畜牧兽医学报  2023, Vol. 54 Issue (1): 414-420. DOI: 10.11843/j.issn.0366-6964.2023.01.038    PDF    
新疆地区腹泻仔猪源大肠杆菌的分群、血清型鉴定及耐药性分析
佟盼盼, 黄顺敏, 王芋丹, 施旭辉, 陈文霞, 宋鑫龙, 张毅, 苏战强, 谢金鑫     
新疆农业大学动物医学学院, 乌鲁木齐 830052
摘要:旨在了解新疆地区腹泻仔猪源大肠杆菌的系统进化分群、血清型及耐药性。本研究对154份腹泻仔猪粪便样品进行大肠杆菌的分离鉴定,采用多重PCR方法对分离株进行系统进化分群和O血清型鉴定,通过K-B纸片法对其进行药物敏感性检测并通过PCR方法进行耐药基因检测。结果显示:共分离到154株大肠杆菌,包括ETEC(n=24)、STEC(n=21)、EPEC(n=1)、EPEC/STEC(n=2)、ETEC/STEC(n=1)和ETEC/EPEC(n=1),其他104株。系统进化分群显示,多数菌株属于B1(37%)和A群(31%)。定型菌株44株,分别属于10种血清型,以O154、O12、O8、O141和O175为主要流行血清型。151株(98%)为多重耐药菌,对复方新诺明、四环素、氨苄西林、链霉素和氯霉素的耐药率为81%~100%,对阿莫西林/克拉维酸、头孢噻肟、庆大霉素、头孢曲松、环丙沙星和阿米卡星的耐药率为31%~66%,对左氧氟沙星、多黏菌素B、头孢他啶、头孢吡肟、氨苄西林-舒巴坦、哌拉西林-他唑巴坦和亚胺培南的耐药率为1%~19%。耐药基因tetA(88%)、tetG(60%)和cmlA(45%)的携带率较高,而blaCTX-M-1GaadA1、sul1、aacblaCTX-M-9G均低于30%,未检测出blaCTX-M-2GblaTEMblaSHVtetE。研究结果表明,新疆腹泻仔猪源大肠杆菌类型复杂,多重耐药形势严峻,耐药基因多样化,且检测出人医临床重要的抗生素耐药表型,应加强对猪场大肠杆菌的耐药性监测。
关键词腹泻仔猪    大肠杆菌    系统进化分群    血清型    耐药性    
Phylogenetic Clustering, Serotype and Drug Resistance Analysis of Escherichia coli from Diarrhea with Piglets in Xinjiang
TONG Panpan, HUANG Shunmin, WANG Yudan, SHI Xuhui, CHEN Wenxia, SONG Xinlong, ZHANG Yi, SU Zhanqiang, XIE Jinxin     
College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China
Abstract: This study was conducted to examine the distribution of phylogenetic clustering, virulence genes, serotypes and drug resistance of Escherichia coli (E. coli) from diarrhea with piglets in Xinjiang. In this study, 154 fecal samples were collected from diarrhea with piglets, and isolation, identification of E. coli was conducted. Phylogenetic clustering, virulence genes, serotype were tested by multiple PCR method. Drug sensitivity of isolates was determined by using a Kirby-Bauer disk diffusion method and drug resistance gene was detected by PCR. The results showed that 154 E. coli were isolated, including ETEC (n=24), STEC (n=21), EPEC (n=1), EPEC/STEC (n=2), ETEC/STEC (n=1), ETEC/EPEC (n=1), and other 104 strains. Phylotyping assays showed that most strains largely belong to group A (37%) and B1 (31%). O serogroups were identified for 44 E. coli isolates, of which O154, O12, O8, O141 and O175 were dominant serogroups. One hundred and fifty-one strains were multiple drug resistance (MDR), and the drug resistance rates of 154 E. coli isolates to cotrimoxazole, tetracycline, ampicillin, streptomycin and chloramphenicol ranged from 81% to 100%, that to amoxicillin/clavulanate, cefotaxime, gentamicin, ceftriaxone, ciprofloxacin and amikacin ranged from 31% to 66%, that to levofloxacin, polymyxins B, ceftazidime, cefepime, ampicillin -sulbactam, piperacillin -tazobactam and imipenem ranged from 1% to 19%. The prevalence of drug resistance genes tetA (88%), tetG (60%) and cmlA (45%) was higher, while blaCTX-M-2G, blaTEM, blaSHV and tetE were all lower than 30%. blaCTX-M-2G, blaTEM, blaSHV and tetE were not detected. The results indicated that the types of E. coli from diarrhea with piglets in Xinjiang were complex and the situation of MDR was severe, the prevalence of drug resistance genes was diversified, and important antibiotic resistance phenotypes were detected in human and clinical, so the monitoring of drug resistance of E. coli in pig farms should be strengthened.
Key words: diarrhea with piglets    Escherichia coli    phylogenetic clustering    serum group    drug resistance    

肠道致病性大肠杆菌(Escherichia coliE. coli)可引起仔猪黄痢、白痢和水肿病,统称为仔猪大肠杆菌病,发病率和死亡率较高,给养猪业造成严重的经济损失[1-2]。根据毒力基因的携带情况可将这些大肠杆菌划分为不同致病型,如产肠毒素大肠杆菌(enterotoxigenic E. coli,ETEC)可产生热不稳定肠毒素(heat-labile enterotoxin,LT)和热稳定肠毒素(heat-stable enterotoxin,ST),产志贺毒素大肠杆菌(Shiga toxin-producing E. coli,STEC)产生志贺毒素(Shiga toxin,Stx),EPEC携带由eae基因编码的紧密黏附素[3-4]。除编码Stx的stx基因通常整合在染色体的原噬菌体中,大部分编码毒力因子的基因位于质粒上,通过水平基因转移可将毒力基因传递至特定的遗传背景中形成混合型致病菌,如在动物和人上发现了一些STEC携带ETEC毒素,从而产生了STEC/ETEC[3, 5]

大肠杆菌系统进化分群复杂,血清型众多,不同血清型之间无交叉保护性,且呈地域性,给疫苗研制带来困难,也是仔猪大肠杆菌病流行的重要因素[2, 6]。目前,治疗仔猪大肠杆菌病主要以抗生素为主,随着抗生素的使用,导致大肠杆菌的耐药性十分严重,提高了细菌感染的治疗难度,也威胁着人类健康[7]。相对于其他地区而言,关于新疆地区猪源大肠杆菌毒力特征及耐药性的报道尚不多见。本研究收集新疆部分规模化猪场仔猪腹泻粪便样品,进行大肠杆菌分离鉴定、系统进化分群、血清型鉴定及耐药性分析,以明确新疆腹泻仔猪源大肠杆菌的流行特征及耐药谱、耐药基因携带情况,为新疆地区猪场合理用药有效控制仔猪大肠杆菌感染提供依据。

1 材料与方法 1.1 菌株来源

2021年6—9月,从新疆2个规模化猪场采集7日龄内腹泻仔猪粪便样品154份,在24 h内4 ℃条件下送至新疆农业大学动物医学学院临床实验室。

1.2 主要试剂

麦康凯、MH琼脂、MH肉汤购自青岛海博生物技术有限公司,科玛嘉大肠杆菌显色培养基购自CHRO Magar公司;药敏纸片购自Thermo Fisher公司;2×Taq Mix购自天根生化科技有限公司,DNA Marker购自宝生物工程(大连)有限公司;Gelred核酸染料购自Biotium公司。

1.3 引物合成

大肠杆菌16S rDNA特异性鉴定引物[8]、肠道致病性大肠杆菌毒力基因LTSTstx1、stx2和eae引物[8-11]、大肠杆菌系统发育分群基因arpAchuAyjaATspE4. C2、ArpAgpEtrpAgpC引物[12]、O血清型鉴定引物[13]及主要耐药基因blaCTX-M-1GblaCTX-M-2GblaCTX-M-9GblaTEMblaSHVtetAtetGtetEaacaadA1、sul1和cml1引物[14-21]由上海桑尼生物科技有限公司合成。

1.4 细菌的分离与鉴定

将3 mL生理盐水加入每份粪便拭子收集管后,室温震荡混匀,划线接种麦康凯平板,37 ℃培养14~16 h,挑取红色单菌落划线接种科玛嘉平板,37 ℃培养16~18 h后进行大肠杆菌16S rDNA特异性PCR鉴定。将阳性菌液置于含20%甘油的生理盐水中,于-80 ℃保存备用。

1.5 肠道致病性大肠杆菌的毒力基因检测

采用煮沸裂解法制备菌株DNA模板。PCR方法检测毒力基因LTSTstx1、stx2和eae。根据毒力基因的携带情况判定肠道致病性大肠杆菌的类型,即携带ST和/或LT,可判定为ETEC;携带stx1和/或stx2,可判定为STEC;携带eae则判定为EPEC[3-4]

1.6 大肠杆菌的系统进化分群

参照文献[12]方法,首先通过四重PCR扩增arpAchuAyjaATspE4. C2,根据结果可划分为A(或C)、D(或E)、B1、C、F、B2和E群。若四重PCR不能区分A和C或D和E群时,再次PCR扩增trpAgpCArpAgpE以进一步确定C或E群。

1.7 O型血清型鉴定

参照文献[13], 采用多重PCR筛选O血清型,用162对引物建立20个多重PCR组(6~9对引物/组),扩增条带大小明显不同。

1.8 药敏试验

参照美国临床实验室标准委员会(Clinical and Laboratory Standards Institute,CLSI)标准[22],以大肠杆菌ATCC 25922为质控菌株,采用K-B纸片法对大肠杆菌进行药物敏感性检测并结果判定[22]。将对三类或三类以上抗生素(非同一类的3种)同时耐药判定为多重耐药(multiple drug resistance,MDR)[23]

2 结果 2.1 大肠杆菌的分离鉴定及肠道致病性大肠杆菌的检出情况

从154份腹泻仔猪粪便中共分离到154株大肠杆菌。结合毒力基因的检测结果,检出的肠道致病性大肠杆菌包括ETEC(n=24)、STEC(n=21)、EPEC(n=1)、EPEC/STEC(n=2)、ETEC/STEC(n=1)和ETEC/EPEC(n=1),104株未携带任何被检毒力基因。

2.2 大肠杆菌的系统进化分群

系统进化分群显示,154株分离株多数属于B1(37%)和A群(31%),少数属于C(14%)、F(6%)、E(5%)和D(3%)群,6株未分群。肠道致病性大肠杆菌主要分布于A、B1、C和E群。

2.3 大肠杆菌的O血清型检测

在154株分离株中,定型菌株44株,分别属于10种血清型,包括O8、O12、O21、O32、O81、O141、O153、O154、O166和O175,其中,O154、O12、O8、O141和O175为主要流行的血清型,占定型血清型的82%。在ETEC中检测到O8、O21、O141、O153和O154,在STEC中检测到O12、O81、O141、O154和O175(图 1)。

图 1 大肠杆菌中O血清型的分布 Fig. 1 Distribution of O serotypes in E. coli isolates
2.4 大肠杆菌的药物敏感性检测

抗生素药敏检测结果显示,154株分离株对复方新诺明、四环素、氨苄西林、链霉素和氯霉素的耐药率为81%~100%,对阿莫西林/克拉维酸、头孢噻肟、庆大霉素、头孢曲松、环丙沙星和阿米卡星的耐药率为31%~66%,对左氧氟沙星、多黏菌素B、头孢他啶、头孢吡肟、氨苄西林-舒巴坦、哌拉西林-他唑巴坦和亚胺培南的耐药率为1%~19%,其中,肠道致病性大肠杆菌对除亚胺培南之外的17种抗生素均有耐药现象。98%为MDR菌株,以5耐(38%)和6耐(34%)为主(图 2)。

图 2 154株大肠杆菌的多重耐药类型 Fig. 2 MDR types of the 154 E. coli isolates
2.5 大肠杆菌耐药基因的检测

154株分离株的耐药基因检测结果显示,151株携带至少1种耐药基因,其中,tetA(88%)、tetG(60%)和cmlA(45%)的携带率较高,而blaCTX-M-1GaadA1、sul1、aacblaCTX-M-9G均低于30%,未检测出blaCTX-M-2GblaTEMblaSHVtetE。除blaCTX-M-9G外,其他耐药基因也分布于肠道致病性大肠杆菌中(图 3)。

图 3 154株大肠杆菌的物耐药基因检测结果 Fig. 3 Detection for resistance genes in 154 E. coli isolates
3 讨论

本研究发现新疆地区猪场感染大肠杆菌的类型复杂,包括ETEC、STEC和EPEC,其中,ETEC的检出率低于苏北地区[9]。在斯洛伐克ETEC和STEC也是引起仔猪腹泻的常见病原[24]。虽然104株腹泻仔猪源大肠杆菌未携带被检毒力基因,但还不能判定其致病性,有待进一步研究。

大肠杆菌的致病力与分群有一定关系,B2和D群是主要的肠道外致病性大肠杆菌,A和B1群多为肠道共生大肠杆菌[25]。李金鹏等[26]发现,河南地区腹泻猪源大肠杆菌多属于B2和D群,彭珂楠等[27]报道四川地区猪源致病型大肠杆菌多属于A和B1群,新疆地区多属于B1和A群,与河南和四川地区有所差异[26-27]

大肠杆菌的致病力也与血清型有关,如O8、O9、O15、O20、O25、O64、O78、O101、O107、O115、O128、O138、O139、O141、O147、O149和O157等[2, 9],血清型可能随地域或时间而发生变化,且编码抗原和毒素的基因可通过质粒而转移,使致病血清型不断变化[2]。本研究中优势血清型为O154、O12、O8、O141和O175,表明新疆地区腹泻仔猪源大肠杆菌的血清型呈多样性。国内其他地区也报道过O8和O141[2, 9],而O154、O12和O175相对少见,表明这些血清型可能仅在新疆比较流行。

本研究发现新疆地区腹泻仔猪源大肠杆菌以MDR为主,与孙慧琴等[28]的报道一致,表明新疆地区猪源大肠杆菌的耐药形势严峻。MDR针对的多为兽医临床上应用频率高、时间久的药物,如复方新诺明、四环素和氨苄西林等,而对亚胺培南、哌拉西林-他唑巴坦和氨苄西林-舒巴坦较敏感。新疆地区腹泻仔猪源大肠杆菌,包括ETEC、STEC和ETEC/EPEC对治疗MDR革兰阴性菌感染的“最后一道防线”——多黏菌素的耐药率为18%,高于河南地区(13%)[29],表明致病性大肠杆菌对其适应速度快,提示兽医临床需谨慎把握用药频率。

细菌携带的耐药基因与耐药表型密切相关。新疆地区腹泻仔猪源大肠杆菌携带多种耐药基因,如tetAtetGcmlA等,通常位于可移动的质粒上[30],多种耐药基因的检出率低于与之对应的耐药表型检出率,可能存在其他耐药机制,如由染色体介导的耐药机制[31],有待进一步研究。

4 结论

新疆地区腹泻仔猪源大肠杆菌类型复杂、耐药谱广、耐药基因丰富,定期对局部地区开展致病性大肠杆菌的检测和耐药性监测,可为疫病防控提供理论依据。

参考文献
[1]
张铁, 王春光, 王谦, 等. 猪源大肠杆菌的分离、鉴定及耐药性监测[J]. 中国农学通报, 2005, 21(12): 23-25, 30.
ZHANG T, WANG C G, WANG Q, et al. Serological identification and surveillance of susceptibility to antibiotics and isolate of Escherichia coli from swine[J]. Chinese Agricultural Science Bulletin, 2005, 21(12): 23-25, 30. (in Chinese)
[2]
王秀梅, 蒋红霞, 廖晓萍, 等. 猪源致病性大肠杆菌的血清型、毒力基因及抗菌药耐药性的调查[J]. 中国农业科学, 2010, 43(19): 4109-4115.
WANG X M, JIANG H X, LIAO X P, et al. Prevalence of serotypes and virulence genes and antimicrobial susceptibility of pathogenic Escherichia coli isolates from swine[J]. Scientia Agricultura Sinica, 2010, 43(19): 4109-4115. DOI:10.3864/j.issn.0578-1752.2010.19.025 (in Chinese)
[3]
BRILHANTE M, PERRETEN V, DONÀ V. Multidrug resistance and multivirulence plasmids in enterotoxigenic and hybrid Shiga toxin-producing/enterotoxigenic Escherichia coli isolated from diarrheic pigs in Switzerland[J]. Vet J, 2019, 244: 60-68. DOI:10.1016/j.tvjl.2018.12.015
[4]
BRAND P, GOBELI S, PERRETEN V. Pathotyping and antibiotic resistance of porcine enterovirulent Escherichia coli strains from Switzerland (2014-2015)[J]. Schweiz Arch Tierheilkd, 2017, 159(7): 373-380. DOI:10.17236/sat00120
[5]
LEONARD S R, MAMMEL M K, RASKO D A, et al. Hybrid Shiga Toxin-producing and Enterotoxigenic Escherichia sp. cryptic lineage 1 strain 7v harbors a hybrid plasmid[J]. Appl Environ Microbiol, 2016, 82(14): 4309-4319. DOI:10.1128/AEM.01129-16
[6]
葛海燕. 包头地区仔猪源致泻性大肠杆菌进化分群、生物被膜形成能力及耐药性检测[J]. 中国兽医杂志, 2020, 56(1): 81-84.
GE H Y. Evolutionary cluster and biofilm formation ability of laxative E. coli from piglets in Baotou area and detection of drug resistance[J]. Chinese Journal of Veterinary Medicine, 2020, 56(1): 81-84. (in Chinese)
[7]
孟婷, 崔平福, 董亚青, 等. 江苏地区仔猪腹泻性大肠杆菌的分离鉴定及其生物学特性研究[J]. 中国预防兽医学报, 2021, 43(2): 202-206.
MENG T, CUI P F, DONG Y Q, et al. Isolation, identification and biological characteristics of diarrheagenic E. coli from piglets in Jiangsu Province[J]. Chinese Journal of Preventive Veterinary Medicine, 2021, 43(2): 202-206. (in Chinese)
[8]
TEICHMANN A, DE CUNHA AGRA H N, DE SOUZA NUNES L, et al. Antibiotic resistance and detection of the sul2 gene in urinary isolates of Escherichia coli in patients from Brazil[J]. J Infect Dev Ctries, 2014, 8(1): 39-43. DOI:10.3855/jidc.3380
[9]
杨德鸿, 张鹏, 于沛欣, 等. 苏北地区规模化猪场产肠毒素大肠杆菌的分离鉴定及灭活疫苗效果评估[J]. 微生物学报, 2020, 60(2): 261-272.
YANG D H, ZHANG P, YU P X, et al. Isolation, identification and evaluation of inactivated vaccine of enterotoxigenic Escherichia coli (ETEC) in large-scale pig farms in northern Jiangsu[J]. Acta Microbiologica Sinica, 2020, 60(2): 261-272. (in Chinese)
[10]
VORA G J, MEADOR C E, STENGER D A, et al. Nucleic acid amplification strategies for DNA microarray-based pathogen detection[J]. Appl Environ Microbiol, 2004, 70(5): 3047-3054. DOI:10.1128/AEM.70.5.3047-3054.2004
[11]
PATON A W, PATON J C. Detection and characterization of Shiga toxigenic Escherichia coli by using multiplex PCR assays for stx1, stx2, eaeA, enterohemorrhagic E. coli hlyA, rfbO111, and rfbO157[J]. J Clin Microbiol, 1998, 36(2): 598-602. DOI:10.1128/JCM.36.2.598-602.1998
[12]
CLERMONT O, CHRISTENSON J K, DENAMUR E, et al. The Clermont Escherichia coli phylo-typing method revisited: improvement of specificity and detection of new phylo-groups[J]. Environ Microbiol Rep, 2013, 5(1): 58-65. DOI:10.1111/1758-2229.12019
[13]
IGUCHI A, IYODA S, SETO K, et al. Escherichia coli O-genotyping PCR: a comprehensive and practical platform for molecular O serogrouping[J]. J Clin Microbiol, 2015, 53(8): 2427-2432. DOI:10.1128/JCM.00321-15
[14]
PAGANI L, DELL'AMICO E, MIGLIAVACCA R, et al. Multiple CTX-M-type extended-spectrum β-lactamases in nosocomial isolates of Enterobacteriaceae from a hospital in northern Italy[J]. J Clin Microbiol, 2003, 41(9): 4264-4269. DOI:10.1128/JCM.41.9.4264-4269.2003
[15]
ECKERT C, GAUTIER V, ARLET G. DNA sequence analysis of the genetic environment of various blaCTX-M genes[J]. J Antimicrob Chemother, 2006, 57(1): 14-23.
[16]
LIN C F, HSU S K, CHEN C H, et al. Genotypic detection and molecular epidemiology of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in a regional hospital in central Taiwan[J]. J Med Microbiol, 2010, 59(6): 665-671.
[17]
NG L K, MARTIN I, ALFA M, et al. Multiplex PCR for the detection of tetracycline resistant genes[J]. Mol Cell Probes, 2001, 15(4): 209-215.
[18]
SÁENZ Y, BRIÑAS L, DOMÍNGUEZ E, et al. Mechanisms of resistance in multiple-antibiotic-resistant Escherichia coli strains of human, animal, and food origins[J]. Antimicrob Agents Chemother, 2004, 48(10): 3996-4001.
[19]
梁乔, 赵凤菊, 顾贵波, 等. 辽宁地区猪源大肠埃希菌氨基糖苷类抗生素耐药基因的检测与分析[J]. 河南农业科学, 2017, 46(6): 134-137.
LIANG Q, ZHAO F J, GU G B, et al. Detection and analysis of resistance genes to aminoglycoside antibiotics among swine Escherichia coli strains in Liaoning area[J]. Journal of Henan Agricultural Sciences, 2017, 46(6): 134-137. (in Chinese)
[20]
KERRN M B, KLEMMENSEN T, FRIMODT-MØLLER N, et al. Susceptibility of Danish Escherichia coli strains isolated from urinary tract infections and bacteraemia, and distribution of sul genes conferring sulphonamide resistance[J]. J Antimicrob Chemother, 2002, 50(4): 513-516.
[21]
KEYES K, HUDSON C, MAURER J J, et al. Detection of florfenicol resistance genes in Escherichia coli isolated from sick chickens[J]. Antimicrob Agents Chemother, 2000, 44(2): 421-424.
[22]
Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; Twenty-nine informational supplement[S]. PA: CLSI, 2019.
[23]
KIRATISIN P, APISARNTHANARAK A, LAESRIPA C, et al. Molecular characterization and epidemiology of extended-spectrum-β-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates causing health care-associated infection in thailand, where the CTX-M family is endemic[J]. Antimicrob Agents Chemother, 2008, 52(8): 2818-2824.
[24]
VU-KHAC H, HOLODA E, PILIPCINEC E, et al. Serotypes, virulence genes, intimin types and PFGE profiles of Escherichia coli isolated from piglets with diarrhoea in Slovakia[J]. Vet J, 2007, 174(1): 176-187.
[25]
JOHNSON J R, KUSKOWSKI M A, O'BRYAN T T, et al. Epidemiological correlates of virulence genotype and phylogenetic background among Escherichia coli blood isolates from adults with diverse-source bacteremia[J]. J Infect Dis, 2002, 185(10): 1439-1447.
[26]
李金朋, 温文彦, 靳曼玉, 等. 河南地区猪源大肠杆菌分子分群、耐药性及生物被膜表型分析[J]. 中国预防兽医学报, 2018, 40(3): 190-194.
LI J P, WEN W Y, JIN M Y, et al. Phylogenetic group, drug resistance and biofilm formation of Escherichia coli isolated from pigs in Henan regions[J]. Chinese Journal of Preventive Veterinary Medicine, 2018, 40(3): 190-194. (in Chinese)
[27]
彭珂楠, 周雪珂, 殷鑫欢, 等. 四川地区猪源致病性大肠埃希菌分子分群、生物被膜形成能力及耐药性研究[J]. 浙江农业学报, 2019, 31(10): 1599-1607.
PENG K N, ZHOU X K, YIN X H, et al. Molecular typing, biofilm formation ability and drug resistance of pathogenic Escherichia coli isolated from pigs in Sichuan province[J]. Acta Agriculturae Zhejiangensis, 2019, 31(10): 1599-1607. (in Chinese)
[28]
孙慧琴, 轩慧勇, 买占海, 等. 猪源大肠杆菌耐药性及相关耐药基因检测[J]. 新疆农业科学, 2021, 58(1): 190-196.
SUN H Q, XUAN H Y, MAI Z H, et al. Investigation on drug resistance and detection of related resistance genes of Escherichia coli from pigs[J]. Xinjiang Agricultural Sciences, 2021, 58(1): 190-196. (in Chinese)
[29]
刘哲, 孙洋, 纪雪, 等. 仔猪腹泻大肠杆菌流行株鉴定及毒力与耐药性分析[J]. 中国畜牧兽医, 2017, 44(4): 1226-1232.
LIU Z, SUN Y, JI X, et al. Identification, virulence and drug resistance analysis of Escherichia coli from diarrhea piglets[J]. China Animal Husbandry & Veterinary Medicine, 2017, 44(4): 1226-1232. (in Chinese)
[30]
KENNEDY C A, FANNING S, KARCZMARCZYK M, et al. Characterizing the multidrug resistance of non-O157 Shiga toxin-producing Escherichia coli isolates from cattle farms and abattoirs[J]. Microb Drug Resist, 2017, 23(6): 781-790.
[31]
王宏栋, 徐国锋, 矫薇薇, 等. 猪源氟喹诺酮耐药大肠杆菌通过接合水平传递耐药性的研究[J]. 畜牧兽医学报, 2016, 47(4): 805-811.
WANG H D, XU G F, JIAO W W, et al. Investigation of antimicrobial agents resistance transferred horizontally in fluoroquinolone resistant Escherichia coli from swine[J]. Acta Veterinaria et Zootechnica Sinica, 2016, 47(4): 805-811. (in Chinese)

(编辑   白永平)