畜牧兽医学报  2022, Vol. 53 Issue (9): 2845-2857. DOI: 10.11843/j.issn.0366-6964.2022.09.003    PDF    
微生物-肠-肌轴调节骨骼肌代谢和功能的研究进展
周敏1, 汪凯歌2, 张濂1, 马曦1     
1. 中国农业大学动物科技学院,北京 100193;
2. 河南科技学院动物科技学院,新乡 453003
摘要:骨骼肌的质量不仅影响着人或动物机体的运动能力和健康状态,还影响着畜禽的肌肉产量和品质。随着对微生物功能的深度挖掘,肠-脑轴、肠-肝轴、肠-脂轴等由微生物及其代谢产物介导的信号途径均被证实参与了机体的能量代谢。近年来,微生物-肠道-骨骼肌轴也被证实,因此通过调控肠道菌群或其代谢产物进而调节机体骨骼肌代谢为改善肌肉产量和品质提供了新的思路。本文主要综述了肠道微生物及其关键代谢产物在骨骼肌功能和糖脂代谢等方面的潜在作用和机制,并简要总结了菌群介导的调控骨骼肌功能的潜在手段,为畜禽养殖中改善肉质提供了一定的参考和新思路。
关键词微生物    骨骼肌    糖脂代谢    益生菌    运动    
Advances in Microbiota-Gut-Muscle Axis Regulating Skeletal Muscle Metabolism and Function
ZHOU Min1, WANG Kaige2, ZHANG Lian1, MA Xi1     
1. College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
2. College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
Abstract: The quality of skeletal muscle not only affects the exercise ability and health state of human or animal, but also affects the production and quality of muscle in livestock and poultry. With the in-depth exploration of microbial functions, gut-brain axis, gut-liver axis, gut-lipid axis and other signaling pathways mediated by microorganisms and their metabolites have been confirmed to participate in the body's energy metabolism. In recent years, microbiota-gut-muscle axis has also been confirmed. Therefore, regulating the metabolism of skeletal muscle by regulating intestinal flora or its metabolites provides a novel insight to improve muscle production and quality. This review mainly summarizes the potential role and preliminary mechanism of intestinal microorganisms and their key metabolites in skeletal muscle function and glucose and lipid metabolism, and briefly summarizes the potential means of regulating flora to control skeletal muscle function, which provides a certain theoretical reference and new ideas for improving meat quality in animal husbandry production.
Key words: microorganism    skeletal muscle    glucose and lipid metabolism    probiotics    exercise    

畜牧业饲料端农药残留及养殖端抗生素滥用引起的耐药菌问题,严重威胁着肉蛋奶等副产品的安全[1-2]。同时,消费者愈加意识到优质、绿色的农畜产品对人类生存和发展的重要性及必要性。多年来,畜牧养殖追求高瘦肉率及肉产量,而肉的色泽、嫩度、风味等品质未得到重视,使之有所下降,因此如何生产更优质绿色的健康肉来获取更多消费者的信任,扩大中高端肉品市场以获取更大的经济收益是目前畜牧养殖面临的重要挑战之一。营养干预(日粮营养水平;饲料原料;维生素、氨基酸类似物、不饱和脂肪酸、中草药类添加剂等)是畜禽养殖中较常见的改善肉质的方式[3],但应用效果有限。近年来, 随着对肠道微生物功能的不断挖掘,无菌小鼠、抗生素清菌、粪菌移植等模型与手段的广泛应用,肠道微生物及其代谢产物在维持骨骼肌功能和代谢等方面的必要性也被证实。因此,以肠道菌群及部分相关代谢产物为靶点,调控机体骨骼肌功能和代谢,或是未来有效提高肌肉产量和改善肉品质的新手段。

1 骨骼肌对动物机体的重要意义

骨骼肌约占动物机体体重的40%,是机体占比重最大的器官之一[4]。骨骼肌的质量不仅影响着人或动物机体的运动能力和健康状态,还直接影响着畜禽瘦肉的产量和品质。脊椎动物骨骼肌的发育是一个复杂且有序的过程[5-7]。在胚胎阶段,主要集中在肌细胞发生、肌纤维成熟组装和数量的累积。动物出生以后,骨骼肌的发育则主要依赖于原有肌纤维形态和类型的改变。对于畜禽动物来说,肌肉的代谢类型在很大程度上由组成肌肉的肌纤维类型决定,而肌纤维类型直接与肌纤维数量、直径、长度、肉色、pH、嫩度、系水力等指标密切相关。肌纤维类型主要根据肌纤维形态、代谢酶活、肌球蛋白重链亚型和收缩功能等因素分为慢速氧化型肌纤维、快速/慢速酵解型肌纤维(表 1)[3, 8-9]。此外,肌内脂肪沉积量和脂肪酸的组成直接影响着肌肉嫩度、多汁性、风味等指标[3]

表 1 不同肌纤维类型的生理生化特性 Table 1 Physiological and biochemical properties of the different myofiber types

哺乳动物胃肠道内栖息着数以亿万计的微生物,其作为一个代谢器官可与机体其他代谢器官协同调控动物体代谢。随着测序技术的不断升级和生物信息学分析的不断完善,作为宿主第二基因组的肠道微生物的演替规律以及调控功能被大量挖掘与证实。肠道微生物不仅可以直接影响肠道健康,还可以通过其代谢产物靶向大脑、肝、肌肉和生殖系统等远端器官。其中,早在2007年有研究发现,无菌小鼠可上调肌肉一磷酸腺苷活化蛋白激酶(AMP-activated protein kinase,AMPK)活性来促进肌肉脂肪酸分解[10]。这一发现为肠道-肌肉轴的深入研究奠定了良好的基础。因此,从肠道微生物及其代谢产物入手,寻找调控骨骼肌糖脂代谢、生物功能等代谢过程的关键物质及潜在机制,对改善肉质有着不容忽视的意义。

2 肠道菌群与骨骼肌代谢和功能 2.1 肠道菌群对骨骼肌代谢的影响

肠道微生物可调节宿主能量稳态、脂代谢和糖代谢[11]。脂质代谢包括脂肪酸、甘油三酯和胆固醇等脂质的生物合成和降解,而脂代谢的失调会导致血脂水平异常、异位脂质沉积和相关代谢疾病。骨骼肌是脂肪储存和利用的重要部位,而肌肉中脂肪的沉积可直接影响骨骼肌的系水力、嫩度和风味等。前人研究表明,肠道菌群可影响鼠肌肉脂肪代谢和骨骼肌质量[10, 12]。脂肪或瘦肉型猪的微生物移植给无菌小鼠后,无菌小鼠重现了供体骨骼肌纤维类型和脂质代谢谱[13]。有趣的是,与正常小鼠相比,无菌鼠肠道禁食诱导脂肪因子(fasting-induced adipose factor,Fiaf)表达更高,Fiaf是一种循环脂蛋白脂肪酶抑制剂,抑制其表达可促进微生物诱导的脂肪细胞中甘油三酯的沉积[14]。Fiaf是一种糖蛋白,可以通过激活骨骼肌中的AMPK信号通路来促进脂肪酸氧化,并通过抑制脂蛋白脂肪酶活性来减弱肌肉对脂质的摄取能力[15](图 1)。过氧化物酶体增殖物激活受体(peroxisome proliferator-activated receptor,PPARs)是转录因子核受体家族的成员,受脂肪酸及其代谢产物的调控。PPARs参与调控机体发育、代谢、细胞进程和炎症相关基因的表达,对维持机体稳态至关重要。PPARs也在肌肉中表达,并在配体激活时产生特异性反应,它还参与脂肪酸氧化,在运动、禁食和胰岛素抵抗期间产生能量[16-19]。PPARs还是控制肌肉活动和体温调节过程的关键参与者[20-21]。其中,PPARα和PPARβ/δ均参与调控脂肪酸摄取和线粒体β氧化的编码基因,如CD36、脂蛋白脂肪酶(lipoprotein lipase,LPL)、脂肪酸结合蛋白3(fatty acid binding protein3,FABP3)、肉碱棕榈酰转移酶(carnitine palmitoyl transferase 1,CPT1)等[21]。PPARβ/δ也参与能量代谢、线粒体生物发生和纤维类型转换[21]。PPARδ在脂肪细胞中表达较高,但它也与肌肉和其他器官的脂质沉积有关[22]。研究表明,一些细菌(如厚壁菌、梭杆菌、放线杆菌、粪肠球菌等)及其代谢产物(如丁酸和丙酸)都可以影响PPARγ的表达和活性[23-26](图 1)。尽管所有3种PPARs在骨骼肌中均有不同程度的表达,但它们之间独立作用或者互补效应仍不完全明确。此外,靶向调控PPARs或其他肌肉脂肪沉积关键基因的核心微生物或其代谢产物尚待探究。无菌小鼠和无特定病原体小鼠脂代谢对比研究发现,肠道菌群诱导肝产生单不饱和脂肪酸和延长多不饱和脂肪酸,肠道微生物群产生的醋酸盐被用作肝脂肪酸合成的前体[27]。紧接着,益生菌干预研究为肠道菌群在调节宿主脂质稳态中的作用提供了进一步的证据。喂食高脂高胆固醇饮食的小鼠中,弯曲乳杆菌(Lactobacillus curvatus)单独使用或与植物乳杆菌(Lactobacillus plantarum)配伍都能降低血浆和肝中的胆固醇,并且这两种菌对调控肝组织的甘油三酯代谢有协同效应[28]。类似地,高脂诱导的肥胖大鼠中,双歧杆菌降低了循环甘油三酯和低密度脂蛋白水平,并增加了高密度脂蛋白水平[29]。尽管上述研究并未对骨骼肌脂代谢进行直接检测,但为接下来探究调控骨骼肌脂质代谢的关键菌群及机制提供了参考,研究者可从参与调控脂肪代谢的营养素或益生菌入手,建立营养干预手段改善肌肉脂肪代谢的模型,进一步筛选发挥介导作用的主要微生物群或代谢小分子。

短链脂肪酸可通过与其受体FFAR1和FFAR4结合,进而影响胃肠激素的分泌,胃肠激素信号可通过迷走神经传到下丘脑,胰高血糖素样肽-1还可通过影响胰岛素和胰高血糖素的分泌来影响糖代谢;初级胆汁酸在肠道微生物的作用下形成次级胆汁酸,其通过与受体TGR5结合,进而调控机体能量代谢;肠道中Fiaf以及PPARs等基因可通过影响脂肪酸摄取、线粒体β氧化等途径影响机体脂代谢 Short chain fatty acids affect the secretion of gastrointestinal hormones by binding to their receptors FFAR1 and FFAR4. Gastrointestinal hormone signals can be transmitted to the hypothalamus through the vagus nerve. Glucagon like peptide-1 can also affect glucose metabolism by affecting the secretion of insulin and glucagon. Microorganisms can metabolize primary bile acids into secondary bile acids, which regulate energy metabolism by binding to receptor TGR5. Genes such as Fiaf and PPARs in the intestine can affect fatty acid intake and mitochondria β oxidation and other pathways to affect lipid metabolism 图 1 菌群及代谢产物对骨骼肌代谢的影响 Fig. 1 effects of microbiota and its metabolites in muscle metabolism

骨骼肌是一个巨大的代谢器官,是葡萄糖最主要的利用者。葡萄糖通过胰岛素介导的摄取途径进入骨骼肌细胞,代谢产生三磷酸腺苷(adenosine triphosphate,ATP),多余的葡萄糖则储存为肌糖原。骨骼肌代谢直接影响着全身葡萄糖稳态和胰岛素敏感性。骨骼肌中底物的可用性与肌肉耐力密切相关,如糖原和甘油三酯,这两种关键的能量底物在长时间剧烈运动中对于调节肌肉能力发挥了重要作用[30]。此外,能量底物消耗的减少,尤其是葡萄糖,可能是由于肠道微生物群的失衡导致肌肉糖原储存量减少,进而降低骨骼肌耐力[30]。在回肠中,短链脂肪酸(short chain fatty acids,SCFAs)、葡萄糖转运蛋白G蛋白偶联受体41(glucose transporter G protein coupled receptor 41,GPR41)和钠-葡萄糖协同转运蛋白1(sodium glucose cotransporter1,SGLT1)基因的表达模式与骨骼肌耐力有一定的相关性[31]。这提示,菌群可能通过其代谢产物影响葡萄糖代谢进而影响骨骼肌功能。GPR41有助于肠内分泌细胞活化,并通过调控胰高血糖素样肽1的释放来调节葡萄糖介导的胰岛素分泌[32-33]。总的来说,肠道微生物、代谢产物及其受体均参与了骨骼肌及机体的葡萄糖代谢过程,尽管早期的研究提供了可靠的结果,但同时也带来了挑战。

2.2 肠道菌群对骨骼肌功能的影响

近年来,肠道微生物及其代谢产物的功能被大量挖掘。目前有大量文献显示,肠-脑轴、肠-肝轴、肠-脂轴、肠-免疫轴等途径均与肠道菌群调控机体能量代谢有关[34-38]。此外,随着无菌或转基因小鼠、抗生素清菌、益生菌灌注及粪菌移植等模型与手段的应用,已有足够的证据表明肠道-微生物-骨骼肌轴的存在。Lahiri等[12]发现,无菌小鼠骨骼肌会出现一定程度的萎缩,并且胰岛素生长因子1水平以及与骨骼肌生长、线粒体功能、肌肉-神经信号传递相关的基因和蛋白表达均降低。此外,无菌小鼠和抗生素清菌鼠均观察到其抓力、游泳或跑步耐力等运动能力明显下降[31, 39-40];而移植来自无病原体小鼠的肠道微生物或益生菌给无菌小鼠后,小鼠骨骼肌质量增加,肌肉萎缩标志物减少,肌肉氧化代谢能力增强,这一结果提示,肠道微生物在骨骼肌正常发育过程中是必不可少的。紧接着,研究人员发现,饲喂外源短链脂肪酸可部分逆转无菌小鼠骨骼肌的损伤,这提示微生物代谢产物在肠-肌轴中也发挥了重要的作用[39]。在肠道慢性炎症小鼠模型中,恢复大肠杆菌水平可有效防止骨骼肌萎缩[41]。另外,关于猪的研究表明,抗生素处理可增加背最长肌肌纤维密度和肌球蛋白重链I(myosin heavy chain I,MyHC I)、肌球蛋白重链IIB(myosin heavy chain IIB,MyHC IIB)型肌纤维相关基因的表达,还增加了背最长肌脂肪酸摄取和从头合成相关基因的表达,降低了甘油三酯水解相关基因的表达,进而增加了背最长肌肌内脂肪的含量[42],结果证实了抗生素使用对其生长性能、肌纤维组成和肌脂代谢的影响,这可能与肠道微生物菌群的改变有关,提示肠道微生物可能是调节宿主骨骼肌特性的潜在靶点。另有研究表明,骨骼肌纤维类型的比例也受肠道菌群的调控[43],无菌小鼠中,肌肉肌纤维类型相关基因的转录水平受到抑制[12],从而影响运动能力。此外,给小鼠补充益生菌也能改善肌肉质量,促进与肌肉耐力相关的慢速氧化型肌纤维的形成,并能减缓运动诱导的肌肉损伤[44]。外源植物乳杆菌TWK10[44]、短链脂肪酸(丁酸和乙酸)[45-46]均可影响氧化型肌纤维的比例,进而影响肌肉功能。此外,干酪乳杆菌、长双歧杆菌可增加小鼠肌肉质量[47],直肠真杆菌、植物乳杆菌和球形梭菌的定植可提高无菌小鼠的能量代谢[40]

骨骼肌与免疫系统也存在着紧密且复杂的调控网络。骨骼肌可通过分泌细胞因子影响免疫细胞活性,而免疫细胞也可通过其产生的细胞因子影响骨骼肌功能[48]。当诱导促炎细胞因子合成的细菌数量增加时,血浆中脂多糖含量升高,并增强核因子κB(nuclear factor kappa-B,NF-κB)的表达[49]NF-κB的升高,可能会影响骨骼肌代谢和线粒体生物合成,进而影响骨骼肌功能[50-52]。结肠中未消化蛋白质的发酵,伴随着氨、生物胺、吲哚化合物和酚等副产物的产生,对肠道、代谢、免疫和神经系统有着潜在的危害。这些副产物可能会加剧炎症反应,增加组织通透性,加剧胃肠道症状[53]。运动过程,活性氧产生增多,会导致脂质和蛋白质过氧化,肌肉细胞膜成分遭到破坏,从而干扰肌肉功能[54]。过度训练和缺乏运动都会增加氧化应激[55-56]。而活性氧的产生被证明可以激活过氧化物酶体增殖物激活受体γ辅激活因子1α(peroxisome proliferator-activated receptor-γ coactivator-1α,PGC-1α)蛋白,增强线粒体生物合成,从而改善机体有氧代谢能力[57]。肠道微生物也可能有助于减弱氧化应激对机体的损伤作用。植物乳杆菌、发酵乳杆菌、乳酸乳球菌和嗜热链球菌等菌种均能提高超氧化物歧化酶(superoxide dismutase,SOD)活性[58]。此外,乳酸杆菌属、乳酸球菌属和双歧杆菌属均被证明能提高谷胱甘肽(glutathione,GSH)水平[59]。因此,微生物对于骨骼肌免疫也是极其重要的。上述结果均提示,肠道微生物及其代谢产物对于骨骼肌质量、纤维类型、运动能力及免疫的维持是必不可少的,可作为潜在的调控骨骼肌功能和代谢的有效手段,上述研究为改善畜禽肉品质提供了新靶点和新思路。

3 微生物代谢产物与骨骼肌代谢和功能

肠道菌群主要以食源性、不被消化酶消化的有机物,还有内源性的分泌物(黏多糖、细胞碎片等)为底物,合成并调节组胺、血清胺、γ-氨基丁酸、一氧化氮、硫化氢等神经递质分子[60]。这些物质会通过群体感应机制影响细菌之间的相互作用和肠道免疫,还可能涉及肠道神经回路/迷走神经在内的神经内分泌回路等。另外,其他的微生物代谢产物,比如SCFAs、酚类产物、胆汁酸、共轭亚油酸等可以通过调控肠道通透性、直接或间接靶向骨骼肌来改善肌肉葡萄糖稳态、能量消耗、蛋白质合成和生理功能(图 1)。值得关注的是,群体感应小分子(来源于葡萄球菌、肠球菌、乳酸杆菌、芽孢杆菌等)于2019年首次被证明可以调控C2C12成肌细胞的活力、成肌分化、线粒体功能和蛋白质代谢等过程[61],这表明群体感应分子参与了肠-肌轴,为肌肉疾病的诊断和治疗靶点开辟了新方向。

3.1 短链脂肪酸

SCFAs是不可消化碳水化合物(特别是膳食纤维和抗性淀粉)在后肠段被微生物发酵的主要代谢产物,可从肠腔被吸收,到机体远端器官发挥作用。短链脂肪酸对血糖、胰岛素反应以及骨骼肌功能的作用已经在许多研究中被证实。研究发现,无菌小鼠补充SCFAs可通过改善肌肉力量,部分逆转了无菌引起的骨骼肌损伤[12]。外源持续注射醋酸盐恢复了抗生素处理小鼠的运动耐受力[39]。Zarrinpar等[62]强调,抗生素清菌减少了肠道SCFAs的产生,结肠细胞失去其主要能量来源丁酸,从而降低血糖并提高胰岛素敏感性。体外试验与体内试验结果类似,均表明微生物衍生的酚类代谢物(花青素3-O-糖苷)以剂量依赖的方式,促进人骨骼肌成肌细胞的葡萄糖摄取[63]。SCFAs可靶向肠道、脂肪组织和骨骼肌,通过直接或间接作用影响肌肉代谢。在肠内分泌细胞中,它们可通过与G蛋白的结合受体-游离脂肪酸受体(free fatty acid receptor,FFAR)1和FFAR3结合,促进厌食肽PYY(peptide YY)和胰高血糖素样肽-1(glucagon like peptide-1,GLP-1)的分泌,进而调控胰岛素敏感性和食欲。丁酸盐、丙酸盐和琥珀酸盐(丙酸盐的前体)还可以激活肠细胞中糖异生,从而将信号传导到胃肠神经和大脑来改善胰岛素敏感性和代谢[64-65]。丁酸可通过上调抗炎调节性T细胞和直接减少脂肪组织源性促炎细胞因子和趋化因子的分泌,来预防轻度炎症对骨骼肌的负面影响[66]。吕晓婷[67]研究发现,不同浓度乙酸钠、丁酸钠、丙酸钠能调节AMPK磷酸化水平进而提高C2C12成肌细胞对葡萄糖的摄取能力,还能显著抑制骨骼肌炎症因子的表达来缓解胰岛素抵抗引起的慢性炎症。目前,尽管对SCFAs介导的肠-肌轴研究有一定的进展,但如何将现有结果更好地应用到畜禽养殖中,来实现更大的经济价值,仍面临许多困难(比如机体不同生理状态、干预时间、剂量、配合比例等问题)。

3.2 胆汁酸

胆汁酸(bile acids,BAs)由肝中的胆固醇合成,随后分泌、浓缩和储存在胆囊中。当动物采食后,胃肠激素胆囊收缩素(cholecystokinin,CCK)刺激胆囊释放胆汁进入十二指肠,其中BAs有助于消化和吸收脂质及脂溶性维生素。此外,BAs作为一种具有代谢效应的信号分子,可通过与核受体法尼糖X受体(farnese X receptor,FXR)、孕烷X受体(pregnane X receptor,PXR)、G蛋白偶联受体(如GPBAR-1)等受体的相互作用,来调节机体能量、葡萄糖和脂质代谢[68-70]。而肠道菌群在BAs代谢中也发挥了关键作用,主要负责初级BAs向次级BAs的转化。其中,GPBAR-1不仅在肠道中表达,在胆囊、骨骼肌、棕色脂肪中也表达,且具有代谢活性[71]。次级胆汁酸通过与胆汁酸受体(G protein-coupled receptor for bile acids,TGR5)结合发挥一定的作用。重要的是,次级和三级胆汁酸(如熊去氧胆酸)也可能通过激活骨骼肌中的TGR5来促进能量消耗,从而局部激活II型碘甲状腺原氨酸脱碘酶(type II iodothyronine deiodinase,DIO2)。DIO2产生或将非活性甲状腺素(T4)转化为活性T3甲状腺激素,这是代谢和能量稳态的关键介质[72]。目前对于BAs的研究,主要集中在肠-肝轴,而在肠-肌轴的功能及作用机制相对较少,但胆汁酸对于机体脂肪代谢有着非常重要的作用,揭示其对骨骼肌脂肪代谢的作用及机制,对于改善肌内脂肪含量有着不可忽视的潜在价值。

3.3 TMA和TMAO

三甲胺(trimethylamine,TMA)是微生物代谢肉类和其他含有磷脂酰胆碱或L-肉碱的产品(包括鸡蛋、鱼类和甲壳类动物)产生的。TMA可被转化为氧化三甲胺(trimethylamine N-oxide,TMAO),与炎症、心组织代谢和肾疾病密切相关[73-74]。此外,TMA和TMAO还可参与脂质代谢并能在骨骼肌中被吸收[75]。据报道,在杜氏肌营养不良患者中TMA与肌肉收缩所用能量底物总肌酸的比例降低,这表明TMA在肌肉中可能有着特殊的作用[76]。而早在1999年,Øverland等[77]通过试验提出,TMAO降低胴体脂肪含量的适宜添加量为1 000~2 000 mg·kg-1日粮。紧接着,2002年有研究报道,1 000 mg·kg-1TMAO饲粮能明显提高杜×长×嘉生长肥育猪胴体瘦肉率、股四头肌率[78]。该研究结果提示,低剂量TMAO可能通过提高血清GH、降低血清胰岛素以及促进脂肪分解来减少体脂沉积[78]。而对于TMAO与肠道菌群之间的交流串扰作用是否在其调控机体脂肪代谢过程中发挥一定的作用,目前尚不明确。

4 调控微生物-肠-肌轴的潜在手段 4.1 营养素

日粮蛋白和氨基酸组成、脂肪、碳水化合物、微量元素等营养物质均能调控肠道菌群。其中,支链氨基酸(branched chain amino acids,BCAAs)主要在骨骼肌中代谢,多种代谢中产物作为代谢和信号分子,不仅能作用于骨骼肌本身,还能调控脂肪、肝等多个组织的稳态[79-80]。BCAAs和相关代谢产物在肥胖人体受试者和高脂饮食大鼠的腓肠肌中的潜在危害作用已被证实,它们与胰岛素抵抗和不完全脂质氧化有关[81]。最近,在小鼠和人类相关研究中,也显示了血清BCAAs与胰岛素抵抗之间存在正相关[82]。通过比较分析胰岛素抵抗个体血清BCAAs水平与肠道微生物关联情况,普氏杆菌和普通拟杆菌被确定为介导BCAAs合成与胰岛素抵抗的主要物种[82]。此外,在小鼠试验中,研究人员证明普氏杆菌可诱导胰岛素抵抗、加重葡萄糖不耐受,并增加BCAAs的循环水平[82]。另有研究表明,小鼠胫骨前肌中BCAAs代谢相关基因的表达上调可引起肌肉重量、后肢握力和自发性活动的减少[12]。外源补充BCAAs可以缓解运动引起的肌肉疲劳和损伤、调控骨骼肌蛋白合成[83],另外,运动也能通过上调BCAAs代谢酶活性促进其代谢,进而通过影响其代谢产物的水平影响骨骼肌代谢[84-86]。近年来,枣粉[87]、美洲大蠊虫粉[88]、茶叶渣[89]等物质也被证实可改善畜禽肉品质,而上述营养物质是否对肠道菌群有潜在的调控作用还未可知,随着研究的不断深入,相信不久的将来微生物介导的营养物质调控骨骼肌的机制会更加详尽。营养素为肠道菌群提供发酵底物,可一定程度上靶向驯化肠道菌群(高产某种代谢产物)以调控宿主代谢,因此,营养素调控肠道菌群的地位不容忽视。尽管目前营养素对于菌群及宿主代谢的影响多集中在验证单一营养素的作用,而如何在动物机体不同生长阶段和生理状态配制特定日粮还有待进一步深究。

4.2 益生菌

近年来,益生菌改善畜禽肉品质的研究频频被报道。丁酸梭菌可降低北京鸭的料重比,改善肌肉pH、红度、肌苷酸、肌内脂肪含量、风味氨基酸和必需氨基酸浓度,进而改善动物胴体品质[90]。枯草芽孢杆菌、地衣芽孢杆菌、乳杆菌、酵母菌、粪链球菌和屎链球菌均被报道能显著降低不同品种肉鸭腹部脂肪沉积量,进而改善胴体品质[91-93]。丁酸梭菌被证实可通过调控脂肪酸代谢相关酶活及基因表达促进肌内脂肪的沉积[90, 94]。此外,乳酸菌、罗伊氏乳杆菌等益生菌可通过调控饱和脂肪酸和不饱和脂肪酸比例,将脂肪氧化为小分子物质进而改善肉的风味[95-97]。上述研究仅限于益生菌对肉品质表观指标的检测,并未进一步探究微生物及其代谢产物是否介导了上述功能。

评估益生菌对肌肉功能潜在影响的研究目前较少且分散,但仍然有令人精神鼓舞的成果。研究发现,补充L. plantarum可增加小鼠肌肉质量,增加与游泳力竭运动中与耐力相关的慢速氧化型肌纤维,并且减少氧化损伤[44],但不能提高无菌小鼠的肌肉耐力,这说明益生菌对肌肉能力的调控需要其他菌群的参与[40]。训练期间补充从奥运会举重金牌得主体内分离得到的长双歧杆菌亚种OLP-01,能增加受试者握力和耐力[98]。此外,L. plantarum PS128可提高铁人三项运动员的耐力跑成绩,这一效果可能与微生物组成和较高浓度的SCFAs有关[99]。上述研究表明,外源补充益生菌可通过调控肠道微生物群结构及代谢产物水平进而改善骨骼肌功能,但大多数研究主要集中在鼠和人,在畜禽方面的研究则主要聚焦在表观肉质的评定,微生物及其代谢产物介导的调控机制研究相对较少。尽管如此,鼠及人上关于益生菌-微生物-骨骼肌的相关研究,仍为改善畜禽肉质提供了一定的理论参考。

4.3 运动

2014年首次证实运动可以调控微生物组成[100]。肠道菌群不仅受日粮影响,也受到机体运动的影响[101-103],运动引起的微生物多样性有益于宿主健康[101]。小鼠运动后,可检测到更高水平的丁酸或产丁酸菌[103-105]。此外,通过6周的有氧运动训练,年轻瘦人的肠道微生物组成和身体功能的改善与SCFAs产生能力和粪便SCFAs含量增加相关,并且其含量远远高于肥胖参与者[106]。这提示,微生物代谢产物介导了运动对于机体的有益作用。一些乳酸菌或双歧杆菌菌株已被证明可增加肌肉重量和肌纤维大小[44, 107]。研究发现,自由采食且运动,可增加小鼠乳酸杆菌和双歧杆菌属的丰度[108]。这意味着,运动和益生菌在调控骨骼肌功能上有相似的作用机理,总体来说,这些结果鼓励广泛的研究进一步阐述运动与微生物之间的良性作用,运动对于肠道炎症、肌肉稳态都有重要的作用。同时,运动强度、方式和运动时间对于不同生理状态下的动物体产生的影响也有差异。值得注意的是,一旦运动训练停止,运动引起的微生物变化在很大程度上会被逆转[106],这说明菌群稳态的维持并不是一朝一夕,而是一场持久战。根据以往的研究不难发现,饮食和运动对于肠道菌群和代谢产物的组成和丰度有一定的交叉影响,此外,单一干预方式对调控机体能量代谢的持久优势非常有限,因此推测,组合单一干预方式,或许能起到加倍的效果。饮食干预从微生物发酵底物入手,可以从根本上形成健康稳定的菌群,而运动、益生菌等其他干预手段可以为维持菌群平衡锦上添花。

5 小结

目前,对于微生物-肠道-骨骼肌轴的研究大多集中在小鼠或人上,而对于畜禽养殖过程,益生菌或营养素改善肉质的研究主要聚焦在表观的肉品质指标(肉色、pH、滴水损失、蒸煮损失、剪切力等),并未深层次挖掘菌群或其代谢物的潜在作用。基于前期研究,有大量文献阐述微生物及其代谢产物与骨骼肌代谢和功能的关系,并且报道了参与其中的部分菌株与主要代谢产物,因此,不同骨骼肌模型(瘦肉型与脂肪型猪;无菌小鼠与正常菌群鼠;肌肉萎缩与正常肌肉等)的差异微生物与代谢产物,可作为潜在的调控骨骼肌代谢与功能的靶点。肠道微生物结构与组成是极其不稳定的,除了遗传和环境因素外,饲粮是影响菌群结构与功能的关键因素。除了对日粮组成(蛋白、脂肪、纤维、淀粉等)进行干预外,益生菌、益生元、植物提取物、粪菌移植等手段也可以调控菌群组成。近年来,对于植物提取小分子的筛选发现,番茄红素[109]、甜菜碱[110-111]、雷公藤甲素[112]等小分子物质也能调控骨骼肌肌肉及脂肪代谢,这些研究为寻找改善肉质的潜在物质提供了参考与数据支持。而微生物-肠道-骨骼肌轴的存在,从菌群或其代谢产物入手无疑为改善肉质提供了更多的干预手段,对于标志菌群或标志代谢产物的鉴定与筛选也将是未来研究的重点。同时,因为有些代谢产物过量会有负面影响,如何通过特定饮食或其他干预手段靶向控制核心差异菌群丰度及其代谢产物水平也是充满挑战的难题。

参考文献
[1]
刘勇军, 姜艳彬. 兽药残留对畜禽产品质量安全的危害与防控对策[J]. 北京工商大学学报: 自然科学版, 2012, 30(1): 10-16.
LIU Y J, JIANG Y B. Study on hazards and control measures of animal drug residues in animal products[J]. Journal of Beijing Technology and Business University: Natural Science Edition, 2012, 30(1): 10-16. (in Chinese)
[2]
杨晓伟. 畜禽产品抗生素残留的危害及控制[J]. 中国动物保健, 2019, 21(8): 50-51.
YANG X W. Effects and measures of antibiotic residues in livestock and poultry products[J]. China Animal Health, 2019, 21(8): 50-51. DOI:10.3969/j.issn.1008-4754.2019.08.026 (in Chinese)
[3]
尹靖东. 动物肌肉生物学与肉品科学[M]. 北京: 中国农业大学出版社, 2011.
YIN J D. Animal muscle biology and meat quality[M]. Beijing: China Agricultural University Press, 2011. (in Chinese)
[4]
赵俊星, 岳万福. 表观遗传调控骨骼肌发育的研究进展[J]. 中国农业科技导报, 2014, 16(3): 42-47.
ZHAO J X, YUE W F. Control of skeletal muscle myogenesis by epigenetic regulations[J]. Journal of Agricultural Science and Technology, 2014, 16(3): 42-47. DOI:10.13304/j.nykjdb.2013.441 (in Chinese)
[5]
DENETCLAW W F, CHRIST B, ORDAHL C P. Location and growth of epaxial myotome precursor cells[J]. Development, 1997, 124(8): 1601-1610. DOI:10.1242/dev.124.8.1601
[6]
GROS J, MANCEAU M, THOMé V, et al. A common somitic origin for embryonic muscle progenitors and satellite cells[J]. Nature, 2005, 435(7044): 954-958. DOI:10.1038/nature03572
[7]
CHAL J, POURQUIé O. Making muscle: skeletal myogenesis in vivo and in vitro[J]. Development, 2017, 144(12): 2104-2122. DOI:10.1242/dev.151035
[8]
张勇. MicroRNA-378b-3p对猪骨骼肌纤维类型转化的调节作用及其机制[D]. 雅安: 四川农业大学, 2018.
ZHANG Y. The role of MicroRNA-378b-3p in regulating porcine skeletal muscle fiber type conversion and its mechanism[D]. Ya'an: Sichuan Agricultural University, 2018. (in Chinese)
[9]
杨秋梅. Pax3/Pax7对肌纤维类型的决定机制及维生素D3的调控作用[D]. 雅安: 四川农业大学, 2017.
YANG Q M. The mechanism of Pax3/Pax7 determining the types of skeletal muscle fibers and its regulation by vitamin D3[D]. Ya'an: Sichuan Agricultural University, 2017. (in Chinese)
[10]
BÄCKHED F, MANCHESTER J K, SEMENKOVICH C F, et al. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice[J]. Proc Natl Acad Sci U S A, 2007, 104(3): 979-984. DOI:10.1073/pnas.0605374104
[11]
SONNENBURG J L, BÄCKHED F. Diet-microbiota interactions as moderators of human metabolism[J]. Nature, 2016, 535(7610): 56-64. DOI:10.1038/nature18846
[12]
LAHIRI S, KIM H, GARCIA-PEREZ I, et al. The gut microbiota influences skeletal muscle mass and function in mice[J]. Sci Transl Med, 2019, 11(502): eaan5662. DOI:10.1126/scitranslmed.aan5662
[13]
YAN H L, DIAO H, XIAO Y, et al. Gut microbiota can transfer fiber characteristics and lipid metabolic profiles of skeletal muscle from pigs to germ-free mice[J]. Sci Rep, 2016, 6(1): 31786. DOI:10.1038/srep31786
[14]
BÄCKHED F, DING H, WANG T, et al. The gut microbiota as an environmental factor that regulates fat storage[J]. Proc Natl Acad Sci U S A, 2004, 101(44): 15718-15723. DOI:10.1073/pnas.0407076101
[15]
CHANG H, KWON O, SHIN M S, et al. Role of Angptl4/Fiaf in exercise-induced skeletal muscle AMPK activation[J]. J Appl Physiol, 2018, 125(3): 715-722. DOI:10.1152/japplphysiol.00984.2016
[16]
ROBCIUC M R, SKROBUK P, ANISIMOV A, et al. Angiopoietin-like 4 mediates PPAR delta effect on lipoprotein lipase-dependent fatty acid uptake but not on beta-oxidation in myotubes[J]. PLoS One, 2012, 7(10): e46212. DOI:10.1371/journal.pone.0046212
[17]
DRESSEL U, ALLEN T L, PIPPAL J B, et al. The Peroxisome Proliferator-Activated Receptor β/δ Agonist, GW501516, regulates the expression of genes involved in lipid catabolism and energy uncoupling in skeletal muscle cells[J]. Mol Endocrinol, 2003, 17(12): 2477-2493. DOI:10.1210/me.2003-0151
[18]
DEFRONZO R A, JACOT E, JEQUIER E, et al. The effect of insulin on the disposal of intravenous glucose: Results from indirect calorimetry and hepatic and femoral venous catheterization[J]. Diabetes, 1981, 30(12): 1000-1007. DOI:10.2337/diab.30.12.1000
[19]
SHULMAN G I, ROTHMAN D L, JUE T, et al. Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy[J]. N Engl J Med, 1990, 322(4): 223-228. DOI:10.1056/NEJM199001253220403
[20]
KERSTEN S, DESVERGNE B, WAHLI W. Roles of PPARs in health and disease[J]. Nature, 2000, 405(6785): 421-424. DOI:10.1038/35013000
[21]
PHUA W W T, WONG M X Y, LIAO Z H, et al. An apparent functional consequence in skeletal muscle physiology via peroxisome proliferator-activated receptors[J]. Int J Mol Sci, 2018, 19(5): 1425. DOI:10.3390/ijms19051425
[22]
MANICKAM R, DUSZKA K, WAHLI W. PPARs and microbiota in skeletal muscle health and wasting[J]. Int J Mol Sci, 2020, 21(21): 8056. DOI:10.3390/ijms21218056
[23]
ARE A, ARONSSON L, WANG S G, et al. Enterococcus faecalis from newborn babies regulate endogenous PPARγ activity and IL-10 levels in colonic epithelial cells[J]. Proc Natl Acad Sci U S A, 2008, 105(6): 1943-1948. DOI:10.1073/pnas.0711734105
[24]
COUVIGNY B, DE WOUTERS T, KACI G, et al. Commensal Streptococcus salivarius modulates PPARγ transcriptional activity in human intestinal epithelial cells[J]. PLoS One, 2015, 10(5): e0125371. DOI:10.1371/journal.pone.0125371
[25]
NEPELSKA M, DE WOUTERS T, JACOUTON E, et al. Commensal gut bacteria modulate phosphorylation-dependent PPARγ transcriptional activity in human intestinal epithelial cells[J]. Sci Rep, 2017, 7(1): 43199. DOI:10.1038/srep43199
[26]
SCHWAB M, REYNDERS V, LOITSCH S, et al. Involvement of different nuclear hormone receptors in butyrate-mediated inhibition of inducible NFκB signalling[J]. Mol Immunol, 2007, 44(15): 3625-3632. DOI:10.1016/j.molimm.2007.04.010
[27]
KINDT A, LIEBISCH G, CLAVEL T, et al. The gut microbiota promotes hepatic fatty acid desaturation and elongation in mice[J]. Nat Commun, 2018, 9(1): 3760. DOI:10.1038/s41467-018-05767-4
[28]
YOO S R, KIM Y J, PARK D Y, et al. Probiotics L.plantarum and L.curvatus in combination alter hepatic lipid metabolism and suppress diet-induced obesity[J]. Obesity, 2013, 21(12): 2571-2578. DOI:10.1002/oby.20428
[29]
AN H M, PARK S Y, LEE D K, et al. Antiobesity and lipid-lowering effects of Bifidobacterium spp.in high fat diet-induced obese rats[J]. Lipids Health Dis, 2011, 10(1): 116. DOI:10.1186/1476-511X-10-116
[30]
GOODPASTER B H, HE J, WATKINS S, et al. Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes[J]. J Clin Endocrinol Metab, 2001, 86(12): 5755-5761. DOI:10.1210/jcem.86.12.8075
[31]
NAY K, JOLLET M, GOUSTARD B, et al. Gut bacteria are critical for optimal muscle function: a potential link with glucose homeostasis[J]. Am J Physiol Endocrinol Metab, 2019, 317(1): E158-E171. DOI:10.1152/ajpendo.00521.2018
[32]
HANSEN T H, GØBEL R J, HANSEN T, et al. The gut microbiome in cardio-metabolic health[J]. Genome Med, 2015, 7(1): 33. DOI:10.1186/s13073-015-0157-z
[33]
TOLHURST G, HEFFRON H, LAM Y S, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2[J]. Diabetes, 2012, 61(2): 364-371. DOI:10.2337/db11-1019
[34]
MA N, MA X. Dietary amino acids and the gut-microbiome-immune axis: physiological metabolism and therapeutic Prospects[J]. Compr Rev Food Sci Food Saf, 2019, 18(1): 221-242. DOI:10.1111/1541-4337.12401
[35]
ZHANG J, ZHU S W, MA N, et al. Metabolites of microbiota response to tryptophan and intestinal mucosal immunity: a therapeutic target to control intestinal inflammation[J]. Med Res Rev, 2021, 41(2): 1061-1088. DOI:10.1002/med.21752
[36]
MA N, HE T, JOHNSTON L J, et al. Host-microbiome interactions: the aryl hydrocarbon receptor as a critical node in tryptophan metabolites to brain signaling[J]. Gut Microbes, 2020, 11(5): 1203-1219. DOI:10.1080/19490976.2020.1758008
[37]
ZHANG S M, ZHAO J W, XIE F, et al. Dietary fiber-derived short-chain fatty acids: a potential therapeutic target to alleviate obesity-related nonalcoholic fatty liver disease[J]. Obes Rev, 2021, 22(11): e13316.
[38]
ZHOU M, JOHNSTON L J, WU C D, et al. Gut microbiota and its metabolites: bridge of dietary nutrients and obesity-related diseases[J]. Crit Rev Food Sci Nutr, 2021, 26: 1-18.
[39]
OKAMOTO T, MORINO K, UGI S, et al. Microbiome potentiates endurance exercise through intestinal acetate production[J]. Am J Physiol Endocrinol Metab, 2019, 316(5): E956-E966. DOI:10.1152/ajpendo.00510.2018
[40]
HUANG W C, CHEN Y H, CHUANG H L, et al. Investigation of the effects of microbiota on exercise physiological adaption, performance, and energy utilization using a gnotobiotic animal model[J]. Front Microbiol, 2019, 10: 1906. DOI:10.3389/fmicb.2019.01906
[41]
SCHIEBER A M P, LEE Y M, CHANG M W, et al. Disease tolerance mediated by microbiome E.coli involves inflammasome and IGF-1 signaling[J]. Science, 2015, 350(6260): 558-563. DOI:10.1126/science.aac6468
[42]
YAN H L, YU B, DEGROOTE J, et al. Antibiotic affects the gut microbiota composition and expression of genes related to lipid metabolism and myofiber types in skeletal muscle of piglets[J]. BMC Vet Res, 2020, 16(1): 392. DOI:10.1186/s12917-020-02592-0
[43]
GROSICKI G J, FIELDING R A, LUSTGARTEN M S. Gut microbiota contribute to age-related changes in skeletal muscle size, composition, and function: biological basis for a gut-muscle axis[J]. Calcif Tissue Int, 2018, 102(4): 433-442. DOI:10.1007/s00223-017-0345-5
[44]
CHEN Y M, WEI L, CHIU Y S, et al. Lactobacillus plantarum TWK10 supplementation improves exercise performance and increases muscle mass in mice[J]. Nutrients, 2016, 8(4): 205. DOI:10.3390/nu8040205
[45]
HENAGAN T M, STEFANSKA B, FANG Z D, et al. Sodium butyrate epigenetically modulates high-fat diet-induced skeletal muscle mitochondrial adaptation, obesity and insulin resistance through nucleosome positioning[J]. Brit J Pharmacol, 2015, 172(11): 2782-2798. DOI:10.1111/bph.13058
[46]
PAN J H, KIM J H, KIM H M, et al. Acetic acid enhances endurance capacity of exercise-trained mice by increasing skeletal muscle oxidative properties[J]. Biosci Biotechnol Biochem, 2015, 79(9): 1535-1541. DOI:10.1080/09168451.2015.1034652
[47]
NI Y H, YANG X, ZHENG L J, et al. Lactobacillus and Bifidobacterium improves physiological function and cognitive ability in aged mice by the regulation of gut microbiota[J]. Mol Nutr Food Res, 2019, 63(22): 1900603. DOI:10.1002/mnfr.201900603
[48]
张子涵, 杨欢, 黄庆生, 等. 骨骼肌系统与免疫系统之间的网络与调控[J]. 医用生物力学, 2021, 36(S1): 298.
ZHANG Z H, YANG H, HUANG Q S, et al. Network and regulation between skeletal muscle system and immune system[J]. Journal of Medical Biomechanics, 2021, 36(S1): 298. (in Chinese)
[49]
CRAWFORD M, WHISNER C, AL-NAKKASH L, et al. Six-week high-fat diet alters the gut microbiome and promotes cecal inflammation, endotoxin production, and simple steatosis without obesity in male rats[J]. Lipids, 2019, 54(2-3): 119-131. DOI:10.1002/lipd.12131
[50]
MCCARTHY J J, ESSER K A. Anabolic and catabolic pathways regulating skeletal muscle mass[J]. Curr Opin Clin Nutr Metab Care, 2010, 13(3): 230-235. DOI:10.1097/MCO.0b013e32833781b5
[51]
JI L L, GOMEZCABRERA M C, STEINHAFEL N, et al. Acute exercise activates nuclear factor (NF)-κB signaling pathway in rat skeletal muscle[J]. FASEB J, 2004, 18(13): 1499-1506. DOI:10.1096/fj.04-1846com
[52]
PRZEWŁÓCKA K, FOLWARSKI M, KAŹMIERCZAK-SIEDLECKA K, et al. Gut-muscle axis exists and may affect skeletal muscle adaptation to training[J]. Nutrients, 2020, 12(5): 1451. DOI:10.3390/nu12051451
[53]
KÅRLUND A, GÓMEZ-GALLEGO C, TURPEINEN A M, et al. Protein supplements and their relation with nutrition, microbiota composition and health: is more protein always better for sportspeople?[J]. Nutrients, 2019, 11(4): 829. DOI:10.3390/nu11040829
[54]
PETERNELJ T T, COOMBES J S. Antioxidant supplementation during exercise training[J]. Sports Med, 2011, 41(12): 1043-1069. DOI:10.2165/11594400-000000000-00000
[55]
SAFDAR A, HAMADEH M J, KACZOR J J, et al. Aberrant mitochondrial homeostasis in the skeletal muscle of sedentary older adults[J]. PLoS One, 2010, 5(5): e10778. DOI:10.1371/journal.pone.0010778
[56]
KACZOR J J, ROBERTSHAW H A, TARNOPOLSKY M A. Higher oxidative stress in skeletal muscle of McArdle disease patients[J]. Mol Genet Metab Rep, 2017, 12: 69-75. DOI:10.1016/j.ymgmr.2017.05.009
[57]
BRANDT N, GUNNARSSON T P, HOSTRUP M, et al. Impact of adrenaline and metabolic stress on exercise-induced intracellular signaling and PGC-1α mRNA response in human skeletal muscle[J]. Physiol Rep, 2016, 4(14): e12844. DOI:10.14814/phy2.12844
[58]
SPYROPOULOS B G, MISIAKOS E P, FOTIADIS C, et al. Antioxidant properties of probiotics and their protective effects in the pathogenesis of radiation-induced enteritis and colitis[J]. Digest Dis Sci, 2011, 56(2): 285-294. DOI:10.1007/s10620-010-1307-1
[59]
QIAO Y, SUN J, DING Y Y, et al. Alterations of the gut microbiota in high-fat diet mice is strongly linked to oxidative stress[J]. Appl Microbiol Biotechnol, 2013, 97(4): 1689-1697. DOI:10.1007/s00253-012-4323-6
[60]
孔祥峰. 结肠微生物氮代谢与机体健康研究进展[J]. 饲料与畜牧, 2013(4): 10-17.
KONG X F. Research progress of colonic microbial nitrogen metabolism and body health[J]. Animal Agriculture, 2013(4): 10-17. (in Chinese)
[61]
DE SPIEGELEER A, ELEWAUT D, VAN DEN NOORTGATE N, et al. Quorum sensing molecules as a novel microbial factor impacting muscle cells[J]. Biochim et Biophys Acta Mol Basis Dis, 2020, 1866(3): 165646. DOI:10.1016/j.bbadis.2019.165646
[62]
ZARRINPAR A, CHAIX A, XU Z Z, et al. Antibiotic-induced microbiome depletion alters metabolic homeostasis by affecting gut signaling and colonic metabolism[J]. Nat Commun, 2018, 9(1): 2872. DOI:10.1038/s41467-018-05336-9
[63]
HOUGHTON M J, KERIMI A, MOULY V, et al. Gut microbiome catabolites as novel modulators of muscle cell glucose metabolism[J]. FASEB J, 2019, 33(2): 1887-1898. DOI:10.1096/fj.201801209R
[64]
DE VADDER F, KOVATCHEVA-DATCHARY P, GONCALVES D, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits[J]. Cell, 2014, 156(1-2): 84-96. DOI:10.1016/j.cell.2013.12.016
[65]
DE VADDER F, KOVATCHEVA-DATCHARY P, ZITOUN C, et al. Microbiota-produced succinate improves glucose homeostasis via intestinal gluconeogenesis[J]. Cell Metab, 2016, 24(1): 151-157. DOI:10.1016/j.cmet.2016.06.013
[66]
CANFORA E E, JOCKEN J W, BLAAK E E. Short-chain fatty acids in control of body weight and insulin sensitivity[J]. Nat Rev Endocrinol, 2015, 11(10): 577-591. DOI:10.1038/nrendo.2015.128
[67]
吕晓婷. 短链脂肪酸对骨骼肌糖代谢及炎症信号的作用研究[D]. 天津: 天津医科大学, 2019.
LV X T. Effects of short-chain fatty acids on glucose metabolism and inflammatory signals in skeletal muscle[D]. Tianjin: Tianjin Medical University, 2019. (in Chinese)
[68]
POTTHOFF M J, BONEY-MONTOYA J, CHOI M, et al. FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB-PGC-1α pathway[J]. Cell Metab, 2011, 13(6): 729-738. DOI:10.1016/j.cmet.2011.03.019
[69]
KIR S, BEDDOW S A, SAMUEL V T, et al. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis[J]. Science, 2011, 331(6024): 1621-1624. DOI:10.1126/science.1198363
[70]
MOLINARO A, WAHLSTRÖM A, MARSCHALL H U. Role of bile acids in metabolic control[J]. Trends Endocrinol Metab, 2018, 29(1): 31-41. DOI:10.1016/j.tem.2017.11.002
[71]
DI CIAULA A, GARRUTI G, BACCETTO R L, et al. Bile acid physiology[J]. Ann Hepatol, 2017, 16(S1): s4-s14.
[72]
WIERSINGA W M. T4+T3 Combination therapy: any progress?[J]. Endocrine, 2019, 66(1): 70-78. DOI:10.1007/s12020-019-02052-2
[73]
LAMB N J, GIZARD F. Dietary apigenin in the prevention of endothelial cell dysfunction[J]. J Cardiovasc Pharmacol, 2019, 74(6): 513-515. DOI:10.1097/FJC.0000000000000743
[74]
YANG S J, LI X Y, YANG F, et al. Gut microbiota-dependent marker TMAO in promoting cardiovascular disease: inflammation mechanism, clinical prognostic, and potential as a therapeutic target[J]. Front Pharmacol, 2019, 10: 1360. DOI:10.3389/fphar.2019.01360
[75]
TAESUWAN S, CHO C E, MALYSHEVA O V, et al. The metabolic fate of isotopically labeled trimethylamine-N-oxide (TMAO) in humans[J]. J Nutr Biochem, 2017, 45: 77-82. DOI:10.1016/j.jnutbio.2017.02.010
[76]
HSIEH T J, JAW T S, CHUANG H Y, et al. Muscle metabolism in Duchenne muscular dystrophy assessed by in vivo proton magnetic resonance spectroscopy[J]. J Comput Assist Tomogr, 2009, 33(1): 150-154. DOI:10.1097/RCT.0b013e318168f735
[77]
ØVERLAND M, RØRVIK K A, SKREDE A. Effect of trimethylamine oxide and betaine in swine diets on growth performance, carcass characteristics, nutrient digestibility, and sensory quality of pork[J]. J Anim Sci, 1999, 77(8): 2143-2153. DOI:10.2527/1999.7782143x
[78]
许梓荣, 汪以真, 朱梅. 氧化三甲胺对生长肥育猪胴体组成的影响[J]. 中国畜牧杂志, 2002, 38(4): 19-20.
XU Z R, WANG Y Z, ZHU M. Effect of TMAO on the carcass quality of growing-finishing pigs[J]. Chinese Journal of Animal Science, 2002, 38(4): 19-20. DOI:10.3969/j.issn.0258-7033.2002.04.008 (in Chinese)
[79]
张玉寒, 陈雪飞, 张靓. 骨骼肌支链氨基酸代谢小分子与运动[J]. 生理科学进展, 2012, 52(2): 139-145.
ZHANG Y H, CHEN X F, ZHANG L. Branched chain amino acids related metabolites of skeletal muscle and exercise[J]. Progress in Physiological Sciences, 2012, 52(2): 139-145. (in Chinese)
[80]
NIE C X, HE T, ZHANG W J, et al. Branched chain amino acids: beyond nutrition metabolism[J]. Int J Mol Sci, 2018, 19(4): 954. DOI:10.3390/ijms19040954
[81]
NEWGARD C B, AN J, BAIN J R, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance[J]. Cell Metab, 2009, 9(4): 311-326. DOI:10.1016/j.cmet.2009.02.002
[82]
PEDERSEN H K, GUDMUNDSDOTTIR V, NIELSEN H B, et al. Human gut microbes impact host serum metabolome and insulin sensitivity[J]. Nature, 2016, 535(7612): 376-381. DOI:10.1038/nature18646
[83]
FOURÉ A, BENDAHAN D. Is branched-chain amino acids supplementation an efficient nutritional strategy to alleviate skeletal muscle damage?A systematic review[J]. Nutrients, 2017, 9(10): 1047. DOI:10.3390/nu9101047
[84]
ROBERTS L D, BOSTRÖM P, O'SULLIVAN J F, et al. β-Aminoisobutyric acid induces browning of white fat and hepatic β-oxidation and is inversely correlated with cardiometabolic risk factors[J]. Cell Metab, 2014, 19(1): 96-108. DOI:10.1016/j.cmet.2013.12.003
[85]
MORALES F E, FORSSE J S, ANDRE T L, et al. BAIBA does not regulate UCP-3 expression in human skeletal muscle as a response to aerobic exercise[J]. J Am Coll Nutr, 2017, 36(3): 200-209. DOI:10.1080/07315724.2016.1256240
[86]
BERTON R, CONCEIÇÃO M S, LIBARDI C A, et al. Metabolic time-course response after resistance exercise: a metabolomics approach[J]. J Sports Sci, 2017, 35(12): 1211-1218. DOI:10.1080/02640414.2016.1218035
[87]
孙旺斌, 付琪, 薛瑞林, 等. 不同枣粉水平对陕北白绒山羊肉挥发性风味物质的影响[J]. 动物营养学报, 2021, 33(10): 5664-5676.
SUN W B, FU Q, XUE R L, et al. Effects of different levels of jujube powder on volatile flavor substances of north Shaanxi white cashmere goat meat[J]. Chinese Journal of Animal Nutrition, 2021, 33(10): 5664-5676. DOI:10.3969/j.issn.1006-267x.2021.10.026 (in Chinese)
[88]
佘韶峰, 赵天章, 李慧英. 美洲大蠊虫粉对肉鸡生长性能、免疫功能、肌肉抗氧化能力及肉品质的影响[J]. 动物营养学报, 2021, 33(12): 6813-6823.
SHE S F, ZHAO T Z, LI H Y. Effects of Periplaneta americana powder on growth performance, immune function, muscle antioxidant capacity and meat quality of broilers[J]. Chinese Journal of Animal Nutrition, 2021, 33(12): 6813-6823. (in Chinese)
[89]
王彬, 王庆争, 郭志强, 等. 茶叶渣替代麸皮对肉兔生长性能、屠宰性能和肉品质的影响[J/OL]. 动物营养学报, 2021, 1-8. (2021-10-21). http://kns.cnki.net/kcms/detail/11.5461.s.20211020.1056.050.html.
WANG B, WANG Q Z, GUO Z Q, et al. Effects of wheat bran replacement by tea leaf residue on growth performance, slaughter performance and meat quality of meat rabbits[J/OL]. Chinese Journal of Animal Nutrition, 2021, 1-8. (2021-10-21). http://kns.cnki.net/kcms/detail/11.5461.s.20211020.1056.050.html. (in Chinese)
[90]
LIU Y H, LI Y Y, FENG X C, et al. Dietary supplementation with Clostridium butyricum modulates serum lipid metabolism, meat quality, and the amino acid and fatty acid composition of Peking ducks[J]. Poult Sci, 2018, 97(9): 3218-3229. DOI:10.3382/ps/pey162
[91]
HUANG Z, MU C, CHEN Y, et al. Effects of dietary probiotic supplementation on LXRα and CYP7α1 gene expression, liver enzyme activities and fat metabolism in ducks[J]. Brit Poult Sci, 2015, 56(2): 218-224. DOI:10.1080/00071668.2014.1000821
[92]
LI X F, YANG X Z, TAO Y, et al. Effects of probiotics on growth performance and blood biochemical indexes of cherry valley ducks[J]. Agric Sci Technol, 2015, 16(8): 1732-1734, 1740.
[93]
孔令勇, 盛祖勋, 杨雪林, 等. 微生态制剂对樱桃谷肉鸭生长性能、屠宰性能及免疫器官发育的影响[J]. 动物营养学报, 2012, 24(8): 1577-1582.
KONG L Y, SHENG Z X, YANG X L, et al. Effects of microecological agent on growth performance, slaughter performance and development of immune organs of cherry valley ducks[J]. Chinese Journal of Animal Nutrition, 2012, 24(8): 1577-1582. DOI:10.3969/j.issn.1006-267x.2012.08.024 (in Chinese)
[94]
杜瑞, 王柏辉, 罗玉龙, 等. 益生菌调控胃肠道菌群改善肉品质的研究进展[J]. 微生物学通报, 2019, 46(9): 2378-2385.
DU R, WANG B H, LUO Y L, et al. Advance in studying the effect of probiotics on gastrointestinal tract microorganism to improve meat quality[J]. Microbiology China, 2019, 46(9): 2378-2385. DOI:10.13344/j.microbiol.china.180692 (in Chinese)
[95]
李菊. 肉仔鸡不同菌群状态对肠道化学成分及肉品质的影响[D]. 北京: 中国农业大学, 2006.
LI J. The effect of different intestinal microflora state of broiler chickens on chemical components and meat quality[D]. Beijing: China Agricultural University, 2006. (in Chinese)
[96]
WANG H S, NI X Q, QING X D, et al. Live probiotic Lactobacillus johnsonii BS15 promotes growth performance and lowers fat deposition by improving lipid metabolism, intestinal development, and gut microflora in broilers[J]. Front Microbiol, 2017, 8: 1073. DOI:10.3389/fmicb.2017.01073
[97]
郭秀兰. 猪肠道硬壁菌门和拟杆菌门数量的检测及其相对丰度与脂肪沉积的相关性研究[D]. 雅安: 四川农业大学, 2009.
GUO X L. Detection of firmicutes and bacteroidetes in the pig gut and the correlation between their abundance and fat deposit[D]. Ya'an: Sichuan Agricultural University, 2009. (in Chinese)
[98]
HUANG W C, HSU Y J, HUANG C C, et al. Exercise training combined with Bifidobacterium longum OLP-01 supplementation improves exercise physiological adaption and performance[J]. Nutrients, 2020, 12(4): 1145. DOI:10.3390/nu12041145
[99]
HUANG W C, PAN C H, WEI C C, et al. Lactobacillus plantarum PS128 improves physiological adaptation and performance in triathletes through gut microbiota modulation[J]. Nutrients, 2020, 12(8): 2315. DOI:10.3390/nu12082315
[100]
CLARKE S F, MURPHY E F, O'SULLIVAN O, et al. Exercise and associated dietary extremes impact on gut microbial diversity[J]. Gut, 2014, 63(12): 1913-1920. DOI:10.1136/gutjnl-2013-306541
[101]
MACH N, FUSTER-BOTELLA D. Endurance exercise and gut microbiota: a review[J]. J Sport Health Sci, 2017, 6(2): 179-197. DOI:10.1016/j.jshs.2016.05.001
[102]
SHIN H E, KWAK S E, LEE J H, et al. Exercise, the gut microbiome, and frailty[J]. Ann Geriatr Med Res, 2019, 23(3): 105-114. DOI:10.4235/agmr.19.0014
[103]
CAMPBELL S C, WISNIEWSKI P J, NOJI M, et al. The effect of diet and exercise on intestinal integrity and microbial diversity in mice[J]. PLoS One, 2016, 11(3): e0150502. DOI:10.1371/journal.pone.0150502
[104]
MATSUMOTO M, INOUE R, TSUKAHARA T, et al. Voluntary running exercise alters microbiota composition and increases n-butyrate concentration in the rat cecum[J]. Biosci, Biotechnol, Biochem, 2008, 72(2): 572-576. DOI:10.1271/bbb.70474
[105]
BARTON W, PENNEY N C, CRONIN O, et al. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level[J]. Gut, 2018, 67(4): 625-633.
[106]
ALLEN J M, MAILING L J, NIEMIRO G M, et al. Exercise alters gut microbiota composition and function in lean and obese humans[J]. Med Sci Sports Exerc, 2018, 50(4): 747-757. DOI:10.1249/MSS.0000000000001495
[107]
VARIAN B J, GOURESHETTI S, POUTAHIDIS T, et al. Beneficial bacteria inhibit cachexia[J]. Oncotarget, 2016, 7(11): 11803-11816. DOI:10.18632/oncotarget.7730
[108]
QUEIPO-ORTUÑO M I, SEOANE L M, MURRI M, et al. Gut microbiota composition in male rat models under different nutritional status and physical activity and its association with serum leptin and ghrelin levels[J]. PLoS One, 2013, 8(5): e65465. DOI:10.1371/journal.pone.0065465
[109]
LIU S Q, YANG D, YU L, et al. Effects of lycopene on skeletal muscle-fiber type and high-fat diet-induced oxidative stress[J]. J Nutr Biochem, 2021, 87: 108523. DOI:10.1016/j.jnutbio.2020.108523
[110]
刘洋, 李蛟龙, 张林, 等. 胍基乙酸和甜菜碱对育肥猪肌肉能量代谢和肉品质的影响[J]. 畜牧兽医学报, 2015, 46(9): 1557-1563.
LIU Y, LI J L, ZHANG L, et al. Effects of dietary supplementation of guanidinoacetic acid and combination of guanidinoacetic acid and betaine on muscle energy metabolism, meat quality in finishing pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2015, 46(9): 1557-1563. (in Chinese)
[111]
任国栋, 郝小燕, 刘森, 等. 胍基乙酸和甜菜碱对公羔生长发育、屠宰性能和肉品质的影响[J]. 动物营养学报, 2021, 33(12): 6899-6909.
REN G D, HAO X Y, LIU S, et al. Effects of guanidineacetic acid and betaine on growth and development, slaughter performance and meat quality of lambs[J]. Chinese Journal of Animal Nutrition, 2021, 33(12): 6899-6909. (in Chinese)
[112]
WANG X Y, XU M X, PENG Y, et al. Triptolide enhances lipolysis of adipocytes by enhancing ATGL transcription via upregulation of p53[J]. Phytother Res, 2020, 34(12): 3298-3310. DOI:10.1002/ptr.6779

(编辑   范子娟)