畜牧兽医学报  2022, Vol. 53 Issue (9): 3272-3278. DOI: 10.11843/j.issn.0366-6964.2022.09.041    PDF    
非洲猪瘟病毒MGF360-14L靶向MAVS抑制Ⅰ型干扰素的产生
王洋1, 崔帅1, 鑫婷1, 王西西2, 于海男1, 陈世钰1, 蒋亚君1, 高新桃3, 庞忠宝1, 姜一曈1, 郭晓宇1, 贾红1, 朱鸿飞1     
1. 中国农业科学院北京畜牧兽医研究所, 北京 100193;
2. 中国科学院微生物研究所, 北京 100080;
3. 中国农业科学院生物技术研究所,北京 100081
摘要:本研究旨在探究非洲猪瘟病毒(African swine fever virus,ASFV)多基因家族成员MGF360-14L对Ⅰ型干扰素(IFN)的抑制作用及其作用机制。通过双荧光素酶试验检测MGF360-14L对线粒体抗病毒信号蛋白(MAVS)诱导的干扰素β(IFN-β)启动子活性的影响,免疫共沉淀和激光共聚焦检测MGF360-14L与MAVS的互作关系,及Western blot分析MGF360-14L对MAVS和TRIM21诱导的TBK1和IRF3磷酸化的影响。结果表明,ASFV非结构蛋白MGF360-14L抑制MAVS诱导的IFN-β启动子活性。MGF360-14L能够与MAVS互作,并且对MAVS和TRIM21诱导的TBK1和IRF3磷酸化具有抑制作用。此外,当过表达MGF360-14L时,MGF360-14L蛋白与TRIM21竞争结合MAVS,抑制TRIM21对MAVS的泛素化作用,从而降低IFN-β的水平。综上所述,MGF360-14L可能通过竞争性结合MAVS,抑制TRIM21对MAVS的泛素化,从而下调Ⅰ型IFN的产生。研究结果为探究ASFV的免疫逃逸机制提供了新线索。
关键词非洲猪瘟病毒    Ⅰ型干扰素    线粒体抗病毒信号蛋白    泛素化    免疫逃逸    
ASFV MGF360-14L Interacts with MAVS and Inhibit the Expression of Type Ⅰ Interferon
WANG Yang1, CUI Shuai1, XIN Ting1, WANG Xixi2, YU Hainan1, CHEN Shiyu1, JIANG Yajun1, GAO Xintao3, PANG Zhongbao1, JIANG Yitong1, GUO Xiaoyu1, JIA Hong1, ZHU Hongfei1     
1. Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
2. Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, China;
3. Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Abstract: This study was conducted to investigate the inhibitory effect of the African swine fever virus (ASFV) MGF360-14L on type Ⅰ interferon (IFN) and its mechanism. The effects of MGF360-14L on MAVS-induced IFN-β promoter activity were detected by dual luciferase assay, and the interaction between MGF360-14L and MAVS was examined by co-immunoprecipitation and indirect immunofluorescence assays. The results showed that the viral non-structural protein MGF360-14L inhibited interferon β (IFN-β) promoter activity induced by MAVS signaling. MGF360-14L interacted with MAVS and inhibited the phosphorylation of TBK1 and IRF3 induced by MAVS and TRIM21. In addition, MGFF360-14L competed with TRIM21 to bind MAVS and inhibit the TRIM21-mediated ubiquitination of MAVS, thereby reducing IFN-β levels. In conclusion, MGF360-14L may inhibit TRIM21-mediated ubiquitination of MAVS by competitively binding MAVS, thus down-regulating the production of type Ⅰ interferon. These findings provide new insights into the mechanisms underlying ASFV immune evasion.
Key words: African swine fever virus    type Ⅰ interferon    MAVS    ubiquitination    immune evasion    

非洲猪瘟(African swine fever,ASF)是由非洲猪瘟病毒(African swine fever virus,ASFV)引起的一种猪的急性、烈性、高度接触性传染病[1]。ASFV是一种核质巨DNA病毒,基因组全长170~193 kb,编码150~167个开放阅读框[2]。自2018年传入我国以来,非洲猪瘟疫情在全国范围内迅速扩散,给中国以及全球造成巨大的经济损失。目前,我国出现了基因Ⅰ型ASFV,临床表现为亚急性型或慢性型,严重增加了ASF防控难度[3]。ASFV编码多种蛋白质,通过干扰宿主的天然免疫系统,抑制和逃避宿主的免疫应答反应,为自身的增殖、扩散创造有利条件。例如,MGF505-7R抑制p65的磷酸化和核转移,与STING、TBK1和IKKα互作,抑制cGAS-STING通路介导的Ⅰ型干扰素的产生[4-7];MGF505-11R能够与STING互作,通过泛素化途径降解STING,从而抑制Ⅰ型干扰素的产生[8];E120R能够与IRF3互作,抑制TBK1对IRF3的招募和IRF3的磷酸化,从而抑制Ⅰ型干扰素的产生[9]

线粒体抗病毒信号蛋白(mitochondrial antiviral signaling, MAVS)是抗RNA病毒信号通路中的关键接头蛋白。在病毒入侵机体时,RIG-Ⅰ样受体(RIG-Ⅰ-like receptor, RLR)识别病原相关分子模式(pathogen-associated molecular patterns, PAMPs),RIG-Ⅰ与MAVS相互作用激活MAVS,进而活化下游NF-κB和IRF3的信号通路,诱导干扰素的表达[10]。然而,在病毒进化过程中也具备了拮抗MAVS的策略,以此逃避先天性免疫系统。例如,日本脑炎病毒(Japanese encephalitis virus,JEV)NS1蛋白通过抑制MAVS的表达,抑制Ⅰ型干扰素的产生[11];口蹄疫病毒(foot-and-mouth disease virus, FMDV)VP1蛋白与MAVS结合,竞争性抑制MAVS与TRAF3的结合,从而抑制Ⅰ型干扰素的产生[12];登革热病毒(dengue virus, DENV)NS4A蛋白与MAVS互作,抑制MAVS与RIG-Ⅰ的结合,从而抑制IRF3的活化[13]

在研究ASFV多基因家族(multigene families,MGF)成员MGF360-14L对Ⅰ型干扰素通路影响的过程中,作者发现MGF360-14L能够与MAVS相互作用,并且能够抑制MAVS介导的Ⅰ型干扰素的产生,从而逃避宿主先天性免疫反应。

1 材料与方法 1.1 材料

1.1.1 细胞   人胚肾细胞HEK293T和猪肾细胞PK-15采用含有10%胎牛血清、1%双抗DMEM培养基在5% CO2和37 ℃的培养箱中培养。

1.1.2 质粒   合成ASFV-18毒株MGF360-14L全长基因(GenBank No.MH 766894),然后亚克隆入p3×Flag-CMV-7.1质粒和pCMV-N-eGFP质粒;TRIM21和MAVS全长基因从PK-15细胞的cDNA中扩增,然后分别亚克隆入pcDNA3.1-Myc和pcDNA3.1-HA载体;cGAS、STING、TBK1、IRF3、IFN-β-luc和pRL-TK等表达质粒由本实验室保存。

1.1.3 主要试剂   兔抗TBK1/NAK、P-TBK1、IRF3、P-IRF3、GAPDH、eGFP-Tag、HA-Tag抗体和HRP标记的羊抗兔IgG抗体以及鼠抗Myc和Flag标签抗体购自Cell Signaling Technology公司;转染试剂(JetPRIME Kit)购自Polyplus Transfection公司。双荧光素酶检测试剂盒购自北京全式金生物技术股份有限公司;HRP标记羊抗鼠IgG抗体、蛋白酶抑制剂和磷酸酶抑制剂购自康为世纪生物科技股份有限公司;免疫共沉淀试剂盒(Pierce Crosslink Magnetic IP/Co-IP Kit)购自Thermo公司;羊抗鼠IgG H&L(Alexa Fluor® 488)和羊抗兔IgG H&L(Alexa Fluor® 594)荧光二抗购自Abcam公司;RNA提取试剂盒(TaKaRa MiniBEST Universal RNA Extraction Kit)和反转录试剂盒(PrimeScriptTM RT Master Mix)购自宝生物(TaKaRa)公司。

1.2 方法

1.2.1 实时荧光定量PCR(RT-qPCR)   收集细胞提取总RNA,然后将RNA反转录为cDNA,具体操作步骤参见RNA提取试剂盒(TaKaRa)和反转录试剂盒(TaKaRa)。使用SYBR荧光染料和ABI7900HT荧光定量PCR仪进行样品的检测。PCR体系:95 ℃ 1 min;95 ℃ 15 s,60 ℃ 15 s和72 ℃ 45 s,40个循环,每个样本进行3次重复检测。RT-qPCR的引物序列: pig-GAPDH-F:5′-CGTCCCTGAGACACGATGGT-3′,pig-GAPDH-R:5′-GGAACATGTAGACCATGTAG-3′;pig-IFN-β-F:5′-GTGGAACTTGATGGGCAGAT-3′,pig-IFN-β-R:5′-TTCCTCCTCCATGATTTCCTC-3′。

1.2.2 双荧光素酶检测   首先将HEK293T细胞传代培养,然后铺48孔细胞培养板,待细胞密度达到70%左右时转染质粒。将IFN-β-luc和pRL-TK与cGAS、STNG、TBK1、MGF360-14L、TRIM21、MAVS或空载共转染。转染24 h后收集细胞,进行双荧光素酶检测,具体操作步骤参见双荧光素酶说明书(北京全式金生物技术股份有限公司)。

1.2.3 免疫共沉淀试验(Co-IP)   HEK293T细胞传代培养于6孔细胞培养板中,待细胞密度达到70%左右,依据具体试验转染p3×Flag-MGF360-14L、p-CMV-eGFP-MGF360-14L、pcDNA3.1-Myc-TRIM21、pcDNA3.1-HA-MAVS、p3×Flag-MAVS、pCDEF-HA-Ub或空载质粒转。转染后24 h,细胞用预冷的PBS洗3次,然后用含有蛋白酶和磷酸酶抑制剂的IP裂解液裂解细胞,在4 ℃条件下,12 000×g离心10 min,取上清,4 ℃保存备用。将磁珠与标签抗体Flag或HA在旋转器上室温孵育1 h,然后清洗结合了抗体的磁珠,再将制备好的细胞上清与磁珠4 ℃过夜孵育,清洗磁珠后用洗脱液洗脱,洗脱下来的样品加入loading buffer 100 ℃煮10 min,进行SDS-PAGE分析。

1.2.4 间接免疫荧光试验(IFA)   HEK293T细胞铺于激光共聚焦培养皿上,待细胞密度达到70%左右,转染p3×Flag-MGF360-14L和pcDNA3.1-HA-MAVS质粒。转染24 h后,用4%的多聚甲醛固定细胞20 min,然后0.1% Triton X-100透膜15 min,5%的BSA封闭1 h,一抗分别采用鼠抗Flag和兔抗HA标签抗体4 ℃过夜孵育,二抗分别采用羊抗鼠IgG H&L(Alexa Fluor® 488)和羊抗兔IgG H&L(Alexa Fluor® 594)抗体37 ℃孵育1 h,最后用DAPI着染细胞核,置荧光显微镜下观察。

1.2.5 Western blot分析   转染了相应质粒的HEK293T细胞被含有蛋白酶和磷酸酶抑制剂的细胞裂解液裂解后,在4 ℃ 12 000×g离心10 min,收集裂解液上清。采用BCA蛋白定量试剂盒(Thermo)对收集的裂解液进行蛋白定量。裂解液加入SDS-PAGE loading buffer后100 ℃煮沸10 min,上样进行SDS-PAGE,并进行转膜。用5%脱脂乳封闭后,分别用对应蛋白或标签的抗体孵育,然后进行二抗孵育,最后进行ECL显色。

1.2.6 数据分析   本研究中的试验均进行3次独立的重复,使用GraphPad Prism 8软件对试验数据进行统计分析分析方法采用Student’s t-test(*.P < 0.05;**.P < 0.01;***.P < 0.001)。

2 结果 2.1 ASFV MGF360-14L抑制MAVS介导的Ⅰ型干扰素通路

已有研究表明,ASFV MGF的一些成员能够抑制Ⅰ型干扰素的产生。为了确定MGF360-14L对Ⅰ型干扰素的影响,将MGF360-14L-Flag质粒转染HEK293T细胞,并用5 μg·mL-1的poly(I:C)诱导干扰素的产生。RT-qPCR检测结果显示,MGF360-14L能够明显抑制poly(I:C)诱导的IFN-β mRNA的产生(图 1A),荧光素酶试验结果显示MGF360-14L能够抑制MAVS诱导的IFN-β启动子活性(图 1B)。

A.HEK293T细胞转染MGF360-14L-Flag蛋白表达质粒和poly(I:C)后24 h收集细胞,用RT-qPCR检测IFN-β mRNA;B. 双荧光素酶检测MAVS诱导的IFN-β启动子活性,并进行相对应的Western blot检测 A. HEK293T cells were co-transfected with the MGF360-14L-expressing plasmid and poly(I:C) for 24 h and then harvested for RT-qPCR assay to determine IFN-β mRNA levels; B. Double luciferase was used to detect IFN-β promoter activity induced by MAVS, expression of MAVS-HA and MGF360-14L-Flag was analyzed by Western blot 图 1 ASFV MGF360-14L蛋白基因对MAVS信号通路的抑制 Fig. 1 MGF360-14L inhibited IFN-β mRNA production and IFN-β promoter activity
2.2 MGF360-14L与MAVS互作

由于MGF360-14L能够抑制MAVS介导的IFN-β的产生,为确定其具体作机制,作者将MGF360-14L-Flag和MAVS-HA质粒共转染HEK293T细胞,进行Co-IP试验,结果表明,MGF360-14L能够与MAVS结合(图 2A),反过来MAVS同样能够与MGF360-14L结合(图 2B)。并且共定位试验表明,MGF360-14和MAVS存在胞质内共定位(图 2C)。

A、B. MGF360-14L-Flag和MAVS-HA共转染HEK293T细胞中,转染后24 h收集细胞进行Co-IP试验;C.将MGF360-14L-Flag和MAVS-HA共转染铺有HEK293T细胞进行IFA试验,标尺为25 μm A, B. HEK293T cells were co-transfected with MGF360-14L-Flag and MAVS-HA plasmids, the cells were collected 24 h after transfection for Co-IP assay; C. HEK293T cells were transfected with MGF360-14L-Flag and MAVS-HA plasmids for laser confocal test. The scale is 25 μm 图 2 ASFV MGF360-14L蛋白与MAVS互作 Fig. 2 MGF360-14L interacts with MAVS
2.3 MGF360-14L抑制TRIM21和MAVS诱导的IRF3磷酸化及IFN的产生

三重基序蛋白21(tripartite motif protein 21, TRIM21)能够促进线粒体抗病毒信号蛋白(MAVS)的K27多聚泛素化从而增强TBK1的招募和活化IRF3,从而启动Ⅰ型干扰素的表达[14]。为了确定MGF360-14L是否能够抑制TRIM21和MAVS引起的Ⅰ型干扰素的产生,作者将不同浓度的MGF360-14L、TRIM21、MAVS以及启动子报告基因IFN-β-luc和内参报告基因pRL-TK共转染HEK293T细胞,进行双荧光素酶检测。结果显示,MGF360-14L能够抑制TRIM21和MAVS共同诱导的IFN-β启动子活性,且呈剂量依赖性(图 3A)。已有研究表明,TRIM21通过与MAVS作用,促进IRF3的磷酸化,促进Ⅰ型干扰素的产生[14]。作者将MGF360-14L-Flag、TRIM21-Myc和MAVS-HA共转染HEK293T细胞后,进行Western blot分析,结果显示,MGF360-14L对MAVS和TRIM21诱导的TBK1和IRF3磷酸化具有抑制作用(图 3B)。

A. 双荧光素酶检测不同浓度的ASFV MGF360-14L蛋白对MAVS/TRIM21诱导的IFN-β启动子活性的抑制作用;B. Western blot检测MGF360-14L蛋白对MAVS诱导的TBK和IRF3的抑制作用 A. Dual luciferase assay was used to detect the inhibitory effect of different concentrations of ASFV MGF360-14L on MAVS/ TRIM21-induced IFN-β promoter activity; B. TRIM21-Myc, TBK1, P-TBK1, IRF3, P-IRF3, MAVS-HA and MGF360-14L-Flag were analyzed by Western blot 图 3 ASFV MGF360-14L抑制MAVS诱导的TBK1和IRF3的磷酸化 Fig. 3 MGF360-14L inhibits the phosphorylation of TBK1 and IRF3
2.4 MGF360-14L竞争性结合MAVS

前期研究结果表明,MGF360-14L和TRIM21互作[15],并且TRIM21与MAVS也具有相互作用[14]。为了探究MGF360-14L蛋白、TRIM21和MAVS三者之间的相互作用,将TRIM21-Myc和MAVS-Flag质粒共转染HEK293T细胞,或者不同浓度的MGF360-14L-eGFP与TRIM21-Myc和MAVS-Flag表达质粒共转染HEK293T细胞,Co-IP竞争试验结果显示,MAVS与TRIM21结合,在转染MGF360-14L质粒后,MAVS能与MGF360-14L互作,且MGF360-14L存在时MAVS与TRIM21的互作被减弱(图 4A)。将TRIM21-Myc、MAVS-Flag和Ub-HA共转染HEK293T细胞或者MGF360-14L-eGFP、TRIM21-Myc、MAVS-Flag和Ub-HA共转染HEK293T细胞,Western blot检测结果表明,TRIM21能够促进MAVS的泛素化,MGF360-14L对TRIM21促进MAVS的泛素化有抑制作用(图 4B)。综上所述,作者推测MGF360-14L通过与TRIM21竞争结合MAVS,抑制了TRIM21诱导的MAVS的泛素化,从而抑制Ⅰ型干扰素的产生。

A. 将ASFV MGF360-14L-eGFP、MAVS-Flag和TRIM21-Myc蛋白表达质粒共转染HEK293T细胞,进行Co-IP和Western blot检测;B. 将MGF360-14L-eGFP、MAVS-Flag、RIM21-Myc和Ub-HA蛋白表达质粒共转染HEK293T细胞,进行Co-IP试验以及Western blot检测 A. HEK293T cells were transfected with MGF360-14L-eGFP, TRIM21-Myc, MAVS-Flag. Co-IP and Western blot were performed 24 h after transfection; B. HEK293T cells transfected with MGF360-14L-eGFP, TRIM21-Myc, MAVS-Flag and Ub-HA, Co-IP and Western blot were performed 24 h after transfection 图 4 ASFV MGF360-14L抑制MAVS的泛素化 Fig. 4 MGF360-14L inhibits the ubiquitination of MAVS
3 讨论

MGF360-14L为ASFV的一种非结构蛋白,位于ASFV基因组左侧可变区。已有文献报道,当缺失强毒株Georgia/2007的6个MGF基因(包括MGF360-14L)[16],以及缺失强毒株ASFV HLJ/18的7个基因(包括MGF360-14L)[17]后,缺失株ASFV-G-MGF和HLJ/18-7GD免疫猪均能完全抵抗强毒株的攻击。但仅缺失强毒株Georgia/2007的MGF360-13L和MGF360-14L并未影响ASFV在细胞上的复制水平和对猪的致病性[18],提示MGF360-14L可能不是ASFV的毒力基因。但我们的前期研究结果表明,MGF360-14L能够与IRF3互作,并通过招募TRIM21介导IRF3的K63位多聚泛素化,从而抑制IFN-β的产生[15],由此推测MGF360-14L可能参与ASFV逃避宿主先天性免疫系统,促进ASFV的感染。

虽然MAVS作为RNA病毒抑制Ⅰ型干扰素的靶基因,也有相关文献报道某些DNA病毒能与MAVS互作,从而抑制Ⅰ型干扰素的产生。例如,卡波氏肉瘤相关疱疹病毒(Kaposi’s sarcoma-associated herpesvirus,KSHV)的外膜蛋白ORF33与STING和MAVS互作,招募PPM1G促进STING和MAVS的去磷酸化,从而促进KSHV逃避先天性免疫反应[19];Ⅰ型单纯疱疹病毒(herpes simplex virus 1, HSV-1)的US11蛋白能够与RIG-Ⅰ相互作用,抑制RIG-Ⅰ和MAVS的互作,从而下调Ⅰ型干扰素的表达[20];人疱疹病毒6B(human herpesvirus 6B, HHV-6B)的U26蛋白能够降解MAVS,抑制RIG-Ⅰ/MAVS信号通路介导的先天性免疫反应[21]。也有研究表明,在病毒感染过程中,E3泛素连接酶TRIM21能够靶向MAVS的K27多聚泛素化,促进TBK1的招募,从而上调Ⅰ型干扰素的表达,提高机体先天性免疫反应抵抗病毒入侵[14]

为了探讨MGF360-14L是否通过MAVS途径抑制Ⅰ型干扰素,从而逃避宿主先天性免疫系统,本研究采用双荧光素酶试验检测MGF360-14L对MAVS诱导的IFN-β启动子活性的影响,Co-IP和共定位检测MGF360-14L与MAVS的互作关系,及Western blot分析MGF360-14L对MAVS和TRIM21诱导的TBK1和IRF3磷酸化的影响。研究结果显示,MGF360-14L能抑制MAVS所诱导的IFN-β mRNA水平和启动子活性(图 1AB)。Co-IP试验表明,MGF360-14L与MAVS具有相互作用,但并未进行内源性的互作研究,而共定位试验显示,二者存在胞质内的共定位(图 2A~C)。进一步的研究表明,MGF360-14L能够抑制TRIM21和MAVS共同诱导的IFN-β启动子活性,并且对MAVS和TRIM21诱导的TBK1和IRF3磷酸化也具有抑制作用(图 3AB),作者初步推断MGF360-14L与MAVS互作从而抑制IFN-β的产生。此外,MGF360-14L可能通过与TRIM21竞争结合MAVS,抑制TRIM21对MAVS的泛素化作用(图 4AB)。本研究进一步探讨了MGF360-14L的逃避宿主先天性免疫的作用机制,为ASF疫苗的研制提供线索。

4 结论

非洲猪瘟病毒MGF360-14L通过与MAVS互作,抑制了TRIM21诱导的MAVS的泛素化,从而抑制Ⅰ型干扰素的产生。

参考文献
[1]
DIXON L K, SUN H, ROBERTS H. African swine fever[J]. Antiviral Res, 2019, 165: 34-41. DOI:10.1016/j.antiviral.2019.02.018
[2]
ALONSO C, BORCA M, DIXON L, et al. ICTV virus taxonomy profile: Asfarviridae[J]. J Gen Virol, 2018, 99(5): 613-614. DOI:10.1099/jgv.0.001049
[3]
SUN E C, HUANG L Y, ZHANG X F, et al. Genotype Ⅰ African swine fever viruses emerged in domestic pigs in China and caused chronic infection[J]. Emerg Microbes Infect, 2021, 10(1): 2183-2193. DOI:10.1080/22221751.2021.1999779
[4]
LI D, YANG W P, LI L L, et al. African swine fever virus MGF-505-7R negatively regulates cGAS-STING-mediated signaling pathway[J]. J Immunol, 2021, 206(8): 1844-1857. DOI:10.4049/jimmunol.2001110
[5]
LIU X L, AO D, JIANG S, et al. African swine fever virus A528R inhibits TLR8 mediated NF-κB activity by targeting p65 activation and nuclear translocation[J]. Viruses, 2021, 13(10): 2046. DOI:10.3390/v13102046
[6]
LI J N, SONG J, KANG L, et al. pMGF505-7R determines pathogenicity of African swine fever virus infection by inhibiting IL-1β and type Ⅰ IFN production[J]. PLoS Pathog, 2021, 17(7): e1009733. DOI:10.1371/journal.ppat.1009733
[7]
LI D, ZHANG J, YANG W P, et al. African swine fever virus protein MGF-505-7R promotes virulence and pathogenesis by inhibiting JAK1-and JAK2-mediated signaling[J]. J Biol Chem, 2021, 297(5): 101190. DOI:10.1016/j.jbc.2021.101190
[8]
YANG K D, HUANG Q T, WANG R Y, et al. African swine fever virus MGF505-11R inhibits type Ⅰ interferon production by negatively regulating the cGAS-STING-mediated signaling pathway[J]. Vet Microbiol, 2021, 263: 109265. DOI:10.1016/j.vetmic.2021.109265
[9]
LIU H S, ZHU Z X, FENG T, et al. African swine fever virus E120R protein inhibits interferon beta production by interacting with IRF3 to block its activation[J]. J Virol, 2021, 95(18): e00824-21.
[10]
SETH R B, SUN L J, EA C K, et al. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3[J]. Cell, 2005, 122(5): 669-682. DOI:10.1016/j.cell.2005.08.012
[11]
ZHOU D Y, LI Q Y, JIA F, et al. The Japanese encephalitis virus NS1' protein inhibits type Ⅰ IFN production by targeting MAVS[J]. J Immunol, 2020, 204(5): 1287-1298. DOI:10.4049/jimmunol.1900946
[12]
EKANAYAKA P, LEE S Y, HERATH T U B, et al. Foot-and-mouth disease virus VP1 target the MAVS to inhibit type-Ⅰ interferon signaling and VP1 E83K mutation results in virus attenuation[J]. PLoS Pathog, 2020, 16(11): e1009057. DOI:10.1371/journal.ppat.1009057
[13]
HE Z J, ZHU X, WEN W T, et al. Dengue virus subverts host innate immunity by targeting adaptor protein MAVS[J]. J Virol, 2016, 90(16): 7219-7230. DOI:10.1128/JVI.00221-16
[14]
XUE B B, LI H Y, GUO M M, et al. TRIM21 promotes innate immune response to RNA viral infection through Lys27-linked polyubiquitination of MAVS[J]. J Virol, 2018, 92(14): e00321-18.
[15]
WANG Y, CUI S, XIN T, et al. African swine fever virus MGF360-14L negatively regulates type Ⅰ interferon signaling by targeting IRF3[J]. Front Cell Infect Microbiol, 2022, 11: 818969. DOI:10.3389/fcimb.2021.818969
[16]
O'DONNELL V, HOLINKA L G, GLADUE D P, et al. African swine fever virus Georgia isolate harboring deletions of MGF360 and MGF505 genes is attenuated in swine and confers protection against challenge with virulent parental virus[J]. J Virol, 2015, 89(11): 6048-6056. DOI:10.1128/JVI.00554-15
[17]
CHEN W Y, ZHAO D M, HE X J, et al. A seven-gene-deleted African swine fever virus is safe and effective as a live attenuated vaccine in pigs[J]. Sci China Life Sci, 2020, 63(5): 623-634. DOI:10.1007/s11427-020-1657-9
[18]
BORCA M V, O'DONNELL V, HOLINKA L G, et al. Development of a fluorescent ASFV strain that retains the ability to cause disease in swine[J]. Sci Rep, 2017, 7(1): 46747. DOI:10.1038/srep46747
[19]
YU K, TIAN H B, DENG H Y. PPM1G restricts innate immune signaling mediated by STING and MAVS and is hijacked by KSHV for immune evasion[J]. Sci Adv, 2020, 6(47): eabd0276. DOI:10.1126/sciadv.abd0276
[20]
XING J J, WANG S, LIN R T, et al. Herpes simplex virus 1 tegument protein US11 downmodulates the RLR signaling pathway via direct interaction with RIG-Ⅰ and MDA-5[J]. J Virol, 2012, 86(7): 3528-3540. DOI:10.1128/JVI.06713-11
[21]
JIANG X F, TANG T, GUO J F, et al. Human herpesvirus 6B U26 inhibits the activation of the RLR/MAVS signaling pathway[J]. mBio, 2021, 12(1): e03505-20.

(编辑   孟培)