Y, ZHAO X, et al. N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J]. Nat Chem Biol, 2011, 7(12): 885-887. DOI:10.1038/nchembio.687 |
| [83] |
MAUER J, LUO X B, BLANJOIE A, et al. Reversible methylation of m6Am in the 5'cap controls mRNA stability[J]. Nature, 2017, 541(7637): 371-375. DOI:10.1038/nature21022 |
| [84] |
MAUER J, SINDELAR M, DESPIC V, et al. FTO controls reversible m6Am RNA methylation during snRNA biogenesis[J]. Nat Chem Biol, 2019, 15(4): 340-347. DOI:10.1038/s41589-019-0231-8 |
| [85] |
WU R F, LIU Y H, YAO Y X, et al. FTO regulates adipogenesis by controlling cell cycle progression via m6A-YTHDF2 dependent mechanism[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2018, 1863(10): 1323-1330. |
| [86] |
ZHENG G Q, DAHL J A, NIU Y M, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility[J]. Mol Cell, 2013, 49(1): 18-29. DOI:10.1016/j.molcel.2012.10.015 |
| [87] |
LI S W, XU S Y, CHEN Y H, et al. Metal exposure promotes colorectal tumorigenesis via the aberrant N6-methyladenosine modification of ATP13A3[J]. Environ Sci Technol, 2023, 57(7): 2864-2876. DOI:10.1021/acs.est.2c07389 |
| [88] |
SUN R, YUAN L, JIANG Y, et al. ALKBH5 activates FAK signaling through m6A demethylation in ITGB1 mRNA and enhances tumor-associated lymphangiogenesis and lymph node metastasis in ovarian cancer[J]. Theranostics, 2023, 13(2): 833-848. DOI:10.7150/thno.77441 |
| [89] |
WANG X, ZHAO B S, ROUNDTREE I A, et al. N6-methyladenosine modulates messenger RNA translation efficiency[J]. Cell, 2015, 161(6): 1388-1399. DOI:10.1016/j.cell.2015.05.014 |
| [90] |
WANG X, LU Z K, GOMEZ A, et al. N6-methyladenosine-dependent regulation of messenger RNA stability[J]. Nature, 2014, 505(7481): 117-120. DOI:10.1038/nature12730 |
| [91] |
SHI H L, WANG X, LU Z K, et al. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA[J]. Cell Res, 2017, 27(3): 315-328. DOI:10.1038/cr.2017.15 |
| [92] |
ROUNDTREE I A, LUO G Z, ZHANG Z J, et al. YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs[J]. eLife, 2017, 6: e31311. DOI:10.7554/eLife.31311 |
| [93] |
LI T, HU P S, ZUO Z X, et al. METTL3 facilitates tumor progression via an m6A-IGF2BP2-dependent mechanism in colorectal carcinoma[J]. Mol Cancer, 2019, 18(1): 112. DOI:10.1186/s12943-019-1038-7 |
| [94] |
CHEN H H, YU H I, YANG M H, et al. DDX3 activates CBC-eIF3-mediated translation of uORF-containing oncogenic mRNAs to promote metastasis in HNSCC[J]. Cancer Res, 2018, 78(16): 4512-4523. DOI:10.1158/0008-5472.CAN-18-0282 |
| [95] |
ZHANG J, ZHANG X L, LI C D, et al. Circular RNA profiling provides insights into their subcellular distribution and molecular characteristics in HepG2 cells[J]. RNA Biol, 2019, 16(2): 220-232. DOI:10.1080/15476286.2019.1565284 |
| [96] |
HUANG C, LIANG D M, TATOMER D C, et al. A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs[J]. Genes Dev, 2018, 32(9-10): 639-644. DOI:10.1101/gad.314856.118 |
| [97] |
SHEN H H. UAP56-a key player with surprisingly diverse roles in pre-mRNA splicing and nuclear export[J]. BMB Rep, 2009, 42(4): 185-188. DOI:10.5483/BMBRep.2009.42.4.185 |
| [98] |
HUANG C, LIANG D M, TATOMER D C, et al. A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs[J]. Genes Dev, 2018, 32(9-10): 639-644. DOI:10.1101/gad.314856.118 |
| [99] |
PRATS A C, DAVID F, DIALLO L H, et al. Circular RNA, the key for translation[J]. Int J Mol Sci, 2020, 21(22): 8591. DOI:10.3390/ijms21228591 |
| [100] |
ZHOU J, WAN J, GAO X W, et al. Dynamic m6A mRNA methylation directs translational control of heat shock response[J]. Nature, 2015, 526(7574): 591-594. DOI:10.1038/nature15377 |
| [101] |
DI TIMOTEO G, DATTILO D, CENTRÓN-BROCO A, et al. Modulation of circRNA metabolism by m6A modification[J]. Cell Rep, 2020, 31(6): 107641. DOI:10.1016/j.celrep.2020.107641 |
| [102] |
DUAN J L, CHEN W, XIE J J, et al. A novel peptide encoded by N6-methyladenosine modified circMAP3K4 prevents apoptosis in hepatocellular carcinoma[J]. Mol Cancer, 2022, 21(1): 93. DOI:10.1186/s12943-022-01537-5 |
| [103] |
HANSEN T B, WIKLUND E D, BRAMSEN J B, et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA[J]. EMBO J, 2011, 30(21): 4414-4422. DOI:10.1038/emboj.2011.359 |
| [104] |
LUO Y, NA Z K, SLAVOFF S A. P-bodies: composition, properties, and functions[J]. Biochemistry, 2018, 57(17): 2424-2431. DOI:10.1021/acs.biochem.7b01162 |
| [105] |
JIA R R, XIAO M S, LI Z G, et al. Defining an evolutionarily conserved role of GW182 in circular RNA degradation[J]. Cell Discov, 2019, 5: 45. DOI:10.1038/s41421-019-0113-y |
| [106] |
PARK O H, HA H, LEE Y, et al. Endoribonucleolytic cleavage of m6A-containing RNAs by RNase P/MRP complex[J]. Mol Cell, 2019, 74(3): 494-507.e8. DOI:10.1016/j.molcel.2019.02.034 |
| [107] |
GUO Y X, GUO Y Y, CHEN C, et al. Circ3823 contributes to growth, metastasis and angiogenesis of colorectal cancer: involvement of miR-30c-5p/TCF7 axis[J]. Mol Cancer, 2021, 20(1): 93. DOI:10.1186/s12943-021-01372-0 |
| [108] |
LIU Y X, YANG Y H, LIN Y C, et al. N6-methyladenosine-modified circRNA RERE modulates osteoarthritis by regulating β-catenin ubiquitination and degradation[J]. Cell Prolif, 2023, 56(1): e13297. DOI:10.1111/cpr.13297 |
| [109] |
SCHLEE M, HARTMANN G. Discriminating self from non-self in nucleic acid sensing[J]. Nat Rev Immunol, 2016, 16(9): 566-580. DOI:10.1038/nri.2016.78 |
| [110] |
GARCIA M A, MEURS E F, ESTEBAN M. The dsRNA protein kinase PKR: virus and cell control[J]. Biochimie, 2007, 89(6-7): 799-811. DOI:10.1016/j.biochi.2007.03.001 |
| [111] |
LIU C X, GUO S K, NAN F, et al. RNA circles with minimized immunogenicity as potent PKR inhibitors[J]. Mol Cell, 2022, 82(2): 420-434.e6. DOI:10.1016/j.molcel.2021.11.019 |
| [112] |
MOLDOVAN L I, HANSEN T B, VENO M T, et al. High-throughput RNA sequencing from paired lesional-and non-lesional skin reveals major alterations in the psoriasis circRNAome[J]. BMC Med Genomics, 2019, 12(1): 174. DOI:10.1186/s12920-019-0616-2 |
| [113] |
REIKINE S, NGUYEN J B, MODIS Y. Pattern recognition and signaling mechanisms of RIG-I and MDA5[J]. Front Immunol, 2014, 5: 342. |
| [114] |
RIES R J, ZACCARA S, KLEIN P, et al. m6A enhances the phase separation potential of mRNA[J]. Nature, 2019, 571(7765): 424-428. DOI:10.1038/s41586-019-1374-1 |
| [115] |
CHEN Y G, CHEN R, AHMAD S, et al. N6-methyladenosine modification controls circular RNA immunity[J]. Mol Cell, 2019, 76(1): 96-109.e9. DOI:10.1016/j.molcel.2019.07.016 |
(编辑 孟培)


