畜牧兽医学报  2022, Vol. 53 Issue (6): 2005-2014. DOI: 10.11843/j.issn.0366-6964.2022.06.033    PDF    
北京黑猪NR6A1、VSX2、VRTNLTBP2基因多态性与脊椎数及胴体性状的关联分析
牛乃琪, 刘倩, 侯欣华, 刘欣, 王立刚, 赵福平, 高红梅, 石丽君, 王立贤, 张龙超     
中国农业科学院北京畜牧兽医研究所,北京 100193
摘要:旨在研究NR6A1、VSX2、VRTNLTBP2基因在北京黑猪群体中基因的多态性与脊椎数和胴体性状(胴体长、胴体直长、胴体斜长及胴体重)的关联。本研究提取410头(210±7)日龄健康北京黑猪耳组织DNA,通过PCR技术和Sanger测序技术对4个基因外显子区进行基因分型,计算变异位点基因型频率以及等位基因频率的分布,并与脊椎数和胴体性状进行关联分析。结果表明,在VSX2、VRTNLTBP2三个基因中共筛选到15个SNPs,其中包含1个CDS区的同义突变和14个3′UTR突变。使用Duncan′s多重检验统计分析发现,VSX2基因中CDS区的1个突变c.536 G>A与脊椎数关联显著(P<0.05)。VRTN中3′UTR区共4个突变与性状关联显著(P<0.05),其中c.2598 A>G和c.2607 G>T与脊椎数、胴体长、胴体直长及胴体斜长关联显著,c.3087 G>C只与胴体斜长关联显著,c.3094 A>G与脊椎数及胴体斜长关联显著(P<0.05)。LTBP2上6个3′UTR突变位点(c.7158 A>G、c.6869 C>T、c.6319 G>C、c.6246 G>T、c.6170 A>G、c.6079 G>T)与脊椎数关联显著(P<0.05),但与胴体性状关联不显著。综上所述,VSX2、VRTNLTBP2基因中共有10个SNPs与脊椎数性状关联显著(P<0.05),仅VRTN基因中4个SNPs与胴体性状关联显著(P<0.05)。这些关联显著的SNPs可以作为北京黑猪脊椎数及胴体性状变异的候选基因功能位点。
关键词北京黑猪    基因    脊椎数    胴体性状    关联    
Association of Polymorphisms of NR6A1, VSX2, VRTN, LTBP2 Genes with Vertebral Number and Carcass Traits in Beijing Black Pigs
NIU Naiqi, LIU Qian, HOU Xinhua, LIU Xin, WANG Ligang, ZHAO Fuping, GAO Hongmei, SHI Lijun, WANG Lixian, ZHANG Longchao     
Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Abstract: The aim of this study was to investigate the association between polymorphisms of NR6A1, VSX2, VRTN and LTBP2 genes and vertebral number and carcass traits (carcass length, straight length, diagonal length and carcass weight) in Beijing black pigs. In this study, DNA was extracted from ear tissue of 410 healthy Beijing black pigs at the age of (210±7) days. The exon regions of 4 genes were genotyped by PCR and Sanger sequencing. The distribution of genotype frequency and allele frequency of the mutated loci were calculated, and the correlation between polymorphisms of mutated loci and vertebral number and carcass traits was analyzed. A total of 15 SNPs were detected in VSX2, VRTN and LTBP2 genes, including one synonymous mutation in CDS region and 14 3′UTR mutations. Statistical analysis using Duncan's multiple test revealed that a mutation of VSX2 c.536 G > A was significantly associated with vertebral number (P < 0.05). Four mutations in VRTN 3′UTR were significantly associated with traits (P < 0.05). Two mutations, c.2598 A > G and c.2607 G > T, were significantly related with vertebral number, carcass length, carcass straight length and carcass diagonal length(P < 0.05). A mutation, c.3087 G > C, was significantly associated with carcass diagonal length(P < 0.05). A mutation, c.3094 A > G, was significantly related with vertebral number and carcass diagonal length(P < 0.05). Six mutants in LTBP2 3′UTR, c.7158 A > G, c.6869 C > T, c.6319 G > C, c.6246 G > T, c.6170 A > G, c.6079 G > T, were significantly associated with vertebral number (P < 0.05), but no significant association with carcass traits. In conclusion, 10 SNPs in VSX2, VRTN and LTBP2 genes were significantly associated with vertebral number (P < 0.05), 4 SNPs in VRTN were significantly associated with carcass traits (P < 0.05). Above all SNPs could be used as candidate functional loci for the variation of vertebral number and carcass traits of Beijing black pigs.
Key words: Beijing black pigs    gene    vertebral number    carcass traits    association    

在脊椎动物进化中,猪是为数不多存在脊椎数变异的动物之一[1]。北京黑猪是20世纪60年代由巴克夏、大白以及中国地方猪种杂交形成的一个地方猪种[2],其脊椎数(胸椎和腰椎的总和)存在从20~23节的表型变异。脊椎数是高遗传力(0.6~0.62)的经济性状[3],它的增加对于动物的体尺、胴体长、胴体重和生产性能有显著的正向影响[4]。在猪中胸腰椎数的变异极大,颈椎和荐椎数基本固定,颈椎数一直固定在7节,荐椎数固定在4节,尾椎数虽有较大差异但与胴体长无关。研究表明,每增加一根脊椎胴体长将增加80 mm[4]。Wada等[5]将影响猪脊椎数的QTL定位在Sus scrofa 1号染色体上(SSC1);随后,Sato等[6]构建了梅山母猪×杜洛克公猪的F2资源群体,将影响胸腰椎总数的QTL定位于SSC1和SSC7上。通过进一步的深入研究,在SSC1上发现了核受体亚家族6A组成员1(NR6A1)[7],在SSC7上发现了椎骨发育相关基因(VRTN)[8-10]和潜在转化生长因子β结合蛋白2(LTBP2)[11-13]

NR6A1是一个在胚胎发育中发挥重要作用的基因,在早期小鼠胚胎和后期发育中的神经系统广泛表达[7, 14]。在体节发生过程中,突变的胚胎会形成13体节而代替原来的25体节[15]NR6A1是一个利用多种辅抑制因子复合物来抑制和沉默基因转录的转录抑制因子,错义变异发生在铰链结构域,这是NR6A1与核受体辅阻遏子1 (NCoR1)[16]和核受体相关蛋白80 (RAP80)[17]相互作用的必要条件。

VSX2亦称HOX10,是HOX基因家族中独一无二的一簇,它们在脊椎动物轴向骨骼进化中发挥着核心作用[18-20]VRTN被认为是影响脊椎数强有力的候选基因[8, 21]。随后试验证明,VRTN是一种新型的位于细胞核中的DNA结合转录因子,在全基因组范围内与DNA结合,并调节一组含有VRTN结合基序的基因转录[10]LTBP2是包含LTBPs 1-4和fibrillins 1、2和3的LTBP-fibrillin的基因家族中的一部分[22],LTBP家族是一组细胞外多结构域蛋白,具有多种独特的生物学特性[23]。所有的4种LTBP异构体都与fibrillin微纤维相关,LTBP-1、2和4的C端都与fibrillin-1 N端相似的区域相互作用[24-26]LTBP2是家族唯一一个不与TGFβ结合而可以独立存储和激活的成员[27]

虽然上述4个基因已被认为是影响脊椎数及胴体性状的候选基因,但在北京黑猪中的多态性及与性状的关联分析尚未见报道。本研究旨在对4个基因的所有外显子区进行聚合酶链式反应(PCR)、突变位点检测及开展基因型与脊椎数及胴体性状的关联分析,以期探索调控性状变异的候选基因功能位点,为下一步阐释性状变异的遗传机理奠定基础。

1 材料与方法 1.1 组织样品的采集及表型数据的测定和记录

收集(210±7)日龄的410头北京黑猪组织样并记录脊椎数和胴体性状。动物均饲养在北京黑六牧业科技有限公司。

1.2 DNA提取

使用DNA提取试剂盒(QIAamp DNA Mini Kit)进行组织样品的DNA提取,使用超微量分光光度计(IMPLEN)进行DNA浓度、核酸与蛋白及酚类物质最高吸收峰的吸收波长比值(260 nm/280 nm)、核酸与碳水化合物最高吸收峰的吸收波长比值(260 nm/230 nm)的检测,并用2%的琼脂糖凝胶进行DNA质量检测评估,将质量合格的DNA样品放入-20 ℃的冰箱中存放。

1.3 引物设计及合成

利用Primer Premier 5.0对NR6A1(NM_001097499.1)、VSX2(XM_021100021.1)、VRTN(NM_001195113.1)及LTBP2(XM_021099520.1)基因共设计53对引物,由于引物较多,本研究将找出突变位点的引物列于表 1,设计好的引物均有北京六合华大基因科技有限公司合成。

表 1 引物信息 Table 1 Information of primer
1.4 聚合酶链式反应(PCR)

采用25 μL的反应体系(Code:P505-d1,Vazyme):2×Phanta Max Buffer 12.5 μL,0.5 μL聚合酶,0.5 μL dNTP,1 μL上游引物,1 μL下游引物,8.5 μL无菌水,1 μL模板。PCR程序如下(ABI,Singapore):95 ℃预变性5 min;95 ℃变性30 s,57~62 ℃退火30 s,72 ℃延伸30~90 s,35个循环;72 ℃延伸2 min。对410头北京黑猪使用96孔板采用以上程序进行PCR扩增,PCR产物通过1.5%凝胶进行切胶回收单一条带,在北京六合华大基因科技有限公司平台进行双向的Sanger测序。

1.5 数据统计分析

对PCR扩增得到的产物测序后使用DNAStar中的SeqMan进行基因分型,使用Microsoft Excel 2016进行基因型频率和等位基因频率的统计。使用SAS 9.2进行表型与基因型的关联分析,采用Duncan′s多重检验评估不同基因型之间差异的显著性(P<0.05),数据使用“平均值±标准差”表示,P<0.05判定为差异显著。

2 结果 2.1 北京黑猪表型数据的描述

410头北京黑猪个体的表型值(脊椎数和胴体性状),脊椎数的均值达21节,变异系数为2.76%;胴体长的均值达97.99 cm,变异系数为4.84%;胴体直长的均值达89.88 cm,变异系数为4.53%;胴体斜长的均值达76.12 cm,变异系数为4.35%;胴体重的均值达64.32 kg,变异系数为11.72%(表 2)。

表 2 脊椎数和胴体性状的表型值统计 Table 2 Statistics of phenotypic values of the vertebral number and carcass traits
2.2 NR6A1、VSX2、VRTNLTBP2基因突变位点的基因型频率及等位基因频率

通过对4个基因进行PCR扩增后共发现15个突变(表 3表 4)分别在CDS和3′UTR区,其中1个为VSX2基因的同义突变,5个为VRTN基因的3′UTR突变和9个为LTBP2基因的3′UTR突变。这15个SNPs的基因型频率变化范围为4%~78%,其等位基因频率变化范围15%~85%。

表 3 北京黑猪中VSX2和VRTN突变位点的基因型频率及等位基因频率统计 Table 3 Statistics of genotype and allele frequencies of mutated loci in VSX2 and VRTN genes in Beijing black pigs
表 4 北京黑猪中LTBP2突变位点的基因型频率及等位基因频率统计 Table 4 Statistics of genotype and allele frequencies of mutated loci in LTBP2 gene in Beijing black pigs
2.3 NR6A1、VSX2、VRTNLTBP2的15个SNPs的数据统计分析

NR6A1、VSX2、VRTNLTBP2基因通过PCR扩增筛选得到的15个SNPs位点(VSX2上1个同义突变;VRTN上5个3′UTR;LTBP2上9个3′UTR)的基因型与北京黑猪的脊椎数、胴体长、胴体直长、胴体斜长及胴体重的关联分析结果见表 56VSX2上1个同义突变c.536 G>A与脊椎数显著相关,与与胴体长、胴体直长、胴体斜长及胴体重无显著相关;VRTN上c.2598 A>G、c.2607 G>T与脊椎数、胴体长、胴体直长和胴体斜长关联显著,与胴体重关联不显著,c.2715 C>T与脊椎数、胴体长、胴体直长、胴体斜长和胴体重关联不显著,c.3087 G>C只与胴体斜长关联显著,与脊椎数、胴体长、胴体直长和胴体重关联不显著,c.3094 A>G与脊椎数和胴体斜长关联显著,与胴体长,胴体直长和胴体重关联不显著;LTBP2上6个(c.7158 A>G、c.6869 C>T、c.6319 G>C、c.6246 G>T、c.6170 A>G、c.6079 G>T)与脊椎数差异显著相关,但与胴体长、胴体直长、胴体斜长及胴体重关联均不显著。

表 5 VSX2和VRTN基因6个SNPs与脊椎数和胴体性状的关联分析 Table 5 The association analysis of 6 SNPs of VSX2 and VRTN genes with vertebral number and carcass traits
表 6 LTBP2基因9个SNPs与脊椎数和胴体性状的关联分析 Table 6 The association analysis of 9 SNPs of LTBP2 gene with vertebral number and carcass traits
3 讨论

猪的脊椎数是一个重要的影响猪体型性状的高遗传力经济性状。对猪的脊椎数经过长期的研究,将QTL定位在了SSC1和SSC7上[28]。研究表明,通过全基因组关联分析得到,SSC1上的NR6A1被认为是影响脊椎数和体长性状的候选基因[29-32],并发现NR6A1(c.748C>T)发生碱基替换,导致了192密码子脯氨酸突变为亮氨酸[7]。等位基因T在所研究的西方商业种猪中(杜洛克,大白和长白猪)似乎都是固定的,而在中国本地猪种和野猪中表现出更高的CC基因型频率[29, 33]。不仅如此,NR6A1基因的多态性对猪的体尺的增减[34]及家猪和野猪的区分[35]有重要影响。已有研究表明,NR6A1基因的渗入对于河南本土猪的体型大小和饲料转化率有显著影响[36]。本研究通过对NR6A1基因的全部外显子区在北京黑猪群体中进行PCR扩增,发现均是固定的TT基因型,也未发现其他与脊椎数和胴体性状显著相关的突变。

在SSC7上,VSX2(也称HOX10)由于可以阻止肋骨的形成,因此对脊椎动物脊柱腰椎区的形成至关重要[20, 37-38]。基于它的重要性,对其进行PCR扩增,发现了一个同义突变(c.536 G>A),这一突变对脊椎数有着显著影响。VRTN基因位于SSC7上,是影响猪多个性状的候选基因,如脊椎数变异、繁殖性状[39]等,且在脊椎形成过程中是一个关键的转录因子[40]。先前报道了VRTN变体与中国和西方猪种的胸椎数(肋骨数)显著相关,在研究中将VRTN作为获得猪高脊椎数和长度相关性状的有效选择标记,是影响几个西方猪种肉品质可能的基因标记[8-9, 41]。基于以上研究,Yang等[42]利用中国地方猪种二花脸以及白杜洛克与二花脸构建的F2群体和两个西方品种证明了VRTN突变的因果突变很可能是从中国猪种渗入欧洲猪种的。本研究在VRTN基因中发现5个3′UTR突变,3个(c.2598 A>G、c.2607 G>T、c.3094 A>G)与脊椎数显著相关的SNPs;2个(c.2598 A>G、c.2607 G>T)与胴体长及胴体直长显著相关的SNPs;4个(c.2598 A>G、c.2607 G>T、c.3087 G>C、c.3094 A>G)与胴体斜长显著相关的SNPs。

随着研究的不断深入,在大白与民猪构建的F2资源群体中通过GWAS及单倍型的分析将SSC7上的区间缩小至951 kb,并将影响猪脊椎数的主效候选基因定位在此区间的LTBP2上[11, 13]。之后对长白猪与韩国本地猪的F2代群体进行了GWAS及单倍型的连锁与连锁不平衡分析,将关键区域定位在包括LTBP2在内的533.9 kb区域,更加验证了LTBP2基因可作为影响猪脊椎数的候选基因[12]。本研究在北京黑猪中共发现了9个3′UTR突变,其中c.7158 A>G、c.6869 C>T、c.6319 G>C、c.6246 G>T、c.6170 A>G、c.6079 G>T与脊椎数差异显著相关,但是与胴体性状关联不显著。

4 结论

本研究通过使用410头北京黑猪对NR6A1、VSX2、VRTNLTBP2等4个基因进行多态性探索及与脊椎数和胴体性状的关联分析,共发现15个SNPs,其中VSX2、VRTNLTBP2上10个SNPs与脊椎数显著相关;仅VRTN上4个SNPs与胴体性状显著相关,为探索调控性状变异的候选基因功能位点和阐释性状变异的遗传机理奠定基础。

参考文献
[1]
NARITA Y, KURATANI S. Evolution of the vertebral formulae in mammals: a perspective on developmental constraints[J]. J Exp Zool B Mol Dev Evol, 2005, 304B(2): 91-106. DOI:10.1002/jez.b.21029
[2]
ZHANG L C, WANG L G, LI Y, et al. A substitution within erythropoietin receptor gene D1 domain associated with litter size in Beijing Black pig, Sus scrofa[J]. Anim Sci J, 2011, 82(5): 627-632. DOI:10.1111/j.1740-0929.2011.00901.x
[3]
FREDEEN H T, NEWMAN J A. Rib and vertebral numbers in swine: Ⅱ.Genetic aspects[J]. Can J Anim Sci, 1962, 42(2): 240-251. DOI:10.4141/cjas62-037
[4]
KING J W B, ROBERTS R C. Carcass length in the bacon pig; its association with vertebrae numbers and prediction from radiographs of the young pig[J]. Anim Sci, 2010, 2(1): 59-65.
[5]
WADA Y, AKITA T, AWATA T, et al. Quantitative trait loci (QTL) analysis in a Meishan×Göttingen cross population[J]. Anim Genet, 2000, 31(6): 376-384. DOI:10.1046/j.1365-2052.2000.00696.x
[6]
SATO S, OYAMADA Y, ATSUJI K, et al. Quantitative trait loci analysis for growth and carcass traits in a Meishan×Duroc F2 resource population[J]. J Anim Sci, 2003, 81(12): 2938-2949. DOI:10.2527/2003.81122938x
[7]
MIKAWA S, MOROZUMI T, SHIMANUKI S I, et al. Fine mapping of a swine quantitative trait locus for number of vertebrae and analysis of an orphan nuclear receptor, germ cell nuclear factor (NR6A1)[J]. Genome Res, 2007, 17(5): 586-593. DOI:10.1101/gr.6085507
[8]
FAN Y, XING Y Y, ZHANG Z Y, et al. A further look at porcine chromosome 7 reveals VRTN variants associated with vertebral number in Chinese and western pigs[J]. PLoS One, 2013, 8(4): e62534. DOI:10.1371/journal.pone.0062534
[9]
NAKANO H, SATO S, UEMOTO Y, et al. Effect of VRTN gene polymorphisms on Duroc pig production and carcass traits, and their genetic relationships[J]. Anim Sci J, 2015, 86(2): 125-131. DOI:10.1111/asj.12260
[10]
DUAN Y Y, ZHANG H, ZHANG Z, et al. VRTN is required for the development of thoracic vertebrae in mammals[J]. Int J Biol Sci, 2018, 14(6): 667-681. DOI:10.7150/ijbs.23815
[11]
ZHANG L C, YUE J W, PU L, et al. Genome-wide study refines the quantitative trait locus for number of ribs in a Large White×Minzhu intercross pig population and reveals a new candidate gene[J]. Mol Genet Genomics, 2016, 291(5): 1885-1890. DOI:10.1007/s00438-016-1220-1
[12]
PARK H B, HAN S H, LEE J B, et al. Rapid communication: high-resolution quantitative trait loci analysis identifies LTBP2 encoding latent transforming growth factor beta binding protein 2 associated with thoracic vertebrae number in a large F2 intercross between Landrace and Korean native pigs[J]. J Anim Sci, 2017, 95(5): 1957-1962.
[13]
岳静伟. 猪肋骨数性状全基因组关联分析及LTBP2基因的克隆与表达[D]. 北京: 中国农业科学院, 2017.
YUE J W. Genome-wide association analysis for number of porcine ribs and the clone and expression of LTBP2[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese)
[14]
WANG Q, COONEY A J. Revisiting the role of GCNF in embryonic development[J]. Semin Cell Dev Biol, 2013, 24(10-12): 679-686. DOI:10.1016/j.semcdb.2013.08.003
[15]
CHUNG A C K, KATZ D, PEREIRA F A, et al. Loss of orphan receptor germ cell nuclear factor function results in ectopic development of the tail bud and a novel posterior truncation[J]. Mol Cell Biol, 2001, 21(2): 663-677. DOI:10.1128/MCB.21.2.663-677.2001
[16]
HÖRLEIN A J, NÄÄR A M, HEINZEL T, et al. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor[J]. Nature, 1995, 377(6548): 397-404. DOI:10.1038/377397a0
[17]
YAN Z J, KIM Y S, JETTEN A M. RAP80, a novel nuclear protein that interacts with the retinoid-related testis-associated receptor[J]. J Biol Chem, 2002, 277(35): 32379-32388. DOI:10.1074/jbc.M203475200
[18]
WELLIK D M, CAPECCHI M R. Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton[J]. Science, 2003, 301(5631): 363-367. DOI:10.1126/science.1085672
[19]
MALLO M, WELLIK D M, DESCHAMPS J. Hox genes and regional patterning of the vertebrate body plan[J]. Dev Biol, 2010, 344(1): 7-15. DOI:10.1016/j.ydbio.2010.04.024
[20]
MCINTYRE D C, RAKSHIT S, YALLOWITZ A R, et al. Hox patterning of the vertebrate rib cage[J]. Development, 2007, 134(16): 2981-2989. DOI:10.1242/dev.007567
[21]
MIKAWA S, SATO S, NⅡ M, et al. Identification of a second gene associated with variation in vertebral number in domestic pigs[J]. BMC Genet, 2011, 12: 5.
[22]
SAHARINEN J, HYYTIÄINEN M, TAIPALE J, et al. Latent transforming growth factor-β binding proteins (LTBPs)—structural extracellular matrix proteins for targeting TGF-β action[J]. Cytokine Growth Factor Rev, 1999, 10(2): 99-117. DOI:10.1016/S1359-6101(99)00010-6
[23]
SACKS D, BAXTER B, CAMPBELL B C V, et al. Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke[J]. Int J Stroke, 2018, 13(6): 612-632.
[24]
MASSAM-WU T, CHIU M, CHOUDHURY R, et al. Assembly of fibrillin microfibrils governs extracellular deposition of latent TGFβ[J]. J Cell Sci, 2010, 123(17): 3006-3018. DOI:10.1242/jcs.073437
[25]
ISOGAI Z, ONO R N, USHIRO S, et al. Latent transforming growth factor β-binding protein 1 interacts with fibrillin and is a microfibril-associated protein[J]. J Biol Chem, 2003, 278(4): 2750-2757. DOI:10.1074/jbc.M209256200
[26]
ONO R N, SENGLE G, CHARBONNEAU N L, et al. Latent transforming growth factor β-binding proteins and fibulins compete for fibrillin-1 and exhibit exquisite specificities in binding sites[J]. J Biol Chem, 2009, 284(25): 16872-16881. DOI:10.1074/jbc.M809348200
[27]
SAHARINEN J, KESKI-OJA J. Specific sequence motif of 8-Cys repeats of TGF-β binding proteins, LTBPs, creates a hydrophobic interaction surface for binding of small latent TGF-β[J]. Mol Biol Cell, 2000, 11(8): 2691-2704. DOI:10.1091/mbc.11.8.2691
[28]
MIKAWA S, HAYASHI T, NⅡ M, et al. Two quantitative trait loci on Sus scrofa chromosomes 1 and 7 affecting the number of vertebrae[J]. J Anim Sci, 2005, 83(10): 2247-2254. DOI:10.2527/2005.83102247x
[29]
YANG G, REN J, ZHANG Z, et al. Genetic evidence for the introgression of western NR6A1 haplotype into Chinese licha breed associated with increased vertebral number[J]. Anim Genet, 2009, 40(2): 247-250. DOI:10.1111/j.1365-2052.2008.01820.x
[30]
RIBANI A, UTZERI V J, GERACI C, et al. Signatures of de-domestication in autochthonous pig breeds and of domestication in wild boar populations from MC1R and NR6A1 allele distribution[J]. Anim Genet, 2019, 50(2): 166-171. DOI:10.1111/age.12771
[31]
YAN G R, QIAO R M, ZHANG F, et al. Imputation-based whole-genome sequence association study rediscovered the missing QTL for lumbar number in Sutai pigs[J]. Sci Rep, 2017, 7(1): 615. DOI:10.1038/s41598-017-00729-0
[32]
RUBIN C J, MEGENS H J, BARRIO A M, et al. Strong signatures of selection in the domestic pig genome[J]. Proc Natl Acad Sci U S A, 2012, 109(48): 19529-19536. DOI:10.1073/pnas.1217149109
[33]
FONTANESI L, RIBANI A, SCOTTI E, et al. Differentiation of meat from European wild boars and domestic pigs using polymorphisms in the MC1R and NR6A1 genes[J]. Meat Sci, 2014, 98(4): 781-784. DOI:10.1016/j.meatsci.2014.07.026
[34]
IJIRI M, LAI Y C, KAWAGUCHI H, et al. NR6A1 allelic frequencies as an index for both miniaturizing and increasing pig body size[J]. In Vivo, 2021, 35(1): 163-167. DOI:10.21873/invivo.12244
[35]
KOSENIUK A, SMOŁUCHA G, NATONEK-WIŚNIEWSKA M, et al. Differentiating pigs from wild boars based on NR6A1 and MC1R gene polymorphisms[J]. Animals (Basel), 2021, 11(7): 2123.
[36]
WANG K J, ZHANG L G, DUAN D D, et al. Genomic analysis reveals human-mediated introgression from european commercial pigs to henan indigenous pigs[J]. Front Genet, 2021, 12: 705803. DOI:10.3389/fgene.2021.705803
[37]
GUERREIRO I, CASACA A, NUNES A, et al. Regulatory role for a conserved motif adjacent to the homeodomain of Hox10 proteins[J]. Development, 2012, 139(15): 2703-2710. DOI:10.1242/dev.081448
[38]
刘倩, 岳静伟, 牛乃琪, 等. 脊椎动物胚胎期脊椎的形成及信号通路调控机制[J]. 畜牧兽医学报, 2021, 52(6): 1461-1470.
LIU Q, YUE J W, NIU N Q, et al. The regulation mechanism and signal pathway for spine formation in vertebrate embryo[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(6): 1461-1470. (in Chinese)
[39]
莫家远, 高九昱, 孙乐, 等. 巴马香猪VRTN基因克隆、表达及其多态性与繁殖性状的关联分析[J]. 畜牧兽医学报, 2020, 51(5): 1007-1018.
MO J Y, GAO J Y, SUN L, et al. Cloning, expression of VRTN gene and association analysis of its polymorphism with reproductive traits in Bama Xiang Pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(5): 1007-1018. (in Chinese)
[40]
SATO S, UEMOTO Y, KIKUCHI T, et al. SNP- and haplotype-based genome-wide association studies for growth, carcass, and meat quality traits in a Duroc multigenerational population[J]. BMC Genet, 2016, 17: 60.
[41]
BURGOS C, LATORRE P, ALTARRIBA J, et al. Allelic frequencies of NR6A1 and VRTN, two genes that affect vertebrae number in diverse pig breeds: a study of the effects of the VRTN insertion on phenotypic traits of a Duroc×Landrace-Large White cross[J]. Meat Sci, 2015, 100: 150-155. DOI:10.1016/j.meatsci.2014.09.143
[42]
YANG J, HUANG L S, YANG M, et al. Possible introgression of the VRTN mutation increasing vertebral number, carcass length and teat number from Chinese pigs into European pigs[J]. Sci Rep, 2016, 6: 19240. DOI:10.1038/srep19240

(编辑   郭云雁)