畜牧兽医学报  2022, Vol. 53 Issue (6): 1702-1711. DOI: 10.11843/j.issn.0366-6964.2022.06.005    PDF    
系统分析多组织转录组鉴定影响猪脂肪沉积的关键基因
翟丽维1, 赵延辉2, 李文军3, 邢凯2, 王楚端1     
1. 中国农业大学动物科技学院,北京 100193;
2. 北京农学院动物科学技术学院,北京 102206;
3. 北京三元种业科技股份有限公司,北京 100029
摘要:旨在挖掘影响松辽黑猪脂肪沉积的关键基因及脂肪、肝和肌肉在体内的功能。本研究选择体重100 kg左右健康且背膘厚差异显著的6头(高、低各3头)松辽黑猪为试验动物,利用高通量转录组测序技术检测其脂肪、肝和背最长肌组织中基因的表达水平,鉴定不同脂肪沉积猪和不同组织中的差异表达基因,并分析差异表达基因的生物学功能。结果表明,在不同分组的猪中发现135个差异表达基因,其中部分参与了PPAR信号通路、AMPK信号通路、代谢通路、脂肪酸代谢和甘油代谢等通路。经生物学功能分析发现,EHHADHME1、SCDOLR1、PHGDHACLYLEPCYP超家族基因等基因为影响猪脂肪沉积的关键基因。在不同组织的差异表达表达基因中,脂肪组织中高表达的基因显著富集在胰岛素信号通路、MAPK信号通路、三羧酸循环、氧化磷酸化等通路;肝中高表达基因显著富集在多种物质的代谢、脂肪酸的降解、氨基酸的合成等通路;背最长肌中高表达的基因主要参与了蛋白质的降解、PI3K-Akt信号通路、氧化磷酸化通路、Wnt信号通路、磷脂酰肌醇信号通路等通路。不同组间差异表达基因分析结果提示,EHHADHME1、SCDOLR1、PHGDHACLYLEPCYP超家族基因等基因是影响脂肪沉积的关键基因;不同组织间差异表达基因表明,脂肪组织是脂肪合成的主要部位,而肝和肌肉组织主要涉及脂肪酸的降解。本研究结果对脂肪性状的遗传改良、机理解析有一定意义。
关键词松辽黑猪    多组织    转录组    系统分析    脂肪沉积    
System Analysis of Multi Tissue Transcriptome to Identify Key Genes Affecting Porcine Fat Deposition
ZHAI Liwei1, ZHAO Yanhui2, LI Wenjun3, XING Kai2, WANG Chuduan1     
1. College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
2. College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China;
3. Beijing Sanyuan Breeding Technology Co. Ltd., Beijing 100029, China
Abstract: This study aimed to identify key genes affecting fat deposition and explore the function of adipose tissue, liver and muscle in Songliao black pigs. In this study, 6 healthy Songliao black pigs with weight of about 100 kg and significant difference in backfat thickness (3 high and 3 low) were selected as experimental animals. The gene expression levels in fat, liver and longissimus dorsi muscle were detected by high-throughput transcriptome sequencing, the differentially expressed genes in pigs with different fat deposition levels and different tissues were identified, and the biological functions of the differentially expressed genes were analyzed. The results showed that 135 differentially expressed genes were found in different groups of pigs, some of which were involved in PPAR signaling pathway, AMPK signaling pathway, metabolic pathway, fatty acid metabolism and glycerol metabolism. The biological function analysis showed that EHHADH, ME1, SCD, OLR1, PHGDH, ACLY, LEP and CYP gene family were the key genes affecting pig fat deposition. Among the differentially expressed genes in different tissues, the highly expressed genes in adipose tissue were significantly enriched in insulin signaling pathway, MAPK signaling pathway, tricarboxylic acid cycle, oxidative phosphorylation pathways, and so on; The highly expressed genes in the liver were significantly enriched in the metabolism of various substances, the degradation of fatty acids and the synthesis of amino acids; The highly expressed genes in longissimus dorsi muscle were mainly involved in protein degradation, PI3K-Akt signaling pathway, oxidative phosphorylation pathway, Wnt signaling pathway and phosphatidylinositol signaling pathway. The analysis results of differentially expressed genes among different groups suggest that EHHADH, ME1, SCD, OLR1, PHGDH, ACLY, LEP and CYP gene family are the candidate genes affecting fat deposition; The differentially expressed genes between different tissues show that adipose tissue is the main site of adipogenesis, while liver and muscle tissue are mainly involved in the degradation of fatty acids. This study results has certain significance for genetic improvement and mechanism analysis of fat traits.
Key words: Songliao black pig    multi-tissue    transcriptome    system analysis    fat deposition    

猪脂肪沉积性状是生猪生产中重要的经济性状。猪脂肪沉积的多少直接影响其生长速度、饲料转化效率、瘦肉率、肉品质和繁殖性能[1]。相比于小鼠等模式动物,猪与人类有着更为相近的体重、消化系统、沉脂能力等解剖学或生理学特征。猪也成为研究人类肥胖症、糖尿病、代谢紊乱症等疾病的良好医学模型[2]。因此,鉴定影响猪脂肪沉积的关键基因一直是科研界的热点。

脂肪沉积在猪体内是一个动态的过程,包括了脂肪的合成、分解和转运等过程[3]。脂肪组织、肝和肌肉组织是脂肪合成和分解的主要场所,是调控脂肪沉积的关键部位[4]。猪脂肪组织是储存甘油三酯和从头生物合成脂肪酸的主要部位[5]。分解代谢长链脂肪酸和胆固醇生成的主要部位在肝组织[6]。肌肉组织中主要发生的生物学过程是甘油三酯和脂肪酸的代谢[7]。肌肉、脂肪与肝组织协同调控猪脂肪沉积与代谢过程,也影响整个机体的能量代谢与稳态。

高通量测序技术为在整体水平研究特定细胞或组织中全部转录产物提供了可靠的技术平台[8]。近年来,转录组测序技术用于分析不同沉脂能力猪脂肪组织、肝和肌肉组织,鉴定其基因表达水平,筛选影响猪脂肪沉积和脂肪细胞分化的关键基因。本研究以前期研究的具有显著差异脂肪沉积能力的松辽黑猪的脂肪组织、肝和肌肉组织的转录组高通量测序数据为基础,系统分析不同分组和组织对基因表达的影响,以期鉴定影响猪脂肪沉积的关键基因及不同组织在脂肪沉积中的作用。

1 材料与方法 1.1 试验材料

本研究选择体重100 kg左右健康且背膘厚差异显著的6头(高、低各3头)松辽黑猪为试验动物。高背膘厚组猪的背膘厚度((25.03±0.90) mm)显著高于低背膘厚组((9.51±1.39) mm)。两组在校正背膘厚度、胴体背膘厚度和板油重性状上也差异极显著[9]。24 h禁食不禁水后,对试验动物进行屠宰。采集背部皮下脂肪组织、肝和背最长肌组织样品,立即放入液氮中保存备用。

1.2 文库构建和转录组测序

按照Trizol Reagent (Invitrogen) 说明书提取3种组织的总RNA。利用1%琼脂糖凝胶电泳和Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA)检测RNA样本的质量。质检合格的RNA样品用于构建测序文库。文库质检合格后,在Illumina Hiseq 2000平台上进行双端转录组测序。

1.3 测序数据处理流程

使用Fastx-toolkit软件(http://hannonlab.cshl.edu/fastx_toolkit)[10]对下机数据进行质控,除去接头和低质量的reads。使用TopHat v2.0.1软件[11]将高质量的reads比对到猪参考基因组(Sscrofa 11.1, ftp://ftp.ensembl.org/pub/release-99/fasta/sus_scrofa/dna/)上。HT-seq软件被用于鉴定基因在每个样本中的表达水平。

1.4 差异表达基因鉴定

本研究采用R包DEseq2中双因素的模块进行差异表达基因(differentially expression genes, DEGs)的鉴定,分析不同沉脂能力和组织对基因表达的影响[12]。采用的一般线性模型为y=group+tissue+group*tissue,其中group为不同背膘厚度群体的效应;tissue为组织的效应;group*tissue为二者的交互作用[13]。筛选DEGs的阈值为FDR < 0.05和差异表达倍数大于2倍(Fold change>2或 < 0.5)。

1.5 DEGs的功能富集分析

为进一步分析DEGs的功能,使用在线分析工具DAVID(https://david.ncifcrf.gov/)将筛选出的DEGs进行GO和KEGG功能富集分析[14]P < 0.05通路和GO条目为DEGs显著富集的通路。

1.6 实时荧光定量PCR验证

选取6个差异表达基因,以猪的GAPDH为内参基因进行实时荧光定量PCR (RT-qPCR)验证。根据NCBI上基因对应的cDNA序列,利用软件Primer 5.0设计引物(表 1),引物委托生工生物工程(上海)股份有限公司合成。提取3种组织样品的总RNA,用RevertAid Stand cDNA Synthesis Kit试剂盒合成cDNA,根据SYBRPrimix Ex TaqTM试剂盒说明书进行RT-qPCR。使用2-ΔΔCt法计算基因的相对表达量。

表 1 RT-qPCR引物信息 Table 1 Primer information for real-time quantitative PCR
2 结果 2.1 测序数据整体分析

将测序数据进行质控后,在脂肪组织、肝和背最长肌中分别获得平均2.05×107、2.13×107和1.83× 107条reads,分别注释到19 928、22 963和22 449个基因上。其中,14 830个基因在3个组织中共同表达。通过PCA、相关性和基因表达分析发现,相同组织样本间的相关性较高,而不同组织间样本的相关性较低(图 1)。

A.基因表达水平PCA图;B.基因表达水平箱式图。BHF、BLF、BHL、BLL、BHM和BLM分别代表高背膘厚组脂肪组织、低背膘厚组脂肪组织、高背膘厚组肝组织、低背膘厚组肝组织、高背膘厚组肌肉组织和低背膘厚组肌肉组织 A. PCA diagram of gene expression; B. Box diagram of gene expression. BHF, BLF, BHL, BLL, BHM and BLM represents fat tissue in high backfat thickness pigs, fat tissue in low backfat thickness pigs, liver tissue in high backfat thickness pigs, liver tissue in low backfat thickness pigs, muscle tissue in high backfat thickness pigs, and muscle tissue in low backfat thickness pigs, respectively 图 1 测序数据的整体分析 Fig. 1 Global analysis of sequencing data
2.2 高低沉脂能力组猪差异表达基因筛选

将高背膘厚组和低背膘厚组样品的转录组数据进行对比分析,以FDR < 0.05及|log2FC|>1为筛选条件,共鉴定得到135个差异表达基因,其中在高背膘厚组中上调表达基因有59个,下调表达基因有76个(图 2)。

图 2 不同脂肪沉积能力猪基因表达的火山图 Fig. 2 Volcanic map of gene expression in pigs with different fat deposition capacities

KEGG通路功能富集分析结果表明,DEGs显著富集在PPAR信号通路、MAPK信号通路、新陈代谢通路、脂肪酸代谢通路、甘油代谢通路等通路(表 2)。进一步GO分析结果共发现28条显著富集的GO条目(图 3)。

表 2 高、低沉脂能力猪差异表达基因富集通路 Table 2 Enrichment pathways of differentially expressed genes in pigs with high and low fat deposition ability
图 3 高、低沉脂能力猪差异表达基因富集的GO条目 Fig. 3 GO terms enriched by differentially expressed genes in pigs with high and low fat deposition ability
2.3 不同组织间差异表达基因筛选

以同样的筛选标准(FDR < 0.05,|log2FC|>1),在脂肪与肝组织间、脂肪与肌肉组织间、肝与肌肉组织间分别鉴定得到10 894、10 088和8 898个差异表达基因。相对于肝和肌肉组织,脂肪组织中上调控表达的基因有4 101和5 705个,其中499个为共同高表达的基因。相对于脂肪和肌肉组织,肝组织中上调表达的基因分别有6 793和4 741个,其中2 925个基因是共同高表达基因;相对于肝和脂肪组织,肌肉中分别有4 157和4 383个基因是上调表达的,其中586个基因是共同高表达基因(图 4)。

A.肝与脂肪组织差异表达基因火山图;B.肌肉与脂肪组织差异表达基因火山图;C.肝与肌肉组织差异表达基因火山图;D.不同组织间差异表达基因数目 A. Volcanic map of differentially expressed genes between liver and adipose tissues; B. Volcanic map of differentially expressed genes between muscle and adipose tissues; C. Volcanic map of differentially expressed genes between liver and muscle tissues; D. Number of differentially expressed genes between different tissues 图 4 不同组织的差异表达基因 Fig. 4 Differentially expressed genes in different tissues
2.4 组织特异性高表达基因功能分析

将每个组织中特性高表达的基因进行KEGG通路分析,结果显示,在脂肪组织中高表达的基因主要参与了脂肪调控通路、氧化磷酸化通路、MAPK信号通路、胰岛素信号通路、三羧酸循环等通路;在脏组织中高表达的基因主要参与多种氨基酸和脂肪酸的代谢、胆汁分泌、PPAR信号通路等通路;在肌肉组织中,主要参与了蛋白质的降解、PI3K-Akt信号通路、氧化磷酸化通路、Wnt信号通路、磷脂酰肌醇信号通路等(图 5)。这些基因及通路的功能与相应组织在体内发挥的作用一致。

图 5 不同组织上调表达基因显著富集的通路 Fig. 5 Pathways of significant enrichment of up-regulation expressed genes among different tissues
2.5 RT-qPCR验证

根据测序结果,挑选出6个DEGs进行RT-qPCR验证。结果表明,6个基因的表达趋势与转录组测序结果一致(图 6)。这表明转录组测序结果是准确可靠的。

图 6 差异表达基因的RT-qPCR验证 Fig. 6 Verification of differentially expressed genes by RT-qPCR
3 讨论

猪脂肪沉积性状是一个受到多个组织共同调控的复杂性状,其中脂肪组织、肝和肌肉组织是最重要的调控部位[15]。近年来,基于转录组测序技术越来越多的应用于挖掘与猪重要经济性状相关的基因,但多数研究只针对一个组织进行研究[16-18]。本研究系统分析了不同脂肪沉积能力猪的3个组织转录组,进而挖掘重要的功能基因。

脂肪沉积的多少由甘油三酯的生成、储存、运输和脂肪酸氧化的相对强度决定[19]。针对不同的脂肪沉积能力,本研究在两组中共发现135个差异表达基因,其中EHHADHME1、SCDOLR1、PHGDHACLYLEPCYP超家族基因等在脂肪生产和代谢中发挥重要的作用。ME1、SCDACLY基因是脂肪酸从头合成的关键基因。ME1基因参与了葡萄糖的代谢过程,为脂肪酸从头合成提供了底物。同时,ME1基因在三羧酸循环过程中不仅为脂肪酸的合成提供了NADPH,还将乙酰辅酶A运输出线粒体[20]。SCD参与了超长链脂肪酸的合成和去饱和过程,是不饱和脂肪酸合成的限速酶[21]。ACLY是乙酰辅酶A合成的关键酶[22]。与本研究结果相一致,ME1、SCDACLY基因在肥胖个体中上调表达[23-25]。以上结果表明,高背膘厚组的猪脂肪酸从头合成能力高于低背膘厚组。研究表明,OLR1基因与甘油三酯的储存和脂肪的生成密切相关[26]。过表达OLR1基因的小鼠增加了体内胆固醇的含量和甘油三酯的积累[27]。EHHADH能够通过PPAR和AMPK信号通路参与脂肪酸代谢[28]。PPAR信号通路是调控能量平衡、前脂肪细胞分化和增殖、脂肪代谢的关键通路[29]。本研究发现,PPAR信号通路为显著富集的通路。LEP是一种脂肪因子,在体内发挥调节能量、脂肪和碳水化合物的代谢及调控内分泌和免疫的功能[30]。细胞色素450超家族基因CYP21A2、CYP2B22、CYP27A1和CYP8B1也差异表达,它们在超长链不饱和脂肪酸的代谢过程中起着重要作用[31]。这表明,脂肪代谢在调控脂肪沉积过程中也发挥着重要的作用。

脂肪组织、肝和肌肉在猪脂肪生成和代谢过程中发挥着各自独特的作用。本研究系统的比较了3个组织中基因的表达水平,发现了大量的差异表达基因。在脂肪组织中,高表达的基因显著富集在脂肪酸从头合成的关键通路,如碳水化合物代谢、三羧酸循环、氧化磷酸化等通路。碳水化合物的代谢为脂肪酸的合成提供了底物;三羧酸循环将乙酰辅酶A从线粒体中转运到脂肪细胞溶质中,并为脂肪酸的合成提供NADPH;氧化磷酸化过程则为脂肪酸的生成提供了能量[32];胰岛素信号通路对整个机体的胰岛素敏感度和能量动态平衡起着至关重要的作用[33]。这表明脂肪酸的从头合成主要在脂肪组织。在肝组织中,上调表达基因主要参与了多种物质的代谢过程,这与肝在体内发挥的重要作用紧密相关[34]。与前人的研究结果相符,猪肝并未参与脂肪的生成过程,只参与了脂肪酸的降解过程[35]。同时,胆汁的生成与分泌通路也显著富集。在肌肉中,高表达的基因参与了蛋白质的降解、PI3K-Akt信号通路、氧化磷酸化通路、Wnt信号通路、磷脂酰肌醇信号通路等生物学过程。氧化膦酸化通路与肌肉内的能量代谢相关;Wnt信号通路在调控胚胎和器官发育以及癌症进展方面起着关键作用[36]。不同组织在体内发挥的作用大不相同,在不同组织中检测到的差异表达基因数目大,得到的结果并未进行详细的分析。但从组织中高表达基因富集的通路与其发现功能是相符的。这表明可以通过转录水平上基因的表达来鉴定不同组织的功能。

4 结论

本研究系统分析了具有显著差异脂肪沉积能力的松辽黑猪脂肪、肝和肌肉3个组织转录组测序数据,不同组间差异表达基因结果提示,EHHADHME1、SCDOLR1、PHGDHACLYLEPCYP超家族基因等是影响脂肪沉积的关键基因;不同组织间差异表达基因分析表明,脂肪组织是脂肪合成的主要部位,而肝和肌肉组织主要涉及脂肪酸的降解。本研究结果对猪脂肪性状的遗传改良、机理解析有一定参考意义。

参考文献
[1]
ZHANG Y F, ZHANG J J, GONG H F, et al. Genetic correlation of fatty acid composition with growth, carcass, fat deposition and meat quality traits based on GWAS data in six pig populations[J]. Meat Sci, 2019, 150: 47-55. DOI:10.1016/j.meatsci.2018.12.008
[2]
AJUWON K M. The pig model for the study of obesity and associated metabolic diseases[M]//SCANES C G, HILL R A. Biology of Domestic Animals. Boca Raton: CRC Press, 2017: 18-47.
[3]
BERNLOHR D A, JENKINS A E, BENNAARS A A. Adipose tissue and lipid metabolism[J]. New Compr Biochem, 2002, 36: 263-289. DOI:10.1016/S0167-7306(02)36012-5
[4]
GLEESON M. Basic metabolism I: fat[J]. Surgery (Oxford), 2005, 23(3): 83-88. DOI:10.1383/surg.23.3.83.63111
[5]
POKLUKAR K, ČANDEK-POTOKAR M, LUKAČN B, et al. Lipid deposition and metabolism in local and modern pig breeds: a review[J]. Animals (Basel), 2020, 10(3): 424.
[6]
PONZIANI F R, PECERE S, GASBARRINI A, et al. Physiology and pathophysiology of liver lipid metabolism[J]. Expert Rev Gastroenterol Hepatol, 2015, 9(8): 1055-1067. DOI:10.1586/17474124.2015.1056156
[7]
RUIZ J, CAVA R, ANTEQUERA T, et al. Prediction of the feeding background of Iberian pigs using the fatty acid profile of subcutaneous, muscle and hepatic fat[J]. Meat Sci, 1998, 49(2): 155-163. DOI:10.1016/S0309-1740(97)00136-8
[8]
STARK R, GRZELAK M, HADFIELD J. RNA sequencing: the teenage years[J]. Nat Rev Genet, 2019, 20(11): 631-656. DOI:10.1038/s41576-019-0150-2
[9]
XING K, ZHU F, ZHAI L W, et al. Integration of transcriptome and whole genomic resequencing data to identify key genes affecting swine fat deposition[J]. PLoS One, 2015, 10(4): e0122396. DOI:10.1371/journal.pone.0122396
[10]
ZHANG M, SUN H H, FEI Z J, et al. Fastq_clean: an optimized pipeline to clean the Illumina sequencing data with quality control[C]//Proceedings of 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). Belfast: IEEE, 2015: 44-48.
[11]
TRAPNELL C, ROBERTS A, GOFF L, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks[J]. Nat Protoc, 2012, 7(3): 562-578. DOI:10.1038/nprot.2012.016
[12]
LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biol, 2014, 15(12): 550. DOI:10.1186/s13059-014-0550-8
[13]
SABINO M, CARMELO V A O, MAZZONI G, et al. Gene co-expression networks in liver and muscle transcriptome reveal sex-specific gene expression in lambs fed with a mix of essential oils[J]. BMC Genomics, 2018, 19(1): 236. DOI:10.1186/s12864-018-4632-y
[14]
HUANG D W, SHERMAN B T, LEMPICKI R A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists[J]. Nucleic Acids Res, 2009, 37(1): 1-13. DOI:10.1093/nar/gkn923
[15]
REITER S S, HALSEY C H C, STRONACH B M, et al. Lipid metabolism related gene-expression profiling in liver, skeletal muscle and adipose tissue in crossbred Duroc and Pietrain Pigs[J]. Comp Biochem Physiol Part D Genomics Proteomics, 2007, 2(3): 200-206. DOI:10.1016/j.cbd.2007.04.008
[16]
VILLAPLANA-VELASCO A, NOGUERA J L, PENA R N, et al. Comparative transcriptome profile between Iberian pig varieties provides new insights into their distinct fat deposition and fatty acids content[J]. Animals (Basel), 2021, 11(3): 627.
[17]
WU W J, ZHANG Z K, CHAO Z, et al. Transcriptome analysis reveals the genetic basis of skeletal muscle glycolytic potential based on a pig model[J]. Gene, 2021, 766: 145157. DOI:10.1016/j.gene.2020.145157
[18]
WANG Y L, ZHANG W, WU X D, et al. Transcriptomic comparison of liver tissue between Anqing six-end-white pigs and Yorkshire pigs based on RNA sequencing[J]. Genome, 2020, 63(4): 203-214. DOI:10.1139/gen-2019-0105
[19]
BUYSE J, DECUYPERE E. Chapter 19-adipose tissue and lipid metabolism[M]//SCANES C G. Sturkie's Avian Physiology. 6th ed. Amsterdam: Elsevier, 2015: 443-453.
[20]
STACHOWIAK M, FLISIKOWSKI K. Analysis of allele-specific expression of seven candidate genes involved in lipid metabolism in pig skeletal muscle and fat tissues reveals allelic imbalance of ACACA, LEP, SCD, and TNF[J]. J Appl Genet, 2019, 60(1): 97-101. DOI:10.1007/s13353-019-00485-z
[21]
PATON C M, NTAMBI J M. Biochemical and physiological function of stearoyl-CoA desaturase[J]. Am J Physiol Endocrinol Metab, 2009, 297(1): E28-E37. DOI:10.1152/ajpendo.90897.2008
[22]
FENG X J, ZHANG L, XU S W, et al. ATP-citrate lyase (ACLY) in lipid metabolism and atherosclerosis: an updated review[J]. Prog Lipid Res, 2020, 77: 101006. DOI:10.1016/j.plipres.2019.101006
[23]
PALMA-GRANADOS P, SEIQUER I, BENÍTEZ R, et al. Effects of lysine deficiency on carcass composition and activity and gene expression of lipogenic enzymes in muscles and backfat adipose tissue of fatty and lean piglets[J]. Animal, 2019, 13(10): 2406-2418. DOI:10.1017/S1751731119000673
[24]
REN Z Q, WANG Y, XU Y J, et al. Identification of a differentially expressed gene, ACL, between Meishan×Large White and Large White×Meishan F1 hybrids and their parents[J]. Genet Sel Evol, 2008, 40(6): 625-637. DOI:10.1051/gse:2008024
[25]
SMITH S B, MERSMANN H J, SMITH E O, et al. Stearoyl-coenzyme A desaturase gene expression during growth in adipose tissue from obese and crossbred pigs[J]. J Anim Sci, 1999, 77(7): 1710-1716. DOI:10.2527/1999.7771710x
[26]
SUN C, LIU C W, ZHANG Z P. Cloning of OLR1 gene in pig adipose tissue and preliminary study on its lipid-accumulating effect[J]. Asian-Aust J Anim Sci, 2009, 22(10): 1420-1428. DOI:10.5713/ajas.2009.90121
[27]
CHUI P C, GUAN H P, LEHRKE M, et al. PPARγ regulates adipocyte cholesterol metabolism via oxidized LDL receptor 1[J]. J Clin Invest, 2005, 115(8): 2244-2256. DOI:10.1172/JCI24130
[28]
SHI L, LIU L, MA Z, et al. Identification of genetic associations of ECHS1 gene with milk fatty acid traits in dairy cattle[J]. Anim Genet, 2019, 50(5): 430-438. DOI:10.1111/age.12833
[29]
CHINETTI G, FRUCHART J C, STAELS B. Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation[J]. Inflamm Res, 2000, 49(10): 497-505. DOI:10.1007/s000110050622
[30]
BARB C R, HAUSMAN G J, HOUSEKNECHT K L. Biology of leptin in the pig[J]. Domest Anim Endocrinol, 2001, 21(4): 297-317. DOI:10.1016/S0739-7240(01)00123-0
[31]
PUCCINELLI E, GERVASI P G, LONGO V. Xenobiotic metabolizing cytochrome P450 in Pig, a promising animal model[J]. Curr Drug Metab, 2011, 12(6): 507-525. DOI:10.2174/138920011795713698
[32]
COROMINAS J, RAMAYO-CALDAS Y, PUIG-OLIVERAS A, et al. Analysis of porcine adipose tissue transcriptome reveals differences in de novo fatty acid synthesis in pigs with divergent muscle fatty acid composition[J]. BMC Genomics, 2013, 14: 843. DOI:10.1186/1471-2164-14-843
[33]
WONG R H F, SUL H S. Insulin signaling in fatty acid and fat synthesis: a transcriptional perspective[J]. Curr Opin Pharmacol, 2010, 10(6): 684-691. DOI:10.1016/j.coph.2010.08.004
[34]
XING K, ZHU F, ZHAI L W, et al. The liver transcriptome of two full-sibling Songliao black pigs with extreme differences in backfat thickness[J]. J Anim Sci Biotechnol, 2014, 5(1): 32. DOI:10.1186/2049-1891-5-32
[35]
O'HEA E K, LEVEILLE G A. Significance of adipose tissue and liver as sites of fatty acid synthesis in the pig and the efficiency of utilization of various substrates for lipogenesis[J]. J Nutr, 1969, 99(3): 338-344. DOI:10.1093/jn/99.3.338
[36]
XU X F, ZHANG M F, XU F Y, et al. Wnt signaling in breast cancer: biological mechanisms, challenges and opportunities[J]. Mol Cancer, 2020, 19(1): 165. DOI:10.1186/s12943-020-01276-5

(编辑   郭云雁)