种公鸡的精液品质在家禽生产中起重要作用,从遗传学角度而言,种公鸡和种母鸡对后代的影响均为50%,因此,种公鸡的精液品质对于后代雏鸡质量乃至生产性能至关重要。随着种鸡产业的迅猛发展,人工授精技术得到普遍应用,对种公鸡的繁殖性能要求越来越高(公母比例可达1∶80)。然而公鸡的生育能力在30~40周龄之间达到顶峰,并从大约50周龄开始迅速下降[1],精液品质降低,受精率下降。因此,种公鸡的繁殖性能无法长时间处于较高水平,如何从生殖生理角度解析种公鸡的营养需求,提高老龄种公鸡繁殖效率,延长种公鸡使用寿命,已成为亟需研究的新问题。
几种生物活性物质作为现代饲料工业使用的添加剂,在畜牧业生产中已得到应用,其在提高饲料转化率、完善饲粮的全价性、节省饲料成本和提高动物繁殖性能等方面具有明显的效果。本文综述了几种生物活性物质,包括微量元素硒、维生素、植物油、植物化合物和氨基酸及其衍生物等对种公鸡繁殖性能的影响及作用机理,为了解这几种生物活性物质改善种公鸡繁殖性能的作用机理及其应用提供参考。
1 种公鸡精液品质的影响因素种公鸡的精液品质对于繁殖性能具有重要的影响,其品质优劣直接影响到鸡群的受精率和种鸡场的生产效益。评价精液品质主要参考以下几个指标:精液量、精液pH、精子密度、精子活力、精子形态、精子存活率、精子质膜完整性、精子顶体完整性和精浆蛋白等[2]。饲养管理、遗传育种、营养调控、饲养环境和疾病等均会影响种公鸡的精液品质,其中营养调控技术已成为提高种公鸡精液品质的重要手段之一[3]。体重增加、精液浓度降低、睾酮(testosterone,T)水平降低、支持细胞和间质细胞功能障碍以及精液总抗氧化能力下降等因素被认为是导致种公鸡授精能力下降的主要原因[4-5]。
2 生物活性物质对种公鸡精液品质的影响 2.1 微量元素与维生素微量元素硒是调节动物正常生长和繁殖所必需的营养活性物质,具有抗炎、抗病毒、抗氧化、维持精子的结构与功能和调节生殖细胞凋亡等作用[6]。种公鸡饲粮含硒0.6 mg·kg-1时,与对照组(0.3 mg·kg-1) 相比,睾丸中硒蛋白W、谷胱甘肽过氧化物酶4和促黄体生成素/绒毛膜促性腺激素受体的表达显著升高,而血管紧张素转换酶的表达受到抑制[6];饲粮添加亚硒酸钠0.5~1 mg·kg-1时,公鸡精子发生过程中睾丸生殖细胞凋亡数显著降低[7];饲粮添加纳米硒0.6 mg·kg-1时,睾丸精原干细胞(spermatogonial stem cells,SSCs)标志物mRNA表达明显升高,并可延缓肉鸡衰老导致的生育能力降低[8];饲粮添加有机硒0.3 mg·kg-1时,精子活力、质膜完整率和精液总抗氧化能力(total antioxidant capacity,TAC)升高,精液丙二醛(MDA)浓度降低[9]。此外,不同于较高水平的亚硒酸钠会减少SSCs标记物的数量,纳米硒水平的增加对SSCs标记物的数量没有负面影响[10]。另外,其他微量元素锌和铜可能也会对种公鸡的精液品质产生影响,有待进一步研究[11]。
维生素C(VC)和维生素E(VE)具有抗氧化活性,可提高海鲈鱼精液[12]、公猪精液[13]和大鼠睾丸[14]的抗氧化能力。Min等[15]在45周龄略阳乌鸡饲粮中添加300 mg·kg-1 VC和200 mg·kg-1 VE,发现可缓解地塞米松诱导的氧化应激,且血清T水平、精子活力和存活率显著提升,精浆MDA含量降低。此外,在饲粮中添加5.664和2.945 IU·kg-1维生素A(VA),可改善在热带环境中饲养的种鸡的繁殖性能[16]。
2.2 植物油橄榄油含有大量的单不饱和(monounsaturated fatty acids, MUFAs)、多不饱和脂肪酸(polyunsaturated fatty acids,PUFAs)以及其他次要成分(如植物甾醇)[17]。Kacel和Iguer-ouada[18]研究表明,54周龄公鸡每天补充0.4 mL橄榄油,4周后,精子的密度、存活率和活力得到显著提升。橄榄油所含有的油酸(C18∶1)和亚油酸(C18∶2)[19]可以改善精子的各脂肪酸比例,进而有利于精子的生成。甾醇通过影响膜脂肪酸和胆固醇,进而对与精子运动有关的膜流动性产生作用[17]。因此,橄榄油可为精子发生过程提供脂肪酸。
亚麻籽油(linseed oil,LO)含有近50%的α-亚麻酸,可通过延长与去饱和交替步骤转化为二十碳五烯酸(eicosapentaenoic acid,EPA)和二十二碳六烯酸(docosahexaenoic acid,DHA)[20]。DHA与精子的膜完整性、活力和存活率呈正相关[21]。Qi等[22]用LO饲喂57周龄农大3号蛋用种公鸡发现,饲粮添加2%~4% LO可显著提高种公鸡的精液量、精子密度、存活率、活力和总数;提高血浆促卵泡激素(FSH)、黄体生成素(LH)和T水平;提高类固醇合成急性调节蛋白(StAR)、胆固醇侧链裂解酶(P450 scc)与固醇生成因子1(SF-1)的基因表达量。Zanussi等[23]在基础饲粮添加2% LO 60 d后,精子的密度、总活动率、前向活动率、存活率、膜完整性和T浓度均显著提高,EPA、DHA的百分含量也有所增加。
2.3 植物化合物姜黄素是姜黄的主要生物活性成分,是一种天然的抗氧化剂,具有抗炎、抗凋亡、抗毒和抗癌的作用[24],可通过清除超氧阴离子(O2·-)和羟基自由基(·OH)来抑制脂质过氧化[25]。Kazemizadeh等[4]在48周龄罗斯308公鸡饲粮中添加姜黄素10~30 mg·(只·d)-1时,精液浓度、精子数量、前向活动率和质膜完整性均呈线性增加;精液MDA浓度、精子畸形率显著降低;受精率和质膜功能升高。Yan等[26]在罗德岛红鸡饲粮中补充0.8 g·d-1姜黄素2周后,精子运动变量直线速度和曲线速度增加;在热应激条件下补充1.6 g·d-1姜黄素3周和4周后,精子存活率提高,2周和4周时活性氧(reactive oxygen species,ROS)生成量降低。以上数据表明,姜黄素可以通过抗氧化作用提升种公鸡精液品质。
大豆异黄酮(soybean isoflavones,SIs)存在于豆科蝶形花亚科植物中[27],在结构和功能上与天然雌激素相似,能弱结合雌激素受体,因而可作为弱激动剂/拮抗剂与天然雌激素竞争[28]。Heng等[28]在10~19周龄京红1号公鸡饲粮中添加5 mg·kg-1的SIs可显著提高睾丸指数和血清生殖激素水平以及StAR mRNA水平。但对P450 scc和3β-羟基类固醇脱氢酶(3β-HSD)mRNA水平无明显影响。此外,5 mg·kg-1的SIs亦能促进精原细胞发育和增加生殖细胞层数。说明SIs通过增加与StAR表达密切相关的生殖激素的分泌来促进睾丸生长,从而对公鸡的繁殖起到积极的调节作用。
白杨素是一种天然存在的多酚化合物,高水平存在于蜂蜜和西番莲、木蝴蝶、山白松等植物中,具有促进类固醇生成[29]、抗芳香酶活性、保护组织免受氧化与炎症损伤等作用[30]。除了抗氧化作用,体内和体外研究已证实白杨素可提高T水平[31-32]。Altawash等[33]在40周龄罗斯308公鸡饲粮中添加50和75 mg·(只·d)-1白杨素时,精子总活力、前向活动率、质膜完整性和功能性、精液浓度、受精率和孵化率均显著提高,精液n-6 PUFA/n-3 PUFA比值和MDA浓度降低;血清中T水平在添加75 mg·(只·d)-1白杨素时显著升高。还有研究表明,大鼠口服白杨素后,睾丸超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶、谷胱甘肽过氧化物酶(glutathione peroxidase,GSH-Px)水平均显著提高,并有较高的精子数量和活动率,以及较低的畸形率[34]。
2.4 氨基酸及其衍生物L-精氨酸对种公鸡繁殖性能和抗氧化能力具有重要作用,由于禽类缺乏鸟氨酸循环的变异酶,无法合成精氨酸[35],所以饲粮必须添加精氨酸。研究表明,饲粮中添加0.68% L-精氨酸可显著提高肉用种公鸡精液量、T水平和生精指数[36]。精氨酸经过催化反应可以产生一氧化氮(NO),引起血管扩张,保持血液循环系统通畅[37]。Abbaspour等[36]发现,饲粮中添加0.68% L-精氨酸后左侧睾丸重量/睾丸总重量比值较高,可能是由于睾丸组织中精氨酸(精氨酸源性NO)水平升高,从而导致睾丸血流量增加所致。
甜菜碱学名三甲基甘氨酸(trimethylglycine,Bet),由胆碱氧化产生[38]。Bet作为甲基供体基团,可增加谷胱甘肽合成所需的蛋氨酸和半胱氨酸,保护细胞免受ROS和反应代谢物的影响[39]。Attia等[40]试验表明,饲粮中添加1 000 mg·kg-1的Bet可使热应激后的公鸡精子浓度、活力和存活率,精液pH和MDA含量,精浆中总蛋白、球蛋白、尿素、天冬氨酸转氨酶(aspartate aminotransferase,AST)和丙氨酸转氨酶(alanine aminotransferase,ALT)浓度等指标恢复正常,精浆TAC升高。精子死亡后失去质膜稳定性,并在精液中释放转氨酶(AST和ALT)。因此,精浆中AST和ALT浓度是反映精液质量的重要指标。
胍基乙酸(guanidinoacetic acid,GAA)是由甘氨酸和精氨酸在鸟类肾和肝中通过L-精氨酸: 甘氨酸氨基转移酶合成的,易从小肠吸收,并运输到肝,在肝中易转化为肌酸[41]。内源性合成和食物来源为机体提供所需的肌酸,内源性肌酸可通过GAA甲基化产生[42]。GAA比肌酸价格低,化学稳定性高,可替代饲粮中的肌酸[43]。研究表明,饲料中添加GAA可增加内卵黄层中精子穿透的数量和繁殖能力[44]。Tapeh等[45]在29周龄罗斯308肉用种鸡饲粮中添加GAA,结果表明,精子畸形率和质膜完整性无显著变化,精液浓度、精子总数与前向活动率显著提高。另有研究表明,添加1 300~1 450 mg·kg-1的GAA可增加生精小管直径、睾丸重量、生精小管上皮厚度、精原细胞和间质细胞数量以及c-Kit和STRA8相关基因表达,但较高剂量的GAA可能不会改善精液质量[46]。
左旋肉碱是一种由赖氨酸和蛋氨酸合成的季胺化合物,存在于附睾腔中,在维持精子能量平衡和成熟方面发挥着重要作用,饲粮添加左旋肉碱250~500 mg·kg-1,罗斯308公鸡的精子浓度、活力和精子质量因子(SQF)显著升高[47]。此外,成年公鸡饲粮添加左旋肉碱可显著改善睾丸重量和睾丸指数,增加血浆中T、促性腺激素释放激素(GnRH)、LH、FSH和高密度脂蛋白的浓度,提高睾丸组织中生精小管上皮厚度、生精小管直径和生精指数[48]。
2.5 其他物质丁酸钠(sodium butyrate,SB)是一种新型的家禽饲料添加剂,其主要成分是肠道厌氧细菌发酵膳食纤维自然形成的丁酸[49]。由于SB比其他丁酸盐更稳定,气味更小,因此在动物饲料中更常用。SB通过提高成年公鸡的抗氧化能力和T的分泌来促进睾丸生长。Alhaj等[50]在22周龄种公鸡饲粮中添加500 mg·kg-1 SB,发现GSH-Px和SOD活性、T水平、精液量、精子活力和密度显著提高,精子畸形率显著降低。
辅酶Q10是真核细胞线粒体中电子传递链和有氧呼吸的重要参与物质之一,在能量代谢中发挥重要作用,位于精子中段线粒体中,与线粒体氧化磷酸化有关[51]。饲粮中添加辅酶Q10 300~600 mg·kg-1后,显著提高了精液量、精子密度、精子质膜功能与完整性、生精小管直径与上皮厚度、精液性状,T浓度以及TAC,降低了精浆ALT和AST活性[52]。辅酶Q10能够改善精子膜的完整性和功能,进而降低精浆中ALT和AST的活性。
迷迭香叶粉(rosemary leaves powder,RLP)富含多种生物活性物质,如黄酮、多酚及萜类等,其抗氧化能力主要与迷迭香醇、异迷迭香醇、表迷迭香酚和迷迭香酸等成分有关[53]。饲粮中添加0~7.5 g·kg-1 RLP可显著提高种公鸡的精子密度、精液量、精子前向活动率和存活率,降低精子MDA水平,改善受精率[5]。在45周龄罗斯公鸡饲粮中添加5 g·kg-1 RLP也可显著提高精子密度、总活动率、前向活动率、膜完整性和存活率以及血清T和LH水平,降低精液MDA含量[54]。
3 生物活性物质影响种公鸡精液品质的作用机理 3.1 生物活性物质与精子能量能量在种公鸡繁殖过程中起主要作用。由限饲导致的能量缺乏已成为影响精液品质的重要因素之一。限饲可降低精液的体积和浓度、精子活力和质膜完整性,并增加精子的畸形率[55]。肌酸是动物细胞的重要能量储备物质,是细胞能量代谢的中心化合物[56],可避免细胞内ATP的耗竭。肌酸通过将能量从ATP产生部位输送到消耗部位,起到能量缓冲作用[57],促进支持细胞内的能量穿梭,从而最大化精子产生途径。ATP是精子活动的燃料,其在精液和精子中的含量被用于预测雄性的生育能力。线粒体为精子能量代谢的调控中心,是精子运动的能量来源[58]。线粒体负责精子中ATP的产生,能量通过磷酸化的肌酸传递到精子尾部,磷酸肌酸将ADP转化为ATP,从而支撑精子运动。低ATP含量或ATP/ADP比率可导致精子功能下降[56, 59]。因此,精氨酸、胍基乙酸作为合成肌酸的前体物质,对精液品质具有重要作用。此外,AMP激活的蛋白激酶(AMPK)是细胞能量稳态的关键介质[60]。AMP和ADP浓度的增加或细胞能量状态的降低会激活AMPK,启动分解代谢途径,关闭细胞生长和增殖等合成代谢途径[61],磷酸化的胍基乙酸可将ADP转化为ATP,使AMPK失活,细胞增殖开启,精子生成增加。还有研究表明,L-精氨酸产生的一氧化氮可以通过蛋白质S-亚硝基化以及ROS解毒来提高精子的能量生成和活力[62]。综上所述,L-精氨酸、胍基乙酸所转化的肌酸和一氧化氮可以为精子产生与活动提供必要的能量。
3.2 生物活性物质与精子氧化损伤ROS是多种生化反应的天然副产物,在受控水平上对精子功能起着重要作用[63]。ROS产生量超过细胞的清除能力时,会引起氧化应激[64]。禽类精子质膜中含有高比例的PUFAs,并且随着年龄的增长,其精液的抗氧化能力逐渐降低,暴露于ROS后,精子的质膜容易受到脂质过氧化的影响,造成氧化损伤[65]。此外,由于缺乏或低活性的己糖磷酸分流,NADPH的产生和随后的抗氧化剂回收在禽类精子中也受到限制[66]。ROS的增加对精子密度、活力、存活率、形态以及随后的生育能力均产生不利影响[67-68]。研究表明,天然特定营养物质如微量元素硒、多酚类等抗氧化剂,可有效控制与线粒体功能障碍和氧化应激相关的精子氧化损伤[6, 26, 33]。H2O2和·OH是公鸡精子中最主要的ROS,除参与脂质过氧化、损害精子膜功能外,H2O2可通过降低动力蛋白-ATP酶的活性或通过抑制鞭毛纤维鞘中的糖酵解酶干扰轴丝的功能,从而抑制精子的运动。而·OH可通过直接破坏钙稳态、DNA结构和线粒体活性发挥细胞毒性作用[69]。目前,种公鸡精子氧化损伤的研究大多集中在生物活性物质对精子膜的脂质成分、脂质过氧化和抗氧化酶活性等的影响上,其具体的作用机制有待进一步深入研究。
3.3 生物活性物质与生殖激素精子的产生受到生殖激素FSH、LH和T的调控。FSH与支持细胞表面表达的受体结合,刺激精子发生和精子成熟[70],LH和FSH通过环磷酸腺苷(cAMP)共同调节精子发生[71]。T作为一种重要的雄激素,在血睾屏障、减数分裂、支持-精子细胞复合体和精子形成等精子发生过程中发挥着重要的作用[72]。T主要由睾丸间质细胞合成与分泌,胆固醇由StAR介导从线粒体外膜转运到线粒体内膜,再被线粒体内P450 scc转化为孕烯醇酮,随后在内质网中由3β-HSD和17β-羟基类固醇脱氢酶(17β-HSD)催化生成T[73]。在老年种公鸡中,类固醇生成能力降低和间质细胞数量减少,均会阻碍雄激素的产生。在低生育能力的公鸡中,T不仅合成较少,而且更多的代谢为雌二醇(E2),导致血浆T/E2比值降低[74]。体内E2水平较高时会通过下丘脑-垂体-性腺轴负反馈降低血浆LH和T水平。但是,正常的精子发生也需要E2受体信号[75],低于最佳浓度的E2会导致精子质量下降[76]。T水平还受丁酸盐的控制,丁酸等短链脂肪酸能够抑制垂体前叶细胞中催乳素基因的转录,从而提高GnRH和LH的分泌[50],因此,饲粮添加丁酸钠可能有助于提高体内T水平。综上所述,饲粮添加生物活性物质能够影响GnRH、FSH、LH和T等生殖激素含量,进而调控精子的产生,改善精液品质。
4 小结与展望综上所述,微量元素硒、维生素、植物油、植物化合物和氨基酸及其衍生物等生物活性物质可改善种公鸡精液品质。然而,到目前为止,关于营养活性物质对种公鸡精液品质的研究仍有一些亟待解决的问题:1)在饲粮中添加的生物活性物质如何在动物体内代谢并发挥作用,鲜有报道;2)一些营养活性物质对精液品质具有二次效应,剂量较大时会有负面影响,其作用机制有待进一步研究;3)因试验动物的品种、年龄、饲养条件和生物活性物质提取工艺的不同,精液品质和适宜添加量有别,仍需大量试验数据进行充实。因此,在今后的试验研究中可应用代谢组、转录组和蛋白组等组学技术,并结合现代分子生物学技术,更进一步地阐明生物活性物质调节精液品质的作用机制。此外,还可继续优化生物活性物质的提取工艺和添加方式,使其更好地应用于生产实践,以期更好地改善种公鸡繁殖性能。
[1] |
WEIL S, DEGEN A A, FRIEDLÄNDER M, et al. Low fertility in aging roosters is related to a high plasma concentration of insulin and low testicular contents of ACTH and lactate[J]. Gen Comp Endocrinol, 1999, 115(1): 110-115. DOI:10.1006/gcen.1999.7291 |
[2] |
LI Y L, SUN Y Y, NI A X, et al. Seminal plasma proteome as an indicator of sperm dysfunction and low sperm motility in chickens[J]. Mol Cell Proteomics, 2020, 19(6): 1035-1046. DOI:10.1074/mcp.RA120.002017 |
[3] |
荆佳林, 赵国先, 冯志华, 等. 影响种鸡繁殖性能的营养因素及调控措施[J]. 饲料研究, 2019, 42(4): 68-72. JING J L, ZHAO G X, FENG Z H, et al. Effect of nutritional factors and regulation measures on reproductive performance of breeding bird[J]. Feed Research, 2019, 42(4): 68-72. (in Chinese) |
[4] |
KAZEMIZADEH A, SHAHNEHA Z, ZEINOALDINI S, et al. Effects of dietary curcumin supplementation on seminal quality indices and fertility rate in broiler breeder roosters[J]. Br Poult Sci, 2019, 60(3): 256-264. DOI:10.1080/00071668.2019.1571165 |
[5] |
BORGHEI-RAD S M, ZEINOALDINI S, ZHANDI M, et al. Feeding rosemary leaves powder ameliorates rooster age-related subfertility[J]. Theriogenology, 2017, 101: 35-43. DOI:10.1016/j.theriogenology.2017.06.018 |
[6] |
KHALID A, KHUDHAIR N, HE H, et al. Effects of dietary selenium supplementation on seminiferous tubules and selW, GPx4, LHCGR, and ACE expression in chicken testis[J]. Biol Trace Elem Res, 2016, 173(1): 202-209. DOI:10.1007/s12011-016-0646-y |
[7] |
SONG R G, YAO X L, SHI L, et al. Effects of dietary selenium on apoptosis of germ cells in the testis during spermatogenesis in roosters[J]. Theriogenology, 2015, 84(4): 583-588. DOI:10.1016/j.theriogenology.2015.04.013 |
[8] |
JALALI S S, TALEBI J, ALLYMEHR M, et al. Effects of nano-selenium on mRNA expression of markers for spermatogonial stem cells in the testis of broiler breeder males[J]. Vet Res Forum, 2019, 10(2): 139-144. |
[9] |
KHALIL-KHALILI A A, ZHANDI M, ZAGHARI M, et al. The effect of dietary organic selenium on reproductive performance of broiler breeder roosters under dexamethasone induced stress[J]. Theriogenology, 2021, 161: 16-25. DOI:10.1016/j.theriogenology.2020.11.016 |
[10] |
SHI L, ZHAO H, REN Y S, et al. Effects of different levels of dietary selenium on the proliferation of spermatogonial stem cells and antioxidant status in testis of roosters[J]. Anim Reprod Sci, 2014, 149(3-4): 266-272. DOI:10.1016/j.anireprosci.2014.07.011 |
[11] |
王丽云, 李艳华, 王彦平, 等. 部分微量元素对种用家畜精液品质影响的研究进展[J]. 上海畜牧兽医通讯, 2020(6): 17-19. WANG L Y, LI Y H, WANG Y P, et al. Progress of research on the effect of some trace elements on semen quality of breeding livestock[J]. Shanghai Journal of Animal Husbandry and Veterinary Medicine, 2020(6): 17-19. (in Chinese) |
[12] |
MARTINEZ-PARAMO S, DIOGO P, DINIS M T, et al. Incorporation of ascorbic acid andα-tocopherol to the extender media to enhance antioxidant system of cryopreserved sea bass sperm[J]. Theriogenology, 2012, 77(6): 1129-1136. DOI:10.1016/j.theriogenology.2011.10.017 |
[13] |
龙熙, 张亮, 张利娟, 等. 维生素E对公猪繁殖性能影响的研究进展[J]. 中国畜牧杂志, 2020, 56(11): 24-27. LONG X, ZHANG L, ZHANG L J, et al. Advances in effect of vitamin E on reproductive performance of boars[J]. Chinese Journal of Animal Science, 2020, 56(11): 24-27. (in Chinese) |
[14] |
KONG L, HU W C, LU C C, et al. Mechanisms underlying nickel nanoparticle induced reproductive toxicity and chemo-protective effects of vitamin C in male rats[J]. Chemosphere, 2019, 218: 259-265. DOI:10.1016/j.chemosphere.2018.11.128 |
[15] |
MIN Y N, SUN T T, NIU Z Y, et al. Vitamin C and vitamin E supplementation alleviates oxidative stress induced by dexamethasone and improves fertility of breeder roosters[J]. Anim Reprod Sci, 2016, 171: 1-6. DOI:10.1016/j.anireprosci.2016.04.005 |
[16] |
OGBUEWU I P, OKORO V M, MBAJIORGU E F, et al. Supplementation of vitamin A to local chicken diets in tropical environment enhances seminal quality and blood testosterone concentration[J]. Trop Anim Health Prod, 2020, 52(4): 2101-2109. DOI:10.1007/s11250-020-02224-7 |
[17] |
ZEB A, MURKOVIC M. Olive (OleaeuropaeaL.) seeds, from chemistry to health benefits[M]//PREEDY V R, WATSON R R, PATEL V B. Nuts and Seeds in Health and Disease Prevention. London: Academic Press, 2011: 847-853.
|
[18] |
KACEL A, IGUER-OUADA M. Effects of olive oil dietary supplementation on sperm quality and seminal biochemical parameters in rooster[J]. J Anim Physiol Anim Nutr(Berl), 2018, 102(6): 1608-1614. DOI:10.1111/jpn.12983 |
[19] |
MANAI H, MAHJOUB-HADDADA F, OUESLATI I, et al. Characterization of monovarietal virgin olive oils from six crossing varieties[J]. Sci Hortic, 2008, 115(3): 252-260. DOI:10.1016/j.scienta.2007.10.011 |
[20] |
YI H, HWANG K T, REGENSTEIN J M, et al. Fatty acid composition and sensory characteristics of eggs obtained from hens fed flaxseed oil, dried whitebait and/or fructo-oligosaccharide[J]. Asian-Australas J Anim Sci, 2014, 27(7): 1026-1034. DOI:10.5713/ajas.2013.13775 |
[21] |
ASL R S, SHARIATMADARI F, SHARAFI M, et al. Improvements in semen quality, sperm fatty acids, and reproductive performance in aged Ross breeder roosters fed a diet supplemented with a moderate ratio of n-3:n-6 fatty acids[J]. Poult Sci, 2018, 97(11): 4113-4121. DOI:10.3382/ps/pey278 |
[22] |
QI X L, SHANG M Y, CHEN C, et al. Dietary supplementation with linseed oil improves semen quality, reproductive hormone, gene and protein expression related to testosterone synthesis in aging layer breeder roosters[J]. Theriogenology, 2019, 131: 9-15. DOI:10.1016/j.theriogenology.2019.03.016 |
[23] |
ZANUSSI H P, SHARIATMADARI F, SHARAFI M, et al. Dietary supplementation with flaxseed oil as source of Omega-3 fatty acids improves seminal quality and reproductive performance in aged broiler breeder roosters[J]. Theriogenology, 2019, 130: 41-48. DOI:10.1016/j.theriogenology.2019.02.030 |
[24] |
樊祥宇, 张富群, 黄泰来, 等. 姜黄素对中速型黄羽肉鸡生长性能、腹脂沉积、抗氧化能力、肝脏脂肪代谢相关酶活性及基因表达的影响[J]. 动物营养学报, 2021, 33(10): 5581-5590. FAN X Y, ZHANG F Q, HUANG T L, et al. Effects of curcumin on growth performance, abdominal fat deposition, antioxidant capacity, liver enzyme activities and gene expression related to lipid metabolism of medium speed yellow-feathered broilers[J]. Chinese Journal of Animal Nutrition, 2021, 33(10): 5581-5590. DOI:10.3969/j.issn.1006-267x.2021.10.018 (in Chinese) |
[25] |
DANESHYAR M, GHANDKANLO M A, BAYEGHRA F S, et al. Effects of dietary turmeric supplementation on plasma lipoproteins, meat quality and fatty acid composition in broilers[J]. S Afr JAnim Sci, 2011, 41(4): 420-428. |
[26] |
YAN W J, KANNO C, OSHIMA E, et al. Enhancement of sperm motility and viability by turmeric by-product dietary supplementation in roosters[J]. Anim Reprod Sci, 2017, 185: 195-204. DOI:10.1016/j.anireprosci.2017.08.021 |
[27] |
吕宁, 胡友军, 冉学光, 等. 大豆异黄酮在动物养殖中的应用研究进展[J]. 广东畜牧兽医科技, 2019, 44(3): 14-20. LV N, HU Y J, RAN X G, et al. Advances in the application of soy isoflavones in animal production[J]. Guangdong Journal of Animal and Veterinary Science, 2019, 44(3): 14-20. DOI:10.3969/j.issn.1005-8567.2019.03.004 (in Chinese) |
[28] |
HENG D, ZHANG T, TIAN Y, et al. Effects of dietary soybean isoflavones (SI) on reproduction in the young breeder rooster[J]. Anim Reprod Sci, 2017, 177: 124-131. DOI:10.1016/j.anireprosci.2016.12.012 |
[29] |
CAMPOS M S, RIBEIRO N C S, DE LIMA R F, et al. Anabolic effects of chrysin on the ventral male prostate and female prostate of adult gerbils (Meriones unguiculatus)[J]. Reprod Fertil Dev, 2018, 30(9): 1180-1191. DOI:10.1071/RD17456 |
[30] |
KHEZRI S, SABZALIPOUR T, JAHEDSANI A, et al. Chrysin ameliorates aluminum phosphide-induced oxidative stress and mitochondrial damages in rat cardiomyocytes and isolated mitochondria[J]. Environ Toxicol, 2020, 35(10): 1114-1124. DOI:10.1002/tox.22947 |
[31] |
CORMIER M, GHOUILI F, ROUMAUD P, et al. Influences of flavones on cell viability and cAMP-dependent steroidogenic gene regulation in MA-10 leydig cells[J]. Cell Biol Toxicol, 2018, 34(1): 23-38. DOI:10.1007/s10565-017-9395-8 |
[32] |
DEL FABBRO L, JESSE C R, DE GOMES M G, et al. The flavonoid chrysin protects against zearalenone induced reproductive toxicity in male mice[J]. Toxicon, 2019, 165: 13-21. DOI:10.1016/j.toxicon.2019.04.004 |
[33] |
ALTAWASH A S A, SHAHNEH A Z, MORAVEJ H, et al. Chrysin-induced sperm parameters and fatty acid profile changes improve reproductive performance of roosters[J]. Theriogenology, 2017, 104: 72-79. DOI:10.1016/j.theriogenology.2017.07.022 |
[34] |
CIFTCI O, OZDEMIR Ī, AYDIN M, et al. Beneficial effects of chrysin on the reproductive system of adult male rats[J]. Andrologia, 2012, 44(3): 181-186. DOI:10.1111/j.1439-0272.2010.01127.x |
[35] |
FERNANDES J I M, MURAKAMI A E, MARTINS E N, et al. Effect of arginine on the development of the pectoralis muscle and the diameter and the protein: deoxyribonucleic acid rate of its skeletal myofibers in broilers[J]. Poult Sci, 2009, 88(7): 1399-1406. DOI:10.3382/ps.2008-00214 |
[36] |
ABBASPOUR B, SHARIFI S D, GHAZANFARI S, et al. The effect of L-arginine and flaxseed on plasma testosterone concentration, semen quality and some testicular histology parameters in old broiler breeder roosters[J]. Theriogenology, 2019, 128: 101-109. DOI:10.1016/j.theriogenology.2019.01.034 |
[37] |
张童, 安文东, 王合亮, 等. 精氨酸在肉鸡生产中的研究进展[J]. 家禽科学, 2021(10): 45-50. ZHANG T, AN W D, WANG H L, et al. Research progress of arginine in broiler production[J]. Poultry Science, 2021(10): 45-50. DOI:10.3969/j.issn.1673-1085.2021.10.014 (in Chinese) |
[38] |
WANG Y Z, XU Z R, FENG J. The effect of betaine and DL-methionine on growth performance and carcass characteristics in meat ducks[J]. Anim Feed Sci Technol, 2004, 116(1-2): 151-159. DOI:10.1016/j.anifeedsci.2004.05.003 |
[39] |
ZHANG M M, ZHANG H, LI H X, et al. Antioxidant mechanism of betaine without free radical scavenging ability[J]. J Agric Food Chem, 2016, 64(42): 7921-7930. DOI:10.1021/acs.jafc.6b03592 |
[40] |
ATTIA Y A, EL-NAGGAR A S, ABOU-SHEHEMA B M, et al. Effect of supplementation with trimethylglycine (Betaine) and/or vitamins on semen quality, fertility, antioxidant status, DNA repair and welfare of roosters exposed to chronic heat stress[J]. Animals(Basel), 2019, 9(8): 547. |
[41] |
MURAKAMI A E, RODRIGUEIRO R J B, SANTOS T C, et al. Effects of dietary supplementation of meat-type quail breeders with guanidinoacetic acid on their reproductive parameters and progeny performance[J]. Poult Sci, 2014, 93(9): 2237-2244. DOI:10.3382/ps.2014-03894 |
[42] |
OSTOJIC S M. Cellular bioenergetics of guanidinoacetic acid: the role of mitochondria[J]. J Bioenerg Biomembr, 2015, 47(5): 369-372. DOI:10.1007/s10863-015-9619-7 |
[43] |
DILGER R N, BRYANT-ANGELONI K, PAYNE R L, et al. Dietary guanidino acetic acid is an efficacious replacement for arginine for young chicks[J]. Poult Sci, 2013, 92(1): 171-177. DOI:10.3382/ps.2012-02425 |
[44] |
SHARIDEH H, NEIAL E, ZAGHARI M, et al. Effect of feeding guanidinoacetic acid and L-arginine on the fertility rate and sperm penetration in the perivitelline layer of aged broiler breeder hens[J]. J Anim Physiol Anim Nutr(Berl), 2016, 100(2): 316-322. DOI:10.1111/jpn.12372 |
[45] |
TAPEH R S, ZHANDI M, ZAGHARI M, et al. Effects of guanidinoacetic acid diet supplementation on semen quality and fertility of broiler breeder roosters[J]. Theriogenology, 2017, 89: 178-182. DOI:10.1016/j.theriogenology.2016.11.012 |
[46] |
NASIRIKHAH A, ZHANDI M, SHAKERI M, et al. Dietary guanidinoacetic acid modulates testicular histology and expression of c-Kit and STRA8 genes in roosters[J]. Theriogenology, 2019, 130: 140-145. DOI:10.1016/j.theriogenology.2019.03.006 |
[47] |
MOHAMMADI V, SHARIFI S D, SHARAFI M, et al. Manipulation of fatty acid profiles in roosters'testes, alteration in sexual hormones, improvements in testicular histology characteristics and elevation sperm quality factor by L-carnitine[J]. Theriogenology, 2021, 161: 8-15. DOI:10.1016/j.theriogenology.2020.10.005 |
[48] |
MOHAMMADI V, SHARIFI S D, SHARAFI M, et al. Effects of dietary L-carnitine on puberty indices in the young breeder rooster[J]. Heliyon, 2021, 7(4): e06753. DOI:10.1016/j.heliyon.2021.e06753 |
[49] |
谭名洋, 王芳, 杨媚, 等. 丁酸钠调控畜禽动物肠道健康的作用机制[J]. 中国畜牧杂志, 2022, 58(1): 12-16. TAN M Y, WANG F, YANG M, et al. Mechanism of sodium butyrate regulating intestinal health in livestock and poultry[J]. Chinese Journal of Animal Science, 2022, 58(1): 12-16. (in Chinese) |
[50] |
ALHAJ H W, LI Z J, SHAN T P, et al. Effects of dietary sodium butyrate on reproduction in adult breeder roosters[J]. Anim Reprod Sci, 2018, 196: 111-119. DOI:10.1016/j.anireprosci.2018.07.002 |
[51] |
BUSETTO G M, AGARWAL A, VIRMANI A, et al. Effect of metabolic and antioxidant supplementation on sperm parameters in oligo-astheno-teratozoospermia, with and without varicocele: A double-blind placebo-controlled study[J]. Andrologia, 2018, 50(3): e12927. DOI:10.1111/and.12927 |
[52] |
SHARIDEH H, ZEINOALDINI S, ZHANDI M, et al. Use of supplemental dietary coenzyme Q10 to improve testicular function and fertilization capacity in aged broiler breeder roosters[J]. Theriogenology, 2020, 142: 355-362. DOI:10.1016/j.theriogenology.2019.10.011 |
[53] |
WELLWOOD C R L, COLE R A. Relevance of carnosic acid concentrations to the selection of rosemary, Rosmarinus officinalis (L.), accessions for optimization of antioxidant yield[J]. J Agric Food Chem, 2004, 52(20): 6101-6107. DOI:10.1021/jf035335p |
[54] |
TEYMOURI ZADEH Z, SHARIATMADARI F, SHARAFI M, et al. Amelioration effects of n-3, n-6 sources of fatty acids and rosemary leaves powder on the semen parameters, reproductive hormones, and fatty acid analysis of sperm in aged Ross broiler breeder roosters[J]. Poult Sci, 2020, 99(2): 708-718. DOI:10.1016/j.psj.2019.12.031 |
[55] |
OMEJE S I, UDE I. Effect of feed restriction on body weight and semen characteristics of native and exotic (broiler) cocks[J]. J Appl Anim Res, 1998, 14(1): 81-86. DOI:10.1080/09712119.1998.9706219 |
[56] |
KOLPAKOVA M E, VESELKINA O S, VLASOV T D. Creatine in cell metabolism and its protective action in cerebral ischemia[J]. Neurosci Behav Physiol, 2015, 45(4): 476-482. DOI:10.1007/s11055-015-0098-4 |
[57] |
WALLIMANN T, TOKARSKA-SCHLATTNER M, SCHLATTNER U. The creatine kinase system and pleiotropic effects of creatine[J]. Amino Acids, 2011, 40(5): 1271-1296. DOI:10.1007/s00726-011-0877-3 |
[58] |
韩亚雯, 赖贞霖, 张梦美, 等. 4 ℃液态保存对奶山羊精子超微结构的影响[J]. 畜牧兽医学报, 2022, 53(3): 964-971. HAN Y W, LAI Z L, ZHANG M M, et al. Effect of 4 ℃ liquid storage on ultrastructure of dairy goat spermatozoa[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(3): 964-971. (in Chinese) |
[59] |
NESCI S, SPINACI M, GALEATI G, et al. Sperm function and mitochondrial activity: An insight on boar sperm metabolism[J]. Theriogenology, 2020, 144: 82-88. DOI:10.1016/j.theriogenology.2020.01.004 |
[60] |
FENG T Y, LV D L, ZHANG X, et al. Rosmarinic acid improves boar sperm quality, antioxidant capacity and energy metabolism at 17 ℃ via AMPK activation[J]. Reprod Domest Anim, 2020, 55(12): 1714-1724. DOI:10.1111/rda.13828 |
[61] |
HARDIE D G. AMP-activated protein kinase-an energy sensor that regulates all aspects of cell function[J]. Genes Dev, 2011, 25(18): 1895-1908. DOI:10.1101/gad.17420111 |
[62] |
MACIEL V L Jr, TAMASHIRO L K, BERTOLLA R P. Post-translational modifications of seminal proteins and their importance in male fertility potential[J]. Expert Rev Proteomics, 2019, 16(11-12): 941-950. DOI:10.1080/14789450.2019.1693895 |
[63] |
AITKEN R J, JONES K T, ROBERTSON S A. Reactive oxygen species and sperm function-in sickness and in health[J]. J Androl, 2012, 33(6): 1096-1106. DOI:10.2164/jandrol.112.016535 |
[64] |
CONRAD M, INGOLD I, BUDAY K, et al. ROS, thiols and thiol-regulating systems in male gametogenesis[J]. Biochim Biophys Acta, 2015, 1850(8): 1566-1574. DOI:10.1016/j.bbagen.2014.10.020 |
[65] |
KHAN R U. Antioxidants and poultry semen quality[J]. World's Poult Sci J, 2011, 67(2): 297-308. DOI:10.1017/S0043933911000316 |
[66] |
SURAI P F, FUJIHARA N, SPEAKE B K, et al. Polyunsaturated fatty acids, lipid peroxidation and antioxidant protection in avian semen-review-[J]. Asian-Australas J Anim Sci, 2001, 14(7): 1024-1050. DOI:10.5713/ajas.2001.1024 |
[67] |
KIDD S A, ESKENAZI B, WYROBEK A J. Effects of male age on semen quality and fertility: A review of the literature[J]. Fertil Steril, 2001, 75(2): 237-248. DOI:10.1016/S0015-0282(00)01679-4 |
[68] |
AGARWAL A, VIRK G, ONG C, et al. Effect of oxidative stress on male reproduction[J]. World J Mens Health, 2014, 32(1): 1-17. DOI:10.5534/wjmh.2014.32.1.1 |
[69] |
RUI B R, SHIBUYA F Y, KAWAOKU A J T, et al. Impact of induced levels of specific free radicals and malondialdehyde on chicken semen quality and fertility[J]. Theriogenology, 2017, 90: 11-19. DOI:10.1016/j.theriogenology.2016.11.001 |
[70] |
ODUWOLE O O, PELTOKETO H, HUHTANIEMI I T. Role of follicle-stimulating hormone in spermatogenesis[J]. Front Endocrinol(Lausanne), 2018, 9: 763. DOI:10.3389/fendo.2018.00763 |
[71] |
HUANG H F S, LI M T, WANG S L, et al. Alteration of cyclic adenosine 3', 5'-monophosphate signaling in rat testicular cells after spinal cord injury[J]. J Spinal Cord Med, 2003, 26(1): 69-78. DOI:10.1080/10790268.2003.11753664 |
[72] |
SMITH L B, WALKER W H. The regulation of spermatogenesis by androgens[J]. Semin Cell Dev Biol, 2014, 30: 2-13. DOI:10.1016/j.semcdb.2014.02.012 |
[73] |
ZIRKIN B R, PAPADOPOULOS V. Leydig cells: Formation, function, and regulation[J]. Biol Reprod, 2018, 99(1): 101-111. DOI:10.1093/biolre/ioy059 |
[74] |
FRAGOSOJ S, DÍAZM P, MORENO J C A, et al. Relationships between fertility and some parameters in male broiler breeders (body and testicular weight, histology and immunohistochemistry of testes, spermatogenesis and hormonal levels)[J]. Reprod Domest Anim, 2013, 48(2): 345-352. DOI:10.1111/j.1439-0531.2012.02161.x |
[75] |
DIMITRIADIS F, TSIAMPALI C, CHALIASOS N, et al. The Sertoli cell as the orchestra conductor of spermatogenesis: spermatogenic cells dance to the tune of testosterone[J]. Hormones(Athens), 2015, 14(4): 479-503. |
[76] |
VERMA R, KRISHNA A. Effect of Letrozole, a selective aromatase inhibitor, on testicular activities in adult mice: both in vivo and in vitro study[J]. Gen Comp Endocrinol, 2017, 241: 57-68. DOI:10.1016/j.ygcen.2016.02.028 |
(编辑 郭云雁)