畜牧兽医学报  2023, Vol. 54 Issue (10): 4016-4027. DOI: 10.11843/j.issn.0366-6964.2023.10.002    PDF    
m6A修饰调控circRNA的研究进展
杨志梅1, 梁成成1, 张殿琦1, 李雪峰1, 昝林森1,2     
1. 西北农林科技大学动物科技学院, 杨凌 712100;
2. 国家肉牛改良中心, 杨凌 712100
摘要:Circular RNAs(circRNAs)是由pre-RNA通过反向剪接使5'尾端和3'polyA端以共价结合的形式形成的环状RNA,在多种生物学过程起重要作用。N6-甲基腺苷修饰(N6-methyladenosine,m6A)是真核生物中最丰富的修饰之一,参与调控RNA的剪接、翻译及降解等过程。现越来越多证据表明m6A修饰也存在于环状RNA中并且介导环状RNA的翻译、降解等。本文主要综述了circRNA在真核生物中的合成和作用机制以及m6A修饰对circRNA的调控作用。
关键词circRNAs    作用机制    m6A修饰    
Research Progress on the Regulation of circRNA by m6A Modification
YANG Zhimei1, LIANG Chengcheng1, ZHANG Dianqi1, LI Xuefeng1, ZAN Linsen1,2     
1. College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China;
2. National Beef Cattle Improvement Center, Yangling 712100, China
Abstract: Circular RNAs (circRNAs) are single-stranded, covalently closed RNA that were generated by 3' polyA and 5'tail of pre-mRNA via back-splicing. CircRNAs play a crucial role in varieties biological processes. N6-methyladenosine (m6A) is one of the most abundant modifications in eukaryotes, which regulate splicing, translation and degradation of RNA. There is increasing evidence that m6A modification also controlling circRNAs metabolism, including translation, degradation and so on. In this review, the biogenesis and function of circRNAs were summerized. Moreover, the role of m6A modification in the regulation of circRNAs was discussed.
Key words: circRNAs    function    m6A modification    

非编码RNA(long non-coding RNA、micro-RNA、circRNA)作为转录后重要的调控因子,参与多种生物代谢过程。1976年环状RNA首次作为类病毒被报道,并于1979年首次用电子显微镜在人类HeLa细胞中观察到[1-2]。CircRNA由pre-RNA通过反向剪接使5′尾端和3′polyA端通过共价结合的形式形成环状RNA,通常由100到4 000个核苷酸组成的,包含2到5个的外显子,它们主要存在于真核生物的细胞质中[3-4]。在非编码RNA研究早期,由于circRNA在细胞中的表达量少,被人们认为是转录“噪音”而忽视。现随着circRNA各方面技术的成熟,大量的circRNA作为真核生物蛋白编码基因的产物被发现。此外,circRNAs可以作为信使,在不同的组织、发育阶段和细胞条件下携带不同类型的时空生物信息。circRNA具有序列保守性、时序表达特异性和组织表达特异性,相较于mRNA有更强的稳定性,不易被RNase降解[3]

早在1970年,m6A就已被报道。同DNA和组蛋白的甲基化一样,细胞中的m6A修饰是一个动态可逆过程,受到多种蛋白的调节,包括甲基转移酶复合物(writers)、m6A去甲基酶(erasers)和m6A阅读蛋白(readers)[5]。m6A修饰的发生是RNA的腺嘌呤核苷第6位氮原子发生甲基化。m6A作为主要的表观遗传修饰,其在真核生物中广泛存在,并且参与机体生物各个生物学过程[6]。近几年报道m6A也影响circRNA的稳定性、翻译、出核以及circRNA的免疫反应等过程,同时circRNA也可以通过影响甲基转移酶、去甲基酶以及阅读蛋白进而调控m6A修饰[7-9]。本文阐述了circRNA的生物学合成、作用机制及m6A修饰对circRNA的调控作用,以期为研究circRNA提供新的思路。

1 circRNA的生物合成机制

在真核生物中,pre-mRNA会经历一个去除内含子并将外显子连接成mRNA的“规范剪接”过程。circRNA的形成与mRNA形成类似,pre-mRNA通过“反向剪接”形成共价环状RNA[10]。环状RNA的形成可与pre-mRNA的“规范剪接”在先后顺序上相互竞争,且这种竞争存在组织特异性和物种保守性[11]。现已发现有3种机制可以驱动环状RNA的形成,即套索驱动环化、内含子驱动环化和RNA结合蛋白(RNA-bindings proteins, RBPs)驱动环化。CircRNA可由外显子和内含子产生,即外显子产生的称为外显子RNA(ecRNA), 内含子产生的为内含子RNA(ciRNA),外显子和内含子共同产生的为外显子-内含子RNA(ElciRNA),ecRNA和ciRNA主要存在于细胞质中而ElciRNA主要存在于细胞核中[12-13]

1.1 套索驱动环化

外显子套索环化形成的机制有两种。一是在RNA转录过程中,部分RNA发生折叠,相邻的外显子5′供体和3′受体结合形成套索结构,套索结构形成后将内含子剪切,最终形成包含2或3个外显子的环状RNA[14]。二是pre-mRNA相邻的两个内含子互补配对,进而拉近相应外显子的距离,使得外显子5′供体和3′受体结合形成套索结构,再剪切内含子,最终形成circRNA。这些被剪切后的内含子会被外切酶降解。然而, 当pre-mRNA的一个外显子附近有富含7 nt鸟嘌呤(G)和尿嘧啶(U)的序列、另一个外显子附近富含11 nt胞嘧啶(C)的序列时,在套索驱动的环化反应中,内含子可以避免被降解并环化形成环状RNA[15]。酵母基因组很少有重复序列,因此套索驱动环化是酵母基因组环状RNA形成的主要机制。在酵母基因Mrsp1中,已经证明环状RNA是由套索驱动形成的[16]

1.2 内含子驱动环化

内含子含有反向互补的顺式作用元件,如ALU序列,通过碱基互补直接配对,使pre-mRNA的剪接位点在空间上相互靠近,形成不去内含子的ElciRNA或去内含子的ecRNA。Jeck等[12]首次发现,哺乳动物circRNA中有重复片段ALU,特别是在反方向上富集,因此推测内含子重复片段ALU促进RNA环化。其后Kramer等[17]发现果蝇laccase2基因的环化受内含子重复序列ALU和反式剪接因子调控。进一步为内含子重复片段促进RNA环化提供证据。后研究又证实circRNA的形成主要由侧翼内含子ALU序列决定,破坏ALU序列的碱基配对可抑制环状RNA的生成[18]。内含子包含多个重复序列,存在碱基配对竞争性,因此内含子重复序列不总驱动环化[19]。其次只有不同内含子的重复序列发生碱基配对才能产生环状RNA,单个内含子内部发生碱基配对时会发生“规范剪接”产生线性RNA[19]

1.3 RNA结合蛋白(RNA-binding proteins, RBPs)驱动环化

RBPs可以识别并锚定内含子中的特定基因序列,并通过蛋白质相互作用或形成二聚体,在附近的外显子两端形成剪接位点,使剪接受体和剪接供体之间共价连接[20]。Quaking (QKI)属于含有KH结构域的RNA结合蛋白STAR家族,能够结合单个RNA分子的两个区域,因此QKI可以使pre-mRNA外显子靠近形成环状RNA[21]。在上皮-间充质转化(epithelial-mesenchymal transition,EMT)过程中,Conn等[20]发现许多环状RNA的形成主要由QKI调控,QKI与位于pre-mRNA剪接位点附近的识别元件结合形成二聚体,从而诱导环状RNA的形成。与QKI类似的是Drosophila Muscleblind (MBL)蛋白,MBL蛋白同样与自身pre-mRNA中的内含子识别元件特异性结合,拉近剪接位点的距离,以促进环状RNA的产生,从而内源性调节宿主基因的表达[11]。除RBPs驱动环化的作用外,RBPs还可作用于内含子重复序列,抑制环状RNA的生成。NF90/NF110和RNA解旋酶(DHX9)作用于内含子并且以“中间体”的形式招募RNA腺苷脱氨酶(ADAR),ADAR使腺苷转化为肌苷,从而影响环状RNA的形成[22]

2 circRNA的作用机制 2.1 circRNA海绵miRNA

circRNA的功能之一是海绵miRNA,形成circRNA-miRNA-mRNA的竞争性内源RNA网络(competing endogenous RNA, ceRNA),直接或间接调控靶基因[23]。成熟的miRNA通常在细胞质中形成RNA诱导沉默复合物(RISC),与靶标mRNA的3′UTR碱基配对,影响mRNA的稳定性,抑制其翻译。CircRNA可作为miRNA的“海绵”吸附miRNA从而间接调控靶基因的表达[24]。circRNA-miRNA-mRNA形成的ceRNA网络广泛存在各种真核生物中。研究表明拟南芥中检测到5%的circRNA具有海绵miRNA的能力[25]。水稻中约25%的circRNA海绵miRNA[26],玉米中约20%的circRNA海绵miRNA[27]。同样地,circRNA在动物生长发育中也多发挥海绵作用(表 1)。前体脂肪细胞的分化是影响动物脂肪沉积的主要因素,Wang等[28]利用高通量测序技术在前体脂肪细胞分化0和3 d筛选出141个表达差异的circRNAs,并且发现circ-PLXNA1通过海绵miR-214调控动物脂肪细胞的分化。肌肉组织是机体最丰富的组织,约占总体重的50%。肌细胞的增殖、分化是影响肌肉组织生长发育的主要因素。Yan等[29]发现, bta-circ-03789-1以及bta-circ-05453-1通过海绵miRNA调控肉牛背长肌的发育。

表 1 circRNA的功能:海绵miRNA Table 1 The function of circRNA: sponge miRNA
2.2 与RNA结合蛋白相互作用

RBPs在基因表达中发挥关键作用,参与组织发育和紊乱。RBPs组装核糖核蛋白(RNP)复合物,与特定的顺式调控元件相互作用,从而结合RNA序列并影响RNA的表达和功能[43]。RBPs可以与circRNA相互作用,并在circRNA剪接、加工、折叠、稳定和定位中发挥作用[44]。MBL可以触发补体激活和抗原调理。circMBL侧翼内含子中含有保守的MBL结合位点。因此MBL结合蛋白可以和circMBL结合,影响circMBL外显子的环化率。反过来,circMBL的表达异常会影响MBL的靶mRNA的形成,并调节亲本基因的转录[11]。含有双链RNA结合域的免疫因子NF90/NF110结合域是circRNA生物发生的关键调节因子。NF90/NF110通过与内含子RNA相互作用促进细胞核中环状RNA的产生,同时NF90/NF110也与细胞质中的成熟环状RNA相互作用动态调控circRNA的稳定[22]。Li等[22]研究表明,病毒感染细胞后,环状RNA表达降低,部分原因是NF90/NF110核输出到细胞质从而影响到circRNA的生成。circRNA可以竞争性地与RBPs结合,通过充当RBPs的海绵、RBPs组装平台和超级转运体连接的特定成分而调节RBPs功能[45]。在细胞周期进程中,CDK2与周期蛋白A(Cyclin A)和周期蛋白E(Cyclin E)相互作用以促进细胞周期的进入,p21则抑制CDK2和Cyclin A、Cyclin E的相互作用并阻止细胞周期进程。circ-Foxo3的异常表达可以结合CDK2和p21形成circ-Foxo3-p21-CDK2三元复合物,因此阻碍了CDK2的功能并抑制细胞周期进程[46]。丙酮酸激酶作为糖酵解的三大限速酶之一包括了4种同工酶,其中m2型丙酮酸激酶(PKM2)主要表达于快速增殖的细胞。赖氨酸去甲基化酶8 (lysine demethylase 8, KDM8)可直接与PKM2相互作用,诱导PKM2二聚体调控糖代谢[47-48]。Song等[49]发现,过表达ZCRB1促进ALU介导的circHEATR5B的形成。此外,circHEATR5B编码的新蛋白HEATR5B-881aa可以直接和赖氨酸去甲基化酶8的同源物JMJD5相互作用。敲除JMJD5可增加PKM2的活性,抑制糖酵解和GBM细胞的增殖。

2.3 circRNA翻译作用

核糖体扫描机制假说认为mRNA的翻译是由eIF4F复合物启动的帽依赖翻译。CircRNA呈环状,无3′polyA和5′帽端,因此被认为不参与RNA的翻译。之后随着翻译需要内部核糖体进入位点(IRES)及circRNA存在IRES位点的发现,说明circRNA可以被翻译。circRNA上的IRES位点可以直接被eIF4G蛋白识别从而启动翻译。在此基础上,许多研究表明,当5′帽依赖的起始机制被阻断时,IRESs也可以翻译特定类型的mRNA[50]。IRES依赖机制在翻译过程中发挥作用的同时也受到IRES反式作用因子(ITAF)和特定蛋白质的调控[51],Yang等[52]发现P27的TP53调节器TRMP(TP53-regulated modulator of p27, TRMP)通过竞争p27 mRNA与多聚嘧啶区结合蛋白1 (PTBP1)的结合来抑制依赖IRES p27的翻译。不存在IRES的circRNA有一个相同的序列“RACH”(R=G、A; H=A、C、U),RACH中含有m6A修饰结构,YTHDF3可以识别m6A修饰位点并能招募eIF4G2到m6A从而起始circRNA翻译[53]。同线性RNA一样,circRNA能编码出有独立功能的蛋白质[54]。circZNF609在人和小鼠肌肉发育中差异性表达,并且具有物种保守性。circZNF609含有从起始密码子开始到终止密码子结束的753 nt开放阅读框,可以通过IRES起始翻译,编码蛋白质[55-56]。circ-AKT3可以编码一个由174个氨基酸组成的蛋白质AKT3-1744aa,该蛋白质在BMC细胞中可发挥作用,当过表达AKT3-174aa时,抑制BMC细胞的增殖,辐射抗性等[54]。circPPP1R12A同样含有216 nt开放阅读框,可以编码出一个由74个氨基酸组成的蛋白质circPPP1R12A-73aa,该蛋白质可促进结肠癌细胞的增殖和代谢[56]

2.4 circRNA转录作用

非编码RNA的一个中心作用是调控基因表达。EciRNA位于细胞核中能与U1 snRNP相互作用形成RNA-RNA复合物,该复合物能与亲本基因启动子上的Pol Ⅱ转录复合物相互作用而调控亲本基因的转录[57]。其次在细胞核中,circRNA可以与亲本基因形成RNA-DNA杂交链或R-loop环进而调控宿主基因的表达。Conn等[58]报道拟南芥中来源于SEPALLATA3第6个外显子的环状RNA可与同源的DNA位点形成R-loop环导致亲本基因转录终止。而线性RNA与同源DNA的结合力很弱。Xu等[59]发现,circSMARCA5在乳腺癌细胞系和乳腺癌样本中表达明显降低,且circSMARCA5是直接与宿主基因形成R-loop环导致宿主基因第15个外显子的转录终止,而非其他研究所述是作为miRNA的海绵发挥作用的。Feng等[60]发现,circ0005276和靶基因XIAP在前列腺癌样中表达上调,circ0005276可以正向调控XIAP的表达并且circ0005276和XIAP能以协同作用促进前列腺癌细胞的增殖、迁移等。其次在机制上,Feng等[60]研究认为circ0005276与FUS结合蛋白相互作用,从而激活XIAP的转录。Chen等[61]在肝癌组织中发现一种功能性的circRNA(cia-MAF)可以结合到MAFF启动子上从而招募TIP60复合物到MAFF,促进MAFF表达。

3 m6A修饰

DNA的甲基化已被证明可发挥多种作用。随着2011年RNA表观遗传学的提出,RNA的甲基化逐渐进入大众视野。目前发现RNA的修饰接近170种,这也被认为是“外延组学”[62]。其中m6A是真核生物RNA中最丰富的修饰之一,约占所有修饰的60%。m6A修饰在mRNA、tRNA、rRNA、miRNA等不同类型的RNA中被证实是转录后的调控标记物[63]。m6A是一种存在于许多真核生物中的可逆转录组修饰。在RNA的翻译、剪接、染色体易位、染色体高度螺旋中起重要作用[64],其次越来越多的研究表明m6A在基因表达、细胞增殖、免疫反应等过程起调控作用[65-67]。随着高通量测序技术的发展,2012年第一次在转录组中检测到m6A。Dominissini等[68]利用m6A-seq技术在超过7 000个基因转录本种检测出超过12 000个m6A修饰位点。m6A修饰位点通常在终止密码子和3′ UTR附近富集,与mRNA的3′ UTR位点有关联[69]。现有的m6A位点检测技术有RNA甲基化免疫共沉淀(MeRIP)、MAZTER-seq、DART-seq、PA-m6A-seq、miCLIP等。MAZTER-seq和DART-seq技术可以量化单个位点的m6A[70-71]。这些m6A检测技术的发展为m6A修饰提供了重要的技术支撑,同时也为m6A修饰非编码RNA提供重要技术支撑。

3.1 甲基转移酶复合物(writers)

甲基化修饰一般情况下在细胞核中发生,但在一些特殊的情况下也可以在细胞质中发生[72]。甲基化实现的过程是腺苷甲硫氨酸作甲基供体,在甲基复合酶复合物(MTC)的作用下完成。甲基酶复合物的组分有METTL3、METTL14、WTAP、KIAA1429、RBM15/RBM15B、含CCH结构的锌指蛋白(ZC3H13)等。METTL3及METTL14形成一个稳定的二聚体,在哺乳动物体内高度保守[73]。WTAP蛋白作为载体,在KIAA1429、RBM15/RBM15B等蛋白的作用下完成甲基化[74]。METTL3在胚胎发育、精子发生及减数分裂等起重要作用[75-76]。敲除METTL3、METTL1和WATP均可以降低m6A修饰。单个组分对m6A修饰的作用不显著。但这些组分可协同发挥作用。R-loop是核苷酸的三级结构,在DNA复制、染色体分离、免疫球蛋白转化等过程发挥作用。在细胞核中,R-loop是Pol Ⅱ的重要调节因子[77]。Yang等[78]发现,R-loop存在m6A位点,m6A修饰可影响R-loop的形成和降解。当敲低单个组分YTHDC1时,对R-loop的形成影响很小,然而协同敲除METTL3、METTL14、WTAP等组分时,可以抑制R-loop形成。

3.2 m6A去甲基酶(erasers)

m6A去甲基酶是以亚铁离子为辅助因子,α-酮戊二酸为辅助底物,通过去除甲基基团解除m6A修饰[79]。目前发现的去甲基酶有FTO和ALKBH5等[80]。Jia等[81-82]发现与甲基化脱氧核糖核苷酸相比,FTO对核糖核苷酸具有更高的活性,暗示FTO是RNA中3-甲基尿苷(m3U)的去甲基化酶,随后的研究显示,FTO对mRNA中对m6A的去甲基酶活性更高,因此认为m6A是FTO的真正底物。紧接着Mauer等[83]发现m7G帽附近的m6Am在体内和体外都能被FTO转化为Am,敲除或过表达FTO能有效控制含有m6Am的mRNA丰度,进一步证明m6Am是FTO的首选底物。snRNA包含一个受调控的可逆核苷酸修饰,导致它们以两种不同的甲基异构体m1和m2存在。FTO可以选择性地去甲基m2亚型,调控m1和m2的相对亚型。当FTO被抑制时m2-snRNA水平会升高。高水平m2-snRNA的细胞会发生可变剪接模式的改变[84]。Wu等[85]发现,沉默FTO后CCNA2和CDK2的m6A水平显著上调,YTHDF2识别并衰减CCNA2和CDK2上的m6A水平导致蛋白表达量降低,从而延缓细胞周期进程抑制脂肪生成。ALKBH5定位在细胞核内,影响mRNA的运输、RNA代谢及核内mRNA的加工因子的组装。敲除ALKBH5,小鼠体内的mRNA的m6A水平增加[86]。重金属与肿瘤发生相关,Li等[87]发现金属铊会通过METLL3/METTL14/ALKBH5-ATP13A3 a轴增加ATP13A3上的异常m6A修饰从而促进结肠癌的发生。Sun等[88]发现在卵巢癌中过表达ALKBH5会逆转ITGB1 mRNA的m6A修饰,导致ITGB1表达增加。

3.3 m6A阅读蛋白(readers)

m6A读取蛋白主要由YTH域家族构成,在YTH域家族中有两个亚型,分别是YTHDFs、YTHDCs。YTHDFs包含YTHDF1、YTHDF2、YTHDF3成员。YTHDF1可以促进mRNA的翻译和通过与起始因子结合促进蛋白的合成[89]。YTHDF2可以通过与mRNA的m6A修饰位点结合招募到mRNA的衰败位点从而诱导转录终止[90]。YTHDF3可以与YTHDF1结合促进mRNA翻译,与YTHDF2结合促进mRNA的降解[91]。YTHDFs包含YTHDC1、YTHDC2成员。YTHDC1主要在细胞运输和RNA剪接方面发挥作用[92]。YTHDC2增强mRNA的翻译效率[92]。除YTH域家族外,m6A读取蛋白还有eIFs和IGFBPs。在癌症研究中,IGFBPs可以识别靶基因SOX2编码序列的m6A修饰位点,抑制SOX2降解。在胰腺癌中,过表达IGFBP2后DNA水平的甲基化修饰减低[93]。eIFs作为重要的起始因子,在基因表达和circRNA翻译中发挥重要作用[94]

4 m6A修饰调控circRNA

m6A修饰广泛存在于真核生物中,修饰mRNA的剪接、出核、降解以及功能等。在非编码RNA中m6A修饰也逐渐被报道,调控机制依然为“readers、erasers、writers”。在环状RNA中,m6A通过调控circRNA的出核、翻译、降解以及响应免疫反应发挥作用。

4.1 介导circRNA的出核

CircRNA的剪接发生在细胞核中,然而细胞质中存在大量的circRNA。Zhang等[95]发现,circRNA有和线性RNA相似的核输出机制,通过分析HepG2细胞的环状RNA发现富集在细胞质的环状RNA含有可以被核输出RBPs识别的基序。DDX39家族是进化上保守DExD-box解旋酶的家族成员,参与pre-mRNA转录、剪接和核输出[96]。Huang等[96]和Shen[97]发现,果蝇的Hel25E及其人类同源物UAP56 (DDX39B)或URH49 (DDX39A) 是circRNA定位的关键调节因子,通过感知成熟circRNA的长度来控制细胞的核输出效率。在线性RNA中,阅读蛋白YTHDC1可以和SRSF3相互作用将m6A修饰的mRNA运送到核输出通道中,调控mRNA的出核反应[92]。此外研究发现,YTHDC1也可促进m6A修饰的环状RNA出核[8]。Chen等[8]发现,YTHDC1可识别细胞核中circNSUN2的m6A位点并促进circNSUN2的核输出。输送到细胞质中的circNSUN2可以和IGF2BP及HMGA2形成circNSUN2-IGF2BP2-HMGA2的RNA-蛋白三元复合物,增强circNSUN2的稳定性。同样在肝癌细胞(HCC)中METTL3可介导m6A修饰的circHPS5形成。YTHDC1促进了m6A修饰的circHPS5出核,加快HCC的转移[9]

4.2 介导circRNA的翻译

与IRES翻译机制一样,当m6A存在于5′非翻译区域(5′UTR)时,一个单独的m6A位点被称为“m6A诱导的内部核糖体进入位点(MIRES)”[98]。MIRES和IRES都是RNA5′帽端非独立翻译的依赖因子。在circRNA的翻译中起重要作用。一个单一的m6A位点就足以驱动翻译起始。m6A驱动的翻译需要起始因子eIF4G2和m6A阅读蛋白YTHDF3。这种翻译起始机制会被甲基转移酶METTL3和METTL14增强、脱甲基酶FTO抑制。m6A也具有一定的翻译调节能力[99]。在热休克条件下,YTHDF2可从细胞质转移到细胞核中抑制FTO的功能,从而增加m6A翻译[100]。其次通过多聚体分析技术和质谱技术分析表明,m6A驱动翻译在circRNA中广泛存在[53]。circ-ZNF609包含一个开放阅读框(ORF),依赖MIRES机制起始翻译, YTHDF3和eIF4G2蛋白是介导circ-ZNF609翻译的重要因素。当m6A修饰的两个位点发生突变时, circZNF609的翻译会降低50%[101]。阅读蛋白IGF2BP1可以识别circMAP3K4的m6A位点,并促进其翻译为circMAP3K4-455aa, circMAP3K4-455aa通过泛素-蛋白酶E3连接酶(MIB1)途径降解[102]

4.3 调控circRNA的降解

CircRNA是一类闭环RNA,较线性RNA更稳定,不易降解。部分circRNA可通过吸附miRNA后依赖Ago2-切片方式降解[103]。GW182是P-body和RNAi通路中的重要因子,含有ABD(Ago结合域),可以在RNAi通路中与Ago相互作用[104]。Jia等[105]发现,GW182的缺失会导致内源性circRNA转录本的积累,表明GW182可以一种依赖于Ago切片的方式调控circRNA的降解。最近的研究显示m6A修饰的环状RNA可通过YTHDF2-HRSP12-RNase P/MRP轴被内切核糖核酸酶降解。YTHDF2识别circRNA的m6A位点,HRSP12是一个适配器连接YTHDF2和RNase P/MRP,形成一个YTHDF2-HRSP12-RNase P/MRP复合物[106]。Guo等[107]发现,circ3823上存在m6A修饰位点,阅读蛋白YTHDF3和去甲基酶ALKBH5与circ3823的表达在HCT116细胞中呈负相关, 推测m6A修饰调控circRNA的降解。Liu等[108]发现,在OA软骨细胞中circRERE下调,而m6A修饰增加,说明中circRERE易于通过YTHDF2-HRSP12-RNase P/MRP轴降解。

4.4 识别并参与circRNA介导的免疫反应

PKR(RNA蛋白酶激活激酶)可以识别小于30bp的短链dsRNAs,并起始免疫反应[108-109]。在机体内,自身会产生一类circRNA,该类circRNA会形成一段16-26bp的dsRNAs,其可以作为双链RNA蛋白酶激活激酶(PKR)的抑制剂去响应免疫反应[110]。有研究显示circRNA较其它化学物质而言,抑制PKR激活的效果可高达103~106倍,从而降低细胞的免疫反应[110]。研究表明,在自身免疫疾病中,如红斑狼疮等,可检测到环状RNA的表达明显降低、PKR的表达明显升高[111]。哺乳动物自身免疫依赖模式识别受体(PRRs)识别病毒和细菌,RIG-1以及MD5s是机体感知外源核酸的PRRs,其中MD5s识别长链dsRNAs,RIG-1识别短链dsRNAs[112]。在环状RNA的研究中发现, 外源导入circRNA可以直接激活RIG-1。但是当这些circRNA被修饰时,激活RIG-1的作用会明显降低。研究发现circRNA被m6A修饰时,可以激活RIG-1但会抑制RIG-1的成丝反应。阅读蛋白YTHDF2通过其N端无序结构域将m6A修饰的RNA引入RIG-1中,进而抑制RIG-1的成丝反应[113-114]。其次YTHDF可以通过N端无序结构域介导circRNA避免自身免疫反应[115]

5 结论和展望

CircRNA的生物合成、作用机制和降解已被大量报道,其在细胞增殖、分化、凋亡等多种活动发挥作用。主要作用方式有:作为miRNA的“海绵”;与RBPs相互作用;拥有独特的翻译起始位点起始翻译;参与并调控亲本基因的转录。m6A修饰是真核生物中最广泛的表观修饰之一,其不仅在mRNA中发挥作用,而且在非编码RNA中也发挥功能。在环状RNA中,m6A修饰可以调控circRNA的出核反应,通过MIRES起始翻译,在细胞质中形成YTHDF2-HRSP12-RNase P/MRP轴介导circRNA降解以及响应机体的免疫反应(图 1)。然而关于m6A修饰在环状RNA研究的展开时间较短,m6A修饰在环状RNA调控的具体机制目前并不明确,需要深入探究。且有关甲基化和circRNA的研究主要集中于m6A修饰调控circRNA的代谢,而关于circRNA调控m6A修饰相关蛋白的研究仍有待补充。其次关于circRNA的m6A修饰数据库尚为空缺,需要挖掘补充。

①.circRNA的生物合成:pre-RNA通过反向剪接形成circRNA;②.circRNA的生物学功能:海绵miRNA,调控亲本基因表达,翻译成蛋白质;③.circRNA的生物降解: 依赖Ago2-切片方式降解及YTHDF2-HRSP12-RNase P/MRP轴降解 ①.circRNA biogenesis: CircRNA is formed by pre-RNA via backsplicing; ②.Biological function of circRNA: miRNA sponging, transcriptional regulation and translation into proteins; ③.Degradation of circRNA: degradation by Ago2-sectioning method and YTHDF2-HRSP12-RNase P/MRP axis 图 1 circRNA的生物合成、功能和降解 Fig. 1 Biogenesis, function and degradation of circRNA

现在最常用的m6A位点检测技术是MeRIP,MeRIP可以实现全基因组范围内m6A的检测,但MeRIP技术做不到单核苷酸定位分析且对样品需求量大,不利于珍贵样品的检测。MAZTER-seq、DART-seq虽可以实现单核苷酸分析,但MAZTER-seq技术只能识别ACA位点的甲基化修饰,而ACA只占DRACH的16%[70]。DART-seq只能识别mRNA的m6A位点,不能识别circRNA的m6A修饰[71]。期待随着测序技术的进步,circRNA的m6A位点检测技术能够在不依赖抗体的情况下实现全基因组检测。

参考文献
[1]
SANGER H L, KLOTZ G, RIESNER D, et al. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures[J]. Proc Natl Acad Sci U S A, 1976, 73(11): 3852-3856. DOI:10.1073/pnas.73.11.3852
[2]
GROSS H J, DOMDEY H, LOSSOW C, et al. Nucleotide sequence and secondary structure of potato spindle tuber viroid[J]. Nature, 1978, 273(5659): 203-208. DOI:10.1038/273203a0
[3]
WILUSZ J E. A 360° view of circular RNAs: From biogenesis to functions[J]. Wiley Interdiscip Rev RNA, 2018, 9(4): e1478. DOI:10.1002/wrna.1478
[4]
ZHANG X O, DONG R, ZHANG Y, et al. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs[J]. Genome Res, 2016, 26(9): 1277-1287. DOI:10.1101/gr.202895.115
[5]
SUN T, WU R Y, MING L. The role of m6A RNA methylation in cancer[J]. Biomed Pharmacother, 2019, 112: 108613. DOI:10.1016/j.biopha.2019.108613
[6]
DESROSIERS R, FRIDERICI K, ROTTMAN F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells[J]. Proc Natl Acad Sci U S A, 1974, 71(10): 3971-3975. DOI:10.1073/pnas.71.10.3971
[7]
AN M J, ZHENG H H, HUANG J, et al. Aberrant nuclear export of circNCOR1 underlies SMAD7-mediated lymph node metastasis of bladder cancer[J]. Cancer Res, 2022, 82(12): 2239-2253. DOI:10.1158/0008-5472.CAN-21-4349
[8]
CHEN R X, CHEN X, XIA L P, et al. N6-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis[J]. Nat Commun, 2019, 10(1): 4695. DOI:10.1038/s41467-019-12651-2
[9]
RONG D W, WU F, LU C, et al. m6A modification of circHPS5 and hepatocellular carcinoma progression through HMGA2 expression[J]. Mol Ther Nucl Acids, 2021, 26: 637-648. DOI:10.1016/j.omtn.2021.09.001
[10]
BARRETT S P, WANG P L, SALZMAN J. Circular RNA biogenesis can proceed through an exon-containing lariat precursor[J]. eLife, 2015, 4: e07540. DOI:10.7554/eLife.07540
[11]
ASHWAL-FLUSS R, MEYER M, PAMUDURTI N R, et al. circRNA biogenesis competes with pre-mRNA splicing[J]. Mol Cell, 2014, 56(1): 55-66. DOI:10.1016/j.molcel.2014.08.019
[12]
JECK W R, SORRENTINO J A, WANG K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats[J]. RNA, 2013, 19(2): 141-157. DOI:10.1261/rna.035667.112
[13]
ZHANG Y, ZHANG X O, CHEN T, et al. Circular intronic long noncoding RNAs[J]. Mol Cell, 2013, 51(6): 792-806. DOI:10.1016/j.molcel.2013.08.017
[14]
ZHANG X O, DONG R, ZHANG Y, et al. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs[J]. Genome Res, 2016, 26(9): 1277-1287. DOI:10.1101/gr.202895.115
[15]
EGER N, SCHOPPE L, SCHUSTER S, et al. Circular RNA splicing[J]. Adv Exp Med Biol, 2018, 1087: 41-52.
[16]
SCHINDEWOLF C, BRAUN S, DOMDEY H. In vitro generation of a circular exon from a linear pre-mRNA transcript[J]. Nucl Acids Res, 1996, 24(7): 1260-1266. DOI:10.1093/nar/24.7.1260
[17]
KRAMER M C, LIANG D M, TATOMER D C, et al. Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins[J]. Genes Dev, 2015, 29(20): 2168-2182. DOI:10.1101/gad.270421.115
[18]
LIANG D M, WILUSZ J E. Short intronic repeat sequences facilitate circular RNA production[J]. Genes Dev, 2014, 28(20): 2233-2247. DOI:10.1101/gad.251926.114
[19]
ZHANG X O, WANG H B, ZHANG Y, et al. Complementary sequence-mediated exon circularization[J]. Cell, 2014, 159(1): 134-147. DOI:10.1016/j.cell.2014.09.001
[20]
CONN S J, PILLMAN K A, TOUBIA J, et al. The RNA binding protein quaking regulates formation of circRNAs[J]. Cell, 2015, 160(6): 1125-1134. DOI:10.1016/j.cell.2015.02.014
[21]
TEPLOVA M, HAFNER M, TEPLOV D, et al. Structure-function studies of STAR family Quaking proteins bound to their in vivo RNA target sites[J]. Genes Dev, 2013, 27(8): 928-940. DOI:10.1101/gad.216531.113
[22]
LI X, LIU C X, XUE W, et al. Coordinated circRNA biogenesis and function with NF90/NF110 in viral infection[J]. Mol Cell, 2017, 67(2): 214-227.e7. DOI:10.1016/j.molcel.2017.05.023
[23]
HANSEN T B, JENSEN T I, CLAUSEN B H, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013, 495(7441): 384-388. DOI:10.1038/nature11993
[24]
林晓冰, 梁小锋, 彭智燊, 等. 环状RNA在系统性红斑狼疮中的研究进展[J]. 现代免疫学, 2022, 42(6): 541-546.
LIN X B, LIANG X F, PENG Z S, et al. Research progress of circular RNAs in systematic lupus erythematosus[J]. Current Immunology, 2022, 42(6): 541-546. (in Chinese)
[25]
YE C Y, CHEN L, LIU C, et al. Widespread noncoding circular RNAs in plants[J]. New Phytol, 2015, 208(1): 88-95. DOI:10.1111/nph.13585
[26]
LU T T, CUI L L, ZHOU Y, et al. Transcriptome-wide investigation of circular RNAs in rice[J]. RNA, 2015, 21(12): 2076-2087. DOI:10.1261/rna.052282.115
[27]
CHEN L, ZHANG P, FAN Y, et al. Circular RNAs mediated by transposons are associated with transcriptomic and phenotypic variation in maize[J]. New Phytol, 2018, 217(3): 1292-1306. DOI:10.1111/nph.14901
[28]
WANG L D, LIANG W S, WANG S S, et al. Circular RNA expression profiling reveals that circ-PLXNA1 functions in duck adipocyte differentiation[J]. PLoS One, 2020, 15(7): e0236069. DOI:10.1371/journal.pone.0236069
[29]
YAN X M, ZHANG Z, MENG Y, et al. Genome-wide identification and analysis of circular RNAs differentially expressed in the longissimus dorsi between Kazakh cattle and Xinjiang brown cattle[J]. PeerJ, 2020, 8: e8646.
[30]
SHEN X M, TANG J, HUANG Y Z, et al. CircRNF111 contributes to adipocyte differentiation by elevating PPARγ expression via miR-27a-3p[J]. Epigenetics, 2023, 18(1): 2145058. DOI:10.1080/15592294.2022.2145058
[31]
ZHANG X Y, YANG S L, KANG Z H, et al. circMEF2D negatively regulated by HNRNPA1 inhibits proliferation and differentiation of myoblasts via miR-486-PI3K/AKT axis[J]. J Agric Food Chem, 2022, 70(26): 8145-8163. DOI:10.1021/acs.jafc.2c01888
[32]
QI A, RU W X, YANG H Y, et al. Circular RNA ACTA1 acts as a sponge for miR-199a-5p and miR-433 to regulate bovine myoblast development through the MAP3K11/MAP2K7/JNK pathway[J]. J Agric Food Chem, 2022, 70(10): 3357-3373. DOI:10.1021/acs.jafc.1c07762
[33]
YANG Z X, SONG C C, JIANG R, et al. CircNDST1 regulates bovine myoblasts proliferation and differentiation via the miR-411a/Smad4 axis[J]. J Agric Food Chem, 2022, 70(32): 10044-10057. DOI:10.1021/acs.jafc.1c08167
[34]
FAN Y X, ZHANG Z, DENG K P, et al. CircUBE3A promotes myoblasts proliferation and differentiation by sponging miR-28-5p to enhance expression[J]. Int J Biol Macromol, 2023, 226: 730-745. DOI:10.1016/j.ijbiomac.2022.12.064
[35]
ZHANG Z, FAN Y X, DENG K P, et al. Circular RNA circUSP13 sponges miR-29c to promote differentiation and inhibit apoptosis of goat myoblasts by targeting IGF1[J]. FASEB J, 2022, 36(1): e22097.
[36]
JIAO P X, ZHANG M M, WANG Z W, et al. Circ003429 regulates unsaturated fatty acid synthesis in the dairy goat mammary gland by interacting with miR-199a-3p, targeting the YAP1 gene[J]. Int J Mol Sci, 2022, 23(7): 4068. DOI:10.3390/ijms23074068
[37]
ZHAO J Y, SHEN J C, WANG Z Y, et al. CircRNA-0100 positively regulates the differentiation of cashmere goat SHF-SCs into hair follicle lineage via sequestering miR-153-3p to heighten the KLF5 expression[J]. Arch Anim Breed, 2022, 65(1): 55-67. DOI:10.5194/aab-65-55-2022
[38]
ZHUANG X N, LIN Z K, XIE F, et al. Identification of circRNA-associated ceRNA networks using longissimus thoracis of pigs of different breeds and growth stages[J]. BMC Genomics, 2022, 23(1): 294. DOI:10.1186/s12864-022-08515-7
[39]
SUN D, AN J Q, CUI Z X, et al. CircCSDE1 regulates proliferation and differentiation of C2C12 myoblasts by sponging miR-21-3p[J]. Int J Mol Sci, 2022, 23(19): 12038. DOI:10.3390/ijms231912038
[40]
ZOU Q, WANG X, YUAN R, et al. Circ004463 promotes fibroblast proliferation and collagen I synthesis by sponging miR-23b and regulating CADM3/MAP4K4 via activation of AKT/ERK pathways[J]. Int J Biol Macromol, 2023, 226: 357-367. DOI:10.1016/j.ijbiomac.2022.12.029
[41]
DING N, ZHANG Y, HUANG M N, et al. Circ-CREBBP inhibits sperm apoptosis via the PI3K-Akt signaling pathway by sponging miR-10384 and miR-143-3p[J]. Commun Biol, 2022, 5(1): 1339. DOI:10.1038/s42003-022-04263-2
[42]
TIAN W H, ZHANG B, ZHONG H A, et al. Dynamic expression and regulatory network of circular RNA for abdominal preadipocytes differentiation in chicken (Gallus gallus)[J]. Front Cell Dev Biol, 2021, 9: 761638. DOI:10.3389/fcell.2021.761638
[43]
JANGA S C, MITTAL N. Construction, structure and dynamics of post-transcriptional regulatory network directed by RNA-binding proteins[J]. Adv Exp Med Biol, 2011, 722: 103-117.
[44]
JANAS T, JANAS M M, SAPOŃ K, et al. Mechanisms of RNA loading into exosomes[J]. FEBS Lett, 2015, 589(13): 1391-1398. DOI:10.1016/j.febslet.2015.04.036
[45]
DU W W, ZHANG C, YANG W N, et al. Identifying and characterizing circRNA-protein interaction[J]. Theranostics, 2017, 7(17): 4183-4191. DOI:10.7150/thno.21299
[46]
CHEN H M, KONG Y, YAO Q, et al. Three hypomethylated genes were associated with poor overall survival in pancreatic cancer patients[J]. Aging (Albany NY), 2019, 11(3): 885-897.
[47]
MAZUREK S, BOSCHEK C B, HUGO F, et al. Pyruvate kinase type M2 and its role in tumor growth and spreading[J]. Semin Cancer Biol, 2005, 15(4): 300-308. DOI:10.1016/j.semcancer.2005.04.009
[48]
WANG H J, HSIEH Y J, CHENG W C, et al. JMJD5 regulates PKM2 nuclear translocation and reprograms HIF-1α-mediated glucose metabolism[J]. Proc Natl Acad Sci U S A, 2014, 111(1): 279-284. DOI:10.1073/pnas.1311249111
[49]
SONG J, ZHENG J, LIU X B, et al. A novel protein encoded by ZCRB1-induced circHEATR5B suppresses aerobic glycolysis of GBM through phosphorylation of JMJD5[J]. J Exp Clin Cancer Res, 2022, 41(1): 171. DOI:10.1186/s13046-022-02374-6
[50]
LACERDA R, MENEZES J, ROMÃO L. More than just scanning: the importance of cap-independent mRNA translation initiation for cellular stress response and cancer[J]. Cell Mol Life Sci, 2017, 74(9): 1659-1680. DOI:10.1007/s00018-016-2428-2
[51]
GODET A C, DAVID F, HANTELYS F, et al. IRES trans-acting factors, key actors of the stress response[J]. Int J Mol Sci, 2019, 20(4): 924. DOI:10.3390/ijms20040924
[52]
YANG Y, WANG C F, ZHAO K L, et al. TRMP, a p53-inducible long noncoding RNA, regulates G1/S cell cycle progression by modulating IRES-dependent p27 translation[J]. Cell Death Dis, 2018, 9(9): 886. DOI:10.1038/s41419-018-0884-3
[53]
YANG Y, FAN X J, MAO M W, et al. Extensive translation of circular RNAs driven by N6-methyladenosine[J]. Cell Res, 2017, 27(5): 626-641. DOI:10.1038/cr.2017.31
[54]
XIA X, LI X X, LI F Y, et al. A novel tumor suppressor protein encoded by circular AKT3 RNA inhibits glioblastoma tumorigenicity by competing with active phosphoinositide-dependent Kinase-1[J]. Mol Cancer, 2019, 18(1): 131. DOI:10.1186/s12943-019-1056-5
[55]
LEGNINI I, DI TIMOTEO G, ROSSI F, et al. Circ-ZNF609 is a circular RNA that can Be translated and functions in myogenesis[J]. Mol Cell, 2017, 66(1): 22-37.e9. DOI:10.1016/j.molcel.2017.02.017
[56]
ZHENG X, CHEN L J, ZHOU Y, et al. A novel protein encoded by a circular RNA circPPP1R12A promotes tumor pathogenesis and metastasis of colon cancer via Hippo-YAP signaling[J]. Mol Cancer, 2019, 18(1): 47. DOI:10.1186/s12943-019-1010-6
[57]
LI Z Y, HUANG C, BAO C, et al. Exon-intron circular RNAs regulate transcription in the nucleus[J]. Nat Struct Mol Biol, 2015, 22(3): 256-264. DOI:10.1038/nsmb.2959
[58]
CONN V M, HUGOUVIEUX V, NAYAK A, et al. A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation[J]. Nat Plants, 2017, 3: 17053. DOI:10.1038/nplants.2017.53
[59]
XU X L, ZHANG J W, TIAN Y H, et al. CircRNA inhibits DNA damage repair by interacting with host gene[J]. Mol Cancer, 2020, 19(1): 128. DOI:10.1186/s12943-020-01246-x
[60]
FENG Y, YANG Y X, ZHAO X D, et al. Circular RNA circ0005276 promotes the proliferation and migration of prostate cancer cells by interacting with FUS to transcriptionally activate XIAP[J]. Cell Death Dis, 2019, 10(11): 792. DOI:10.1038/s41419-019-2028-9
[61]
CHEN Z Z, LU T K, HUANG L, et al. Circular RNA cia-MAF drives self-renewal and metastasis of liver tumor-initiating cells via transcription factor MAFF[J]. J Clin Invest, 2021, 131(19): e148020. DOI:10.1172/JCI148020
[62]
SALETORE Y, MEYER K, KORLACH J, et al. The birth of the Epitranscriptome: deciphering the function of RNA modifications[J]. Genome Biol, 2012, 13(10): 175. DOI:10.1186/gb-2012-13-10-175
[63]
LIU N, PAN T. N6-methyladenosine-encoded epitranscriptomics[J]. Nat Struct Mol Biol, 2016, 23(2): 98-102. DOI:10.1038/nsmb.3162
[64]
ZACCARA S, RIES R J, JAFFREY S R. Reading, writing and erasing mRNA methylation[J]. Nat Rev Mol Cell Biol, 2019, 20(10): 608-624. DOI:10.1038/s41580-019-0168-5
[65]
EDENS B M, VISSERS C, SU J, et al. FMRP modulates neural differentiation through m6A-dependent mRNA nuclear export[J]. Cell Rep, 2019, 28(4): 845-854.e5. DOI:10.1016/j.celrep.2019.06.072
[66]
ZHAO B S, ROUNDTREE I A, HE C. Post-transcriptional gene regulation by mRNA modifications[J]. Nat Rev Mol Cell Biol, 2017, 18(1): 31-42.
[67]
YU R Q, LI Q M, FENG Z H, et al. m6A reader YTHDF2 regulates LPS-induced inflammatory response[J]. Int J Mol Sci, 2019, 20(6): 1323. DOI:10.3390/ijms20061323
[68]
DOMINISSINI D, MOSHITCH-MOSHKOVITZ S, SCHWARTZ S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq[J]. Nature, 2012, 485(7397): 201-206. DOI:10.1038/nature11112
[69]
MEYER K D, SALETORE Y, ZUMBO P, et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons[J]. Cell, 2012, 149(7): 1635-1646. DOI:10.1016/j.cell.2012.05.003
[70]
LINDER B, GROZHIK A V, OLARERIN-GEORGE A O, et al. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome[J]. Nat Methods, 2015, 12(8): 767-772. DOI:10.1038/nmeth.3453
[71]
MEYER K D. DART-seq: an antibody-free method for global m6A detection[J]. Nat Methods, 2019, 16(12): 1275-1280. DOI:10.1038/s41592-019-0570-0
[72]
IMAM H, KHAN M, GOKHALE N S, et al. N6-methyladenosine modification of hepatitis B virus RNA differentially regulates the viral life cycle[J]. Proc Natl Acad Sci U S A, 2018, 115(35): 8829-8834. DOI:10.1073/pnas.1808319115
[73]
PING X L, SUN B F, WANG L, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase[J]. Cell Res, 2014, 24(2): 177-189. DOI:10.1038/cr.2014.3
[74]
SCHÖLLER E, WEICHMANN F, TREIBER T, et al. Interactions, localization, and phosphorylation of the m6A generating METTL3-METTL14-WTAP complex[J]. RNA, 2018, 24(4): 499-512. DOI:10.1261/rna.064063.117
[75]
BODI Z, ZHONG S L, MEHRA S, et al. Adenosine methylation in Arabidopsis mRNA is associated with the 3' end and reduced levels cause developmental defects[J]. Front Plant Sci, 2012, 3: 48.
[76]
XU K, YANG Y, FENG G H, et al. Mettl3-mediated m6A regulates spermatogonial differentiation and meiosis initiation[J]. Cell Res, 2017, 27(9): 1100-1114. DOI:10.1038/cr.2017.100
[77]
KABECHE L, NGUYEN H D, BUISSON R, et al. A mitosis-specific and R loop-driven ATR pathway promotes faithful chromosome segregation[J]. Science, 2017, 359(6371): 108-114.
[78]
YANG X, LIU Q L, XU W, et al. m6A promotes R-loop formation to facilitate transcription termination[J]. Cell Res, 2019, 29(12): 1035-1038. DOI:10.1038/s41422-019-0235-7
[79]
FEDELES B I, SINGH V, DELANEY J C, et al. The AlkB family of Fe(Ⅱ)/α-ketoglutarate-dependent dioxygenases: repairing nucleic acid alkylation damage and beyond[J]. J Biol Chem, 2015, 290(34): 20734-20742. DOI:10.1074/jbc.R115.656462
[80]
史源钧, 米思远, 俞英. m6A表观遗传修饰及其调控机制研究进展[J]. 中国畜牧兽医, 2022, 49(1): 197-207.
SHI Y J, MI S Y, YU Y. Research progress on m6A epigenetic modification and its regulation mechanism[J]. China Animal Husbandry & Veterinary Medicine, 2022, 49(1): 197-207. (in Chinese)
[81]
JIA G F, YANG C G, YANG S D, et al. Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO[J]. FEBS Lett, 2008, 582(23-24): 3313-3319. DOI:10.1016/j.febslet.2008.08.019
[82]
JIA G F, FU Y, ZHAO X, et al. N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J]. Nat Chem Biol, 2011, 7(12): 885-887. DOI:10.1038/nchembio.687
[83]
MAUER J, LUO X B, BLANJOIE A, et al. Reversible methylation of m6Am in the 5'cap controls mRNA stability[J]. Nature, 2017, 541(7637): 371-375. DOI:10.1038/nature21022
[84]
MAUER J, SINDELAR M, DESPIC V, et al. FTO controls reversible m6Am RNA methylation during snRNA biogenesis[J]. Nat Chem Biol, 2019, 15(4): 340-347. DOI:10.1038/s41589-019-0231-8
[85]
WU R F, LIU Y H, YAO Y X, et al. FTO regulates adipogenesis by controlling cell cycle progression via m6A-YTHDF2 dependent mechanism[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2018, 1863(10): 1323-1330.
[86]
ZHENG G Q, DAHL J A, NIU Y M, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility[J]. Mol Cell, 2013, 49(1): 18-29. DOI:10.1016/j.molcel.2012.10.015
[87]
LI S W, XU S Y, CHEN Y H, et al. Metal exposure promotes colorectal tumorigenesis via the aberrant N6-methyladenosine modification of ATP13A3[J]. Environ Sci Technol, 2023, 57(7): 2864-2876. DOI:10.1021/acs.est.2c07389
[88]
SUN R, YUAN L, JIANG Y, et al. ALKBH5 activates FAK signaling through m6A demethylation in ITGB1 mRNA and enhances tumor-associated lymphangiogenesis and lymph node metastasis in ovarian cancer[J]. Theranostics, 2023, 13(2): 833-848. DOI:10.7150/thno.77441
[89]
WANG X, ZHAO B S, ROUNDTREE I A, et al. N6-methyladenosine modulates messenger RNA translation efficiency[J]. Cell, 2015, 161(6): 1388-1399. DOI:10.1016/j.cell.2015.05.014
[90]
WANG X, LU Z K, GOMEZ A, et al. N6-methyladenosine-dependent regulation of messenger RNA stability[J]. Nature, 2014, 505(7481): 117-120. DOI:10.1038/nature12730
[91]
SHI H L, WANG X, LU Z K, et al. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA[J]. Cell Res, 2017, 27(3): 315-328. DOI:10.1038/cr.2017.15
[92]
ROUNDTREE I A, LUO G Z, ZHANG Z J, et al. YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs[J]. eLife, 2017, 6: e31311. DOI:10.7554/eLife.31311
[93]
LI T, HU P S, ZUO Z X, et al. METTL3 facilitates tumor progression via an m6A-IGF2BP2-dependent mechanism in colorectal carcinoma[J]. Mol Cancer, 2019, 18(1): 112. DOI:10.1186/s12943-019-1038-7
[94]
CHEN H H, YU H I, YANG M H, et al. DDX3 activates CBC-eIF3-mediated translation of uORF-containing oncogenic mRNAs to promote metastasis in HNSCC[J]. Cancer Res, 2018, 78(16): 4512-4523. DOI:10.1158/0008-5472.CAN-18-0282
[95]
ZHANG J, ZHANG X L, LI C D, et al. Circular RNA profiling provides insights into their subcellular distribution and molecular characteristics in HepG2 cells[J]. RNA Biol, 2019, 16(2): 220-232. DOI:10.1080/15476286.2019.1565284
[96]
HUANG C, LIANG D M, TATOMER D C, et al. A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs[J]. Genes Dev, 2018, 32(9-10): 639-644. DOI:10.1101/gad.314856.118
[97]
SHEN H H. UAP56-a key player with surprisingly diverse roles in pre-mRNA splicing and nuclear export[J]. BMB Rep, 2009, 42(4): 185-188. DOI:10.5483/BMBRep.2009.42.4.185
[98]
HUANG C, LIANG D M, TATOMER D C, et al. A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs[J]. Genes Dev, 2018, 32(9-10): 639-644. DOI:10.1101/gad.314856.118
[99]
PRATS A C, DAVID F, DIALLO L H, et al. Circular RNA, the key for translation[J]. Int J Mol Sci, 2020, 21(22): 8591. DOI:10.3390/ijms21228591
[100]
ZHOU J, WAN J, GAO X W, et al. Dynamic m6A mRNA methylation directs translational control of heat shock response[J]. Nature, 2015, 526(7574): 591-594. DOI:10.1038/nature15377
[101]
DI TIMOTEO G, DATTILO D, CENTRÓN-BROCO A, et al. Modulation of circRNA metabolism by m6A modification[J]. Cell Rep, 2020, 31(6): 107641. DOI:10.1016/j.celrep.2020.107641
[102]
DUAN J L, CHEN W, XIE J J, et al. A novel peptide encoded by N6-methyladenosine modified circMAP3K4 prevents apoptosis in hepatocellular carcinoma[J]. Mol Cancer, 2022, 21(1): 93. DOI:10.1186/s12943-022-01537-5
[103]
HANSEN T B, WIKLUND E D, BRAMSEN J B, et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA[J]. EMBO J, 2011, 30(21): 4414-4422. DOI:10.1038/emboj.2011.359
[104]
LUO Y, NA Z K, SLAVOFF S A. P-bodies: composition, properties, and functions[J]. Biochemistry, 2018, 57(17): 2424-2431. DOI:10.1021/acs.biochem.7b01162
[105]
JIA R R, XIAO M S, LI Z G, et al. Defining an evolutionarily conserved role of GW182 in circular RNA degradation[J]. Cell Discov, 2019, 5: 45. DOI:10.1038/s41421-019-0113-y
[106]
PARK O H, HA H, LEE Y, et al. Endoribonucleolytic cleavage of m6A-containing RNAs by RNase P/MRP complex[J]. Mol Cell, 2019, 74(3): 494-507.e8. DOI:10.1016/j.molcel.2019.02.034
[107]
GUO Y X, GUO Y Y, CHEN C, et al. Circ3823 contributes to growth, metastasis and angiogenesis of colorectal cancer: involvement of miR-30c-5p/TCF7 axis[J]. Mol Cancer, 2021, 20(1): 93. DOI:10.1186/s12943-021-01372-0
[108]
LIU Y X, YANG Y H, LIN Y C, et al. N6-methyladenosine-modified circRNA RERE modulates osteoarthritis by regulating β-catenin ubiquitination and degradation[J]. Cell Prolif, 2023, 56(1): e13297. DOI:10.1111/cpr.13297
[109]
SCHLEE M, HARTMANN G. Discriminating self from non-self in nucleic acid sensing[J]. Nat Rev Immunol, 2016, 16(9): 566-580. DOI:10.1038/nri.2016.78
[110]
GARCIA M A, MEURS E F, ESTEBAN M. The dsRNA protein kinase PKR: virus and cell control[J]. Biochimie, 2007, 89(6-7): 799-811. DOI:10.1016/j.biochi.2007.03.001
[111]
LIU C X, GUO S K, NAN F, et al. RNA circles with minimized immunogenicity as potent PKR inhibitors[J]. Mol Cell, 2022, 82(2): 420-434.e6. DOI:10.1016/j.molcel.2021.11.019
[112]
MOLDOVAN L I, HANSEN T B, VENO M T, et al. High-throughput RNA sequencing from paired lesional-and non-lesional skin reveals major alterations in the psoriasis circRNAome[J]. BMC Med Genomics, 2019, 12(1): 174. DOI:10.1186/s12920-019-0616-2
[113]
REIKINE S, NGUYEN J B, MODIS Y. Pattern recognition and signaling mechanisms of RIG-I and MDA5[J]. Front Immunol, 2014, 5: 342.
[114]
RIES R J, ZACCARA S, KLEIN P, et al. m6A enhances the phase separation potential of mRNA[J]. Nature, 2019, 571(7765): 424-428. DOI:10.1038/s41586-019-1374-1
[115]
CHEN Y G, CHEN R, AHMAD S, et al. N6-methyladenosine modification controls circular RNA immunity[J]. Mol Cell, 2019, 76(1): 96-109.e9. DOI:10.1016/j.molcel.2019.07.016

(编辑   孟培)