2. 河南科技大学动物科技学院,洛阳 471203;
3. 宁城县动物疫病预防控制中心,赤峰 024200;
4. 山西农业大学动物科学学院,太谷 030801;
5. 吉林农业大学动物科学技术学院,长春 130118
2. College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471203, China;
3. Ningcheng Animal Disease Prevention and Control Center, Chifeng 024200, China;
4. College of Animal Science, Shanxi Agricultural University, Taigu 030801, China;
5. College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
发情鉴定一直是牛场的繁殖管理重点,其准确程度是人工授精成功的前提基础[1]。为此,研发了观察法、直肠检查法、阴道温度监测法[2]、超声波和激素监测法[3-4]等发情鉴定方法,这些方法有时可联合使用,检出率较高,但都必须依靠人力,耗时费力,也无法解决夜间发情的准确鉴定问题,而且,需要技术员有较高的技术水平和责任心;某些方法固有的侵入性,也易使动物产生应激,并且增加了动物受伤和病原微生物感染的风险[5]。近年来,基于加速度传感器研发的计步器发情鉴定方法,实现了自动化,解决了夜间发情无人值守问题,但是,越来越多的研究表明,20%以上发情牛活动量增加不明显,隐性发情使计步器发情鉴定面临巨大挑战[6]。在本交情况下,配种前,种公牛要先找出发情母牛,并嗅闻其排泄物、阴部,经过公母牛接触、交流,进行爬跨配种。这给人以启示,除视觉、听觉、触觉刺激外,嗅觉刺激在公母牛性行为中发挥了重要作用。不同性别间通过信息素(pheromones)化学分子传递两性信息的交流方式在昆虫中普遍存在,且这些种内信息素交流可能是生物进化的结果[7],例如,雌性飞蛾通过性信息素吸引雄蛾完成两性交配[8]。长角甲虫、飞蛾等农业害虫的信息素被人类破解后,被用于这些害虫的生物防治[9-12]。信息素与昆虫繁殖和社会行为息息相关[13]。同样,信息素在哺乳动物繁殖中也发挥了重要作用[14-17],公牛嗅闻母牛排泄物及母牛阴部,也是因为受到其中信息素化学成分的刺激[18]。目前,关于牛信息素的研究为揭示公母牛的性交流提供了重要信息[19-23],也为母牛发情监测技术的研发开辟了新思路。为此,本文将对母牛信息素相关研究进行综述,希望通过研究发情牛信息素交流规律,为及时、准确、无侵入式的母牛发情鉴定技术研发,提供重要参考。
研究表明,哺乳动物尿液、粪便、阴道分泌物、唾液都含有信息素,汗腺等专门的气味腺也是其主要的释放部位[17, 24],同类动物主嗅觉系统(main olfactory system, MOS)与犁鼻系统(vomeronasal system, VNS)可接收相应信息素,并获取相关信息[25-26]。这些信息素中,与动物繁殖和性吸引相关的化学信号也被称为性信息素。当公牛嗅闻到发情母牛性信息素时,会产生上唇持续翻起的性嗅反射行为(Flehmen),以及重复性爬跨行为[27],为此,一些研究用公牛的这两种反应验证相关性信息素[20-21, 28]。很多研究在奶牛粪便、尿液等排泄物及阴道液、唾液和牛奶等分泌物中发现了一些发情特异性信息素[19-20, 22, 28-29]。这些研究结果可能有助于发情监测方法的创新研发。
1 粪便信息素动物排出的粪便有时会携带影响同种动物行为的特异性化合物(包括挥发性和非挥发性的)[30-32]。例如,母马粪便含有发情特异性化合物十四烷酸和十六烷酸,研究表明,这两种化合物可作为信息素吸引公马与母马交配[33];让雄性大鼠嗅闻发情雌性大鼠、狐狸及母马粪便,可引起雄性大鼠阴茎勃起,有趣的是,当闻到发情狐狸粪便时,雄性大鼠不但阴茎勃起,还呈现出瑟瑟发抖的恐惧状态,说明性欲刺激和危险信号并存时,大鼠会受到性欲的支配[34];在母猪粪便中含有甲基吲哚和十四烷酸,可以作为母性信号吸引仔猪,并减少仔猪间打斗,改善保育效果[35]。同样,Sankar和Archunan[20]在娟姗(Jersey)奶牛粪便中发现10种反映发情状态的化合物,其中,丁酸、戊酸、羧酸、2-丙烯酯只存在于发情前期粪便中,乙酸、丙酸和1-碘十一烷只被发现于发情期,而丁烷、3-己醇、膦酸只被发现于发情后期,通过公牛验证,发现发情期独有的3种化合物(乙酸、丙酸和1-碘十一烷)可能是引起公牛性嗅反射、爬跨等性行为的原因之一,并且,用这3种化合物组合处理台牛比单独用某一种成分处理台牛更容易使种公牛产生性嗅反射和爬跨反应。但Mozūraitis等[36]并没有在同期发情处理荷斯坦奶牛粪便中检测出1-碘十一烷,乙酸、丙酸也不是发情期特有,只是在发情期有一个峰值。两者研究差异很大,推断可能是奶牛品种和采样方法差异(前者是乙醚萃取,后者是固相微萃取)导致的。Mozūraitis等[36]针对发情奶牛粪便中乙酸、丙酸两种信息素,结合传感器技术,与Wiegerinck等[37]合作开发出电子鼻,进行母牛自动化发情鉴定,但发情检出率仅为70%。此外,Manikkaraja等[38]基于L-酪氨酸功能化银纳米离子开发了奶牛发情鉴定技术,利用预处理银纳米离子遇到乙酸或丙酸时由黄色变成红棕色的现象,通过颜色变化进行发情鉴定。而对莫拉水牛的研究发现,4-甲基苯酚和反式戊烯醇为发情水牛粪便所特有,而十一烷仅不存在于发情期,或许可单独或与发情特异化合物联合进行发情预测[21]。分析上述研究结果,不同品种(如泽西奶牛和荷斯坦奶牛)发情牛粪便信息素组成相似,但不同属(奶牛和水牛)发情期牛粪便信息素差别极大,表明粪便信息素有一定种属特异性。此外,还从发情阶段各个时期的粪便中检测到孕酮、类固醇等非挥发性化合物,这些物质不同时期的含量差异一定程度上也反映了动物的发情阶段特征[39-40]。因此,粪便化学物质尤其是发情期特异性化合物的检测,为奶牛发情鉴定方法研发开辟了新思路,Sankar和Archunan[20]及Mozūraitis等[36]对奶牛的鉴定结果虽然不太理想,但证明了通过粪便发情信息素检测进行发情鉴定的可行性,然而,目前对母牛粪便中发情期特异性信息素的检测尚存争议,还缺乏权威、科学的分析结果,只有系统科学地揭示母牛粪便的发情特异性信息素,才能利用这些生命奥秘服务于母牛发情鉴定技术研发。
2 唾液信息素唾液是一种含有无机盐、脂肪酸、蛋白质等多种分泌物成分的生物体液[41-44],成分的复杂性赋予了其复杂的功能,尤其是发情动物唾液的一些特定化合物在动物繁殖过程中发挥了化学信号(信息素)作用,对其繁殖和社会行为产生了重要影响。对蒙古沙鼠的研究表明,与非发情雌鼠唾液相比,有性经验的雄鼠更喜欢发情雌鼠的唾液,说明雌鼠唾液中性信息素对雄鼠有较强的性引诱作用[45-46]。公猪唾液中也检测到性信息素,并被用于诱导母猪发情[47]。Sankar等[28]发现,发情前期奶牛唾液含有碳酸、二氯化膦、丁酸和2-丙烯酯,发情期含有三甲胺、乙酸、丙酸、戊酸和4-丙基苯酚,发情后期含有3-己醇、丁酸、2-丙烯酯和戊酸,用公牛验证后发现,不同于丁酸和2-丙烯酯,用三甲胺、乙酸、丙酸、戊酸、4-丙基苯酚处理台牛,可引起公牛更多性嗅反射反应和爬跨次数,其中,对三甲胺的反应效果极显著高于其他化合物,而对戊酸的反应效果最不明显。三甲胺等对公牛引诱效果明显的化合物,值得进一步研究。Muthukumar等[48]在发情水牛唾液中检测到27种蛋白质,其中β-烯醇酶和TOLL样受体4(TLR4)在发情期阶段特异表达,可作为发情特异性标记物。Shashikumar等[49]发现, Cullin相关NEDD8解离蛋白1(cullin associated NEDD8-dissociated protein 1)、热休克蛋白1A(70 ku)、Ⅰ型17-β-羟基类固醇脱氢酶、抑制素βA链、睾丸素等唾液蛋白是发情特异性的。唾液是一种反映身体生理和生化变化的诊断介质,还可用于评估内分泌功能,反映激素循环水平[50-52],研究唾液中的发情特异性物质,对于发情鉴定方法研发具有重要意义,但是,不同于公、母猪,生产中很少发现公、母牛通过唾液进行交流,可能不同体液在不同物种中作用大小有差异。
3 尿液信息素哺乳动物尿液含有尿酸、尿素、蛋白质[53]等非挥发性物质及短链脂肪酸等挥发性和半挥发性物质[54-56],也含有一些同种动物间信号交流分子即信息素。研究表明,白足鼠(Peromyscus leucopus)群体中成年雌鼠尿液能抑制幼龄雌鼠性成熟[57];而发情雌性鼠尿液能促进幼龄小鼠性成熟,但同时用发情鼠、怀孕鼠和哺乳期鼠尿液处理幼龄小鼠却没有这种作用[58]。推断尿液可能是哺乳动物发情信息交流的一种重要途径。这些发情特异性信息素在尿蛋白配体承载下,进行化学信号传递[59],发情雌小鼠尿液中较高的蛋白排泄量表明,同种异性个体间信息交流具有重要作用,是发情期雌鼠对雄鼠产生强烈性吸引的重要途径,推测,尿液的信息素成分对于小鼠繁殖不可或缺。
受小鼠研究启发,牛尿液信息素研究也取得重要进展。Kumar等[19]在奶牛尿液中检测到了7种化学物质,其中,邻苯二甲酸二丙酯和1-碘十一烷仅存在于奶牛发情期,其后续Archunan[60]研究表明,奶牛尿液中的1-碘十一烷可作为发情特异标志物。针对一种欧洲蝇类可区分瑞典红牛和瑞典荷斯坦奶牛黄体期和发情期尿液现象,进行的尿液成分检测表明,发情期尿液中1-十六醇的含量(5.49±0.89) ng·μL-1显著高于黄体期尿液(1.86±0.36) ng·μL-1,由此推断,1-十六醇可能也是发情母牛分泌的信息素[61]。Rajanarayanan和Archunan[62]及Samuthirapandi等[63]研究了正常发情和同步发情水牛的尿液成分,检测出4-甲基苯酚、9-十八碳烯酸为发情牛尿液特有;并且,基于4-甲基苯酚开发出发情检测试剂盒,向该试剂盒加入发情期尿液时无颜色变化,加入发情前期尿液时尿液颜色变粉色,而加入发情间期尿液时颜色变深粉色[64]。尽管仅达到约60%的检测效率,但开辟了通过尿液信息素成分检测研发母牛发情检测技术的重要方向。如果能深入揭示尿液中信息素成分及其存在形式,或许能推动该研究方向取得突破性进展。
4 阴道黏液信息素发情动物阴部对同种异性动物有较强吸引力,不仅是因为性器官对视觉的感官刺激,雄性动物还表现出强烈的性嗅反射,说明阴道黏液中含有可刺激雄性动物性行为的信息物质,这种物质可诱引雄性动物嗅、舔发情母畜阴部,并表现出持续的性嗅反射行为[65]。雌性仓鼠阴道分泌物可诱引雄性仓鼠嗅闻和舔这些分泌物,并产生性行为[66];狗经过训练后,也可通过嗅闻阴道黏液找出发情母牛,证明牛阴道黏液中存在性信息素[67]。研究表明,牛阴道黏液中除存在能吸引公、母牛的信息素外,还包含动物本身的个体气味[65, 68]。
阴道黏液中化学物质种类、含量等的变化以及因此产生的黏液物理特性改变,可用来预测动物发情阶段[69-70]。很多研究进行了牛阴道液的化学物质检测,例如,Ma等[71]在发情周期各阶段奶牛阴道液中均检测到乙醛,但乙醛会在发情前0~3 d内出现一个浓度峰值;Sankar和Archunan[72]研究发现,三甲胺、乙酸、丙酸为发情期母牛阴道液所特有,可促进公牛产生性行为;Pluta等[73]发现,小母牛阴道黏液中存在47种挥发性有机物(volatile organic compounds,VOC),其中丰度较高的2-丁酮、丙酮、2-戊酮、4-甲基2-戊酮、1-(1-甲基乙氧基)- 2-丙酮、乙醇、2-甲基-2-丙醇和2-丁醇等物质的含量在发情开始后24~47 h之间达到峰值(排卵发生在发情开始后((26.6±5.6) h)。研究还表明,经PGF2α同期发情诱导后,嗅闻到发情牛阴道黏液的荷斯坦母牛同步化程度高于未嗅闻母牛[74]。与未嗅闻发情牛阴道黏液的PGF2α处理牛比,嗅闻组瑞典红牛的血液LH浓度变化幅度更小((1.03±0.09) ng·mL-1 vs.(0.87± 0.09) ng·mL-1)(P=0.001),最低浓度更高((1.79 ±0.16) ng·mL-1 vs.(2.04±0.1) ng·mL-1)(P < 0.001),峰值浓度更接近((2.83±0.13) ng·mL-1 vs.(2.92±0.17) ng·mL-1)(P=0.375),受到阴道黏液信息素的影响,母牛生理活动更稳定可靠,同步效果更好[75],但其背后的调节机制以及参与的信息素尚需深入探索,该机制研究可能会进一步促进同期排卵效果改善,提高人工授精妊娠率。此外,Nordéus等[76]研究还显示,嗅闻发情牛阴道黏液和尿液后,瑞典红牛发情周期长度无明显变化,LH浓度变化与前述结果相似,但对发情强度(阴道状况、躁动情况、黏液状态)可能有负面影响。这一点很值得思考,处理母牛生理指标正常且稳定,排卵一致性较好,稳定的激素水平及神经调节应该强化母牛发情表现,或至少不应影响到发情表现,所以,对上述对发情强度的负面影响还需进行试验验证。也许现代的集约化养殖,过高的养殖密度等导致了母牛发情抑制,甚至造成部分奶牛安静发情。
有些研究还从牛阴道黏液中检测到了胺类、酯类[77]、HSP70(热休克蛋白)[78]等信息素类化合物。这些挥发性和非挥发性信息素类物质共存,对研发原创性发情鉴定技术具有重要指导意义。此外,阴道黏液信息素可能还与阴道微生物的种类和丰度有关,探究阴道微生物及其代谢物的变化规律对于了解动物繁殖阶段可能也有重要意义[79]。
5 其它部位的信息素除上述常见部位外,哺乳动物乳汁、皮毛、皮肤腺也是一些信息物质重要来源[24, 65, 80-81]。其中,关于皮毛信息素的报道多见于绵羊和山羊研究[82],在奶牛上并没有相关报道,可能是奶牛汗腺不发达,信息素分泌较少。
乳汁信息素一般具有吸引幼崽、帮助幼崽寻找母体乳房等作用[83]。但公牛嗅闻发情奶牛牛奶,性嗅反射行为持续时间((5.31±0.44)s)显著高于嗅闻发情前、后期奶牛牛奶的持续时间((3.20±0.18) s vs.(3.66±0.36)s),推测发情牛乳汁含有吸引公牛的信息素成分[65]。不同发情阶段荷斯坦奶牛、瑞士红牛、西门塔尔奶牛和高山灰奶牛乳成分对比结果表明,各品种牛乳成分均呈现发情期和非发情期差异,从发情前高孕酮期到发情期,脂肪增加0.14%,其中,C14:0和C16:0下降(-0.34%和-0.48%),C18:0和C18:1cis-9增加(0.40%和0.73%),不饱和脂肪酸、反式脂肪酸和长链脂肪酸增加,而饱和脂肪酸、中链脂肪酸和短链脂肪酸下降[84]。对牛奶中脂肪酸的专门检测表明,发情当天乙酸(P < 0.001)、戊酸(P=0.016)、己酸(P < 0.001)和十四烷酸(P=0.035)均显著高于发情后第14天,而花生四烯酸浓度却显著降低(P=0.004)[29],以此推断,发情奶牛乳成分还有待深入研究,或许可基于乳汁检测建立非侵入性发情鉴定技术。
皮肤腺信息素的报道多见于两栖类动物相关研究[80, 85-86],其在两栖类动物繁殖中发挥了重要作用,而在哺乳动物中鲜见报道。Melo和González-Mariscal[81]综述了兔子的相关研究,异性兔子通过皮肤腺体(下颌腺、肛门腺、哈德氏腺、泪腺、包皮腺)和乳腺-乳头复合体进行繁殖相关的信息传递。有研究对同期发情母牛会阴部位注射肾上腺素促进其会阴腺分泌,用公牛验证发现,相比于未注射组,公牛嗅闻注射组会阴分泌物次数更多,说明会阴腺中存在对公牛具有吸引作用的信息素[87]。然而,与牛皮肤腺信息素相关的研究很少,这些分泌物中都含有什么成分,是什么成分向公牛传递了发情信息,这些都有待深入、系统的科学研究。
6 小结除听觉、视觉、触觉等感官刺激作用外,嗅觉刺激对于种公牛精准的发情鉴定至关重要,受到仿生学的启发,人们企图通过破译母牛信息素,创新发情鉴定技术,解决目前无法突破的安静发情产业瓶颈。有关母牛唾液、阴道黏液、尿液、粪便等来源的信息素研究已经取得一定进展,为该方向研究露出了冰山一角,然而,到目前为止,公、母牛信息交流重要信息源间的关系是什么?都有什么成分,各成分是如何组合和发挥作用的?这些问题的解决还需进行更多深入、系统、科学的基础研究。目前,色谱质谱分析技术、代谢组学等都取得了较快进展,生物样品化学成分的定向测定和组学分析效率大幅提升,为不同来源母牛信息素的研究鉴定提供了更多便利条件,相信公、母牛间性交流的奥秘不久就将被揭示,并推动母牛发情鉴定技术取得突破性进展。
[1] |
李磊. 奶牛繁殖的重要指标与管理要点[J]. 现代畜牧科技, 2021(9): 76-77. LI L. Important indexes and management points of Cow Reproduction[J]. Modern Animal Husbandry Science & Technology, 2021(9): 76-77. (in Chinese) |
[2] |
WANG S L, ZHANG H L, TIAN H Z, et al. Alterations in vaginal temperature during the estrous cycle in dairy cows detected by a new intravaginal device-a pilot study[J]. Trop Anim Health Prod, 2020, 52(5): 2265-2271. DOI:10.1007/s11250-020-02199-5 |
[3] |
BENABDELAZIZ A, BOUDJEMAI S, KHELILI R, et al. Development of in-house RIA kit for progesterone in cow's skim milk[J]. J Immunoassay Immunochem, 2020, 41(2): 195-207. DOI:10.1080/15321819.2019.1708386 |
[4] |
张仁森, 刘秋月, 胡文萍, 等. 家畜生殖激素测定方法研究进展[J]. 家畜生态学报, 2020, 41(11): 1-5. ZHANG R S, LIU Q Y, HU W P, et al. Research progress on reproductive hormones determination in livestock[J]. Acta Ecologae Animalis Domastici, 2020, 41(11): 1-5. DOI:10.3969/j.issn.1673-1182.2020.11.001 (in Chinese) |
[5] |
韩志强, 王海军, 赵家平, 等. 动物发情鉴定技术的研究进展[J]. 畜牧兽医学报, 2018, 49(10): 2086-2091. HAN Z Q, WANG H J, ZHAO J P, et al. Research progress of estrus identification technology in animals[J]. Acta Veterinaria et Zootechnica Sinica, 2018, 49(10): 2086-2091. DOI:10.11843/j.issn.0366-6964.2018.10.004 (in Chinese) |
[6] |
周正义, 田莉, 田宏志, 等. 母牛安静发情鉴定技术概况及影响因素分析[J]. 畜牧兽医学报, 2021, 52(4): 862-871. ZHOU Z Y, TIAN L, TIAN H Z, et al. Analysis of identification technology and influence factors on silent estrus of cows[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(4): 862-871. (in Chinese) |
[7] |
DE PASQUAL C, GROOT A T, MAPPES J, et al. Evolutionary importance of intraspecific variation in sex pheromones[J]. Trends Ecol Evol, 2021, 36(9): 848-859. DOI:10.1016/j.tree.2021.05.005 |
[8] |
JURENKA R. Regulation of pheromone biosynthesis in moths[J]. Curr Opin Insect Sci, 2017, 24: 29-35. DOI:10.1016/j.cois.2017.09.002 |
[9] |
靳秀芳, 秦长生, 赵丹阳, 等. 象甲科昆虫性信息素与聚集信息素研究及应用进展[J]. 林业与环境科学, 2019, 35(3): 107-115. JIN X F, QIN C S, ZHAO D Y, et al. The research and application progress of the curculionidae sex pheromones and aggregation pheromone[J]. Forestry and Environmental Science, 2019, 35(3): 107-115. DOI:10.3969/j.issn.1006-4427.2019.03.017 (in Chinese) |
[10] |
BENELLI G, LUCCHI A. From insect pheromones to mating disruption: theory and practice[J]. Insects, 2021, 12(8): 698. DOI:10.3390/insects12080698 |
[11] |
JOHNSON T D, BUFFINGTON M L, GATES M W, et al. Deployment of aggregation-sex pheromones of longhorned beetles (coleoptera: cerambycidae) facilitates the discovery and identification of their parasitoids[J]. J Chem Ecol, 2021, 47(1): 28-42. DOI:10.1007/s10886-020-01238-7 |
[12] |
LUCIA A, GUZMÁN E. Emulsions containing essential oils, their components or volatile semiochemicals as promising tools for insect pest and pathogen management[J]. Adv Colloid Interface Sci, 2021, 287: 102330. DOI:10.1016/j.cis.2020.102330 |
[13] |
YEW J Y, CHUNG H. Insect pheromones: an overview of function, form, and discovery[J]. Prog Lipid Res, 2015, 59: 88-105. DOI:10.1016/j.plipres.2015.06.001 |
[14] |
REKWOT P I, OGWU D, OYEDIPE E O, et al. The role of pheromones and biostimulation in animal reproduction[J]. Anim Reprod Sci, 2001, 65(3-4): 157-170. DOI:10.1016/S0378-4320(00)00223-2 |
[15] |
RAJAGOPAL T, ARCHUNAN G. Dominance hierarchy in Indian blackbuck (Antelope cervicapra L. ): sources, behavior and role of pheromone signals[M]//SCHULTE B A, GOODWIN T E, FERKIN M H. Chemical Signals in Vertebrates 13. Cham: Springer, 2016: 217-228.
|
[16] |
黄大明, 张雪妍, 王瑜琪, 等. 哺乳动物的嗅觉通讯[J]. 中国科技纵横, 2018(3): 217-225. HUANG D M, ZHANG X Y, WANG Y Q, et al. Olfactory communication in mammals[J]. China Science & Technology Panorama Magazine, 2018(3): 217-225. DOI:10.3969/j.issn.1671-2064.2018.03.132 (in Chinese) |
[17] |
SILAMBARASAN V, DEEPALAKSHMI G, SANKARGANESH D, et al. Identification of potential pheromone source in sows[J]. Behav Proc, 2019, 168: 103940. DOI:10.1016/j.beproc.2019.103940 |
[18] |
ARCHUNAN G. Vertebrate pheromones and their biological importance[J]. J Exp Zool India, 2009, 12(2): 227-239. |
[19] |
KUMAR K R, ARCHUNAN G, JEYARAMAN R, et al. Chemical characterization of bovine urine with special reference to oestrus[J]. Vet Res Commun, 2000, 24(7): 445-454. DOI:10.1023/A:1006495404407 |
[20] |
SANKAR R, ARCHUNAN G. Identification of putative pheromones in bovine (Bos taurus) faeces in relation to estrus detection[J]. Anim Reprod Sci, 2008, 103(1-2): 149-153. DOI:10.1016/j.anireprosci.2007.04.014 |
[21] |
KARTHIKEYAN K, MUNIASAMY S, SANKARGANESH D, et al. Faecal chemical cues in water buffalo that facilitate estrus detection[J]. Anim Reprod Sci, 2013, 138(3-4): 163-167. DOI:10.1016/j.anireprosci.2013.02.017 |
[22] |
LE DANVIC C, GÉRARD O, SELLEM E, et al. Enhancing bull sexual behavior using estrus-specific molecules identified in cow urine[J]. Theriogenology, 2015, 83(9): 1381-1388. DOI:10.1016/j.theriogenology.2015.02.004 |
[23] |
ARCHUNAN G. Reproductive enhancement in buffalo: looking at urinary pheromones and hormones[J]. Iran J Vet Res, 2020, 21(3): 163-171. |
[24] |
PATRA M K, BARMAN P, KUMAR H. Potential application of pheromones in reproduction of farm animals- a review[J]. Agric Rev, 2012, 33(1): 82-86. |
[25] |
PARDASANI M, MARATHE S D, PURNAPATRE M M, et al. Multimodal learning of pheromone locations[J]. FASEB J, 2021, 35(9): e21836. |
[26] |
TIRINDELLI R. Coding of pheromones by vomeronasal receptors[J]. Cell Tissue Res, 2021, 383(1): 367-386. DOI:10.1007/s00441-020-03376-6 |
[27] |
SELVAM R M, ARCHUNAN G. A combinatorial model for effective estrus detection in Murrah buffalo[J]. Vet World, 2017, 10(2): 209-213. DOI:10.14202/vetworld.2017.209-213 |
[28] |
SANKAR R, ARCHUNAN G, HABARA Y. Detection of oestrous-related odour in bovine (Bos taurus) saliva: bioassay of identified compounds[J]. Animal, 2007, 1(9): 1321-1327. DOI:10.1017/S1751731107000614 |
[29] |
ZEBARI H M, RUTTER S M, BLEACH E C L. Fatty acid profile of milk for determining reproductive status in lactating Holstein Friesian cows[J]. Anim Reprod Sci, 2019, 202: 26-34. DOI:10.1016/j.anireprosci.2019.01.004 |
[30] |
CHESETO X, KACHIGAMBA D L, EKESI S, et al. Identification of the ubiquitous antioxidant tripeptide glutathione as a fruit fly semiochemical[J]. J Agric Food Chem, 2017, 65(39): 8560-8568. DOI:10.1021/acs.jafc.7b03164 |
[31] |
MIYAZAKI M, MIYAZAKI T, NISHIMURA T, et al. The chemical basis of species, sex, and individual recognition using feces in the domestic cat[J]. J Chem Ecol, 2018, 44(4): 364-373. DOI:10.1007/s10886-018-0951-3 |
[32] |
HAMILTON J A, WADA-KATSUMATA A, SCHAL C. Role of cuticular hydrocarbons in german cockroach (blattodea: ectobiidae) aggregation behavior[J]. Environ Entomol, 2019, 48(3): 546-553. DOI:10.1093/ee/nvz044 |
[33] |
KIMURA R. Volatile substances in feces, urine and urine-marked feces of feral horses[J]. CAN J ANIM SCI, 2001, 81(3): 411-420. DOI:10.4141/A00-068 |
[34] |
RAMPIN O, JÉRÔME N, BRIANT C, et al. Are oestrus odours species specific?[J]. Behav Brain Res, 2006, 172(1): 169-172. DOI:10.1016/j.bbr.2006.04.005 |
[35] |
AVILES-ROSA E O, SUROWIEC K, MCGLONE J. Identification of faecal maternal semiochemicals in swine (Sus scrofa) and their effects on weaned piglets[J]. Sci Rep, 2020, 10(1): 5349. DOI:10.1038/s41598-020-62280-9 |
[36] |
MOZRAITIS R, KUTRA J, BORG-KARLSON A K, et al. Dynamics of putative sex pheromone components during heat periods in estrus-induced cows[J]. J Dairy Sci, 2017, 100(9): 7686-7695. DOI:10.3168/jds.2016-12376 |
[37] |
WIEGERINCK W, SETKUS A, BUDA V, et al. BOVINOSE: pheromone-based sensor system for detecting estrus in dairy cows[J]. Procedia Comput Sci, 2011, 7: 340-342. DOI:10.1016/j.procs.2011.09.024 |
[38] |
MANIKKARAJA C, MAHBOOB S, AL-GHANIM K A, et al. A novel method to detect bovine sex pheromones using l-tyrosine-capped silver nanoparticles: special reference to nanosensor based estrus detection[J]. J Photochem Photobiol B, 2020, 203: 111747. DOI:10.1016/j.jphotobiol.2019.111747 |
[39] |
GHOSAL R, SUKUMAR R, SESHAGIRI P B. Prediction of estrus cyclicity in Asian elephants (Elephas maximus) through estimation of fecal progesterone metabolite: development of an enzyme-linked immuno-sorbent assay[J]. Theriogenology, 2010, 73(8): 1051-1060. DOI:10.1016/j.theriogenology.2010.01.004 |
[40] |
KUMAR A, MEHROTRA S, DANGI S, et al. Faecal steroid metabolites assay as a non-invasive monitoring of reproductive status in animals[J]. Vet World, 2013, 6(1): 59. DOI:10.5455/vetworld.2013.59-63 |
[41] |
MILANOWSKI M, POMASTOWSKI P, LIGOR T, et al. Saliva-volatile biomarkers and profiles[J]. Crit Rev Anal Chem, 2017, 47(3): 251-266. DOI:10.1080/10408347.2016.1266925 |
[42] |
LAMY E, CAPELA-SILVA F, TVARIJONAVICIUTE A. Research on saliva secretion and composition[J]. Biomed Res Int, 2018, 2018: 7406312. DOI:10.1155/2018/7406312 |
[43] |
CONTRERAS-AGUILAR M D, VALLEJO-MATEO P J, LAMY E, et al. Changes in saliva analytes in dairy cows during peripartum: a pilot study[J]. Animals, 2021, 11(3): 749. DOI:10.3390/ani11030749 |
[44] |
RICCI S, RIVERA-CHACON R, PETRI R M, et al. Supplementation with phytogenic compounds modulates salivation and salivary physico-chemical composition in cattle fed a high-concentrate diet[J]. Front Physiol, 2021, 12: 645529. DOI:10.3389/fphys.2021.645529 |
[45] |
BLOCK M L, VOLPE L C, HAYES M J. Saliva as a chemical cue in the development of social behavior[J]. Science, 1981, 211(4486): 1062-1064. DOI:10.1126/science.7466378 |
[46] |
SMITH B A, BLOCK M L. Male saliva cues and female social choice in Mongolian gerbils[J]. Physiol Behav, 1991, 50(2): 379-384. DOI:10.1016/0031-9384(91)90081-X |
[47] |
AUSTIN C J, EMBERSON L, NICHOLLS P. Purification and characterization of pheromaxein, the porcine steroid-binding protein[J]. Eur J Biochem, 2004, 271(13): 2593-2606. DOI:10.1111/j.1432-1033.2004.04188.x |
[48] |
MUTHUKUMAR S, RAJKUMAR R, RAJESH D, et al. Exploration of salivary proteins in buffalo: an approach to find marker proteins for estrus[J]. FASEB J, 2014, 28(11): 4700-4709. DOI:10.1096/fj.14-252288 |
[49] |
SHASHIKUMAR N G, BAITHALU R K, BATHLA S, et al. Global proteomic analysis of water buffalo (Bubalus bubalis) saliva at different stages of estrous cycle using high throughput mass spectrometry[J]. Theriogenology, 2018, 110: 52-60. DOI:10.1016/j.theriogenology.2017.12.046 |
[50] |
ROBLEGG E, COUGHRAN A, SIRJANI D. Saliva: an all-rounder of our body[J]. Eur J Pharm Biopharm, 2019, 142: 133-141. DOI:10.1016/j.ejpb.2019.06.016 |
[51] |
GRÖSCHL M. Current status of salivary hormone analysis[J]. Clin Chem, 2008, 54(11): 1759-1769. DOI:10.1373/clinchem.2008.108910 |
[52] |
KACZOR-URBANOWICZ K E, CARRERAS-PRESAS C M, ARO K, et al. Saliva diagnostics - Current views and directions[J]. Exp Biol Med (Maywood), 2017, 242(5): 459-472. DOI:10.1177/1535370216681550 |
[53] |
SANKARGANESH D, RAMACHANDRAN R, VINOTHKUMAR A, et al. Changes in urinary volatiles and proteins in male goats: a possible clue for females during mate selection[J]. Biocatal Agric Biotechnol, 2019, 17: 361-365. DOI:10.1016/j.bcab.2018.12.016 |
[54] |
SOSO S B, KOZIEL J A. Characterizing the scent and chemical composition of Panthera leo marking fluid using solid-phase microextraction and multidimensional gas chromatography-mass spectrometry-olfactometry[J]. Sci Rep, 2017, 7(1): 5137. DOI:10.1038/s41598-017-04973-2 |
[55] |
林怡然, 李添娣, 刘奋, 等. 顶空气相色谱-质谱法同时测定尿中多种挥发性有机物[J]. 中华劳动卫生职业病杂志, 2018, 36(4): 305-307. LIN Y R, LI T D, LIU F, et al. Simultaneous determination of various volatile organic compounds in urine by headspace GC-MS[J]. Chinese Journal of Industrial Hygiene and Occupational Diseases, 2018, 36(4): 305-307. DOI:10.3760/cma.j.issn.1001-9391.2018.04.019 (in Chinese) |
[56] |
宗浩, 胡涛, 杜蓉, 等. 野生四川短尾鼩尿液中挥发性化学成分的分析[J]. 兽类学报, 2019, 39(6): 678-687. ZONG H, HU T, DU R, et al. Analysis of urinary volatile constituents of wild Anourosorex squamipes[J]. Acta Theriologica Sinica, 2019, 39(6): 678-687. (in Chinese) |
[57] |
HAIGH G R, LOUNSBURY D M, GORDON T A. Pheromone-induced reproductive inhibition in young female Peromyscus Leucopus[J]. Biol Reprod, 1985, 33(2): 271-276. DOI:10.1095/biolreprod33.2.271 |
[58] |
DRICKAMER L C. Effects of urine from females in oestrus on puberty in female mice[J]. Reproduction, 1986, 77(2): 613-622. DOI:10.1530/jrf.0.0770613 |
[59] |
BEYNON R J, HURST J L. Urinary proteins and the modulation of chemical scents in mice and rats[J]. Peptides, 2004, 25(9): 1553-1563. DOI:10.1016/j.peptides.2003.12.025 |
[60] |
ARCHUNAN G. 1-iodoundecane, an estrus indicating urinary chemo signal in Bovine (Bos Taurus)[J]. J Vet Sci Technol, 2012, 3: 4. |
[61] |
NORDÉUS K, WEBSTER B, SÖDERQUIST L, et al. Cycle‐characteristic odour of cow urine can be detected by the female face fly (Musca autumnalis)[J]. Reprod Dom Anim, 2014, 49(6): 903-908. DOI:10.1111/rda.12393 |
[62] |
RAJANARAYANAN S, ARCHUNAN G. Identification of urinary sex pheromones in female buffaloes and their influence on bull reproductive behaviour[J]. Res Vet Sci, 2011, 91(2): 301-305. DOI:10.1016/j.rvsc.2010.12.005 |
[63] |
SAMUTHIRAPANDI M, SELVAM R M, SUBRAMANIAN R, et al. p-cresol and oleic acid as reliable biomarkers of estrus: Evidence from synchronized Murrah buffaloes[J]. Iran J Vet Res, 2017, 18(2): 124-127. |
[64] |
MUTHUKUMAR S, MUNIASAMY S, SRINIVASAN M, et al. Evaluation of pheromone-based kit: A noninvasive approach of estrus detection in buffalo[J]. Reprod Dom Anim, 2018, 53(6): 1466-1472. DOI:10.1111/rda.13281 |
[65] |
SANKAR R, ARCHUNAN G. Flehmen response in bull: role of vaginal mucus and other body fluids of bovine with special reference to estrus[J]. Behav Processes, 2004, 67(1): 81-86. DOI:10.1016/j.beproc.2004.02.007 |
[66] |
MACRIDES F, BARTKE A, FERNANDEZ F, et al. Effects of exposure to vaginal odor and receptive females on plasma testosterone in the male hamster[J]. Neuroendocrinology, 1974, 15(6): 355-364. DOI:10.1159/000122326 |
[67] |
KIDDY C A, MITCHELL D S, BOLT D J, et al. Detection of estrus-related odors in cows by trained dogs[J]. Biol Reprod, 1978, 19(2): 389-395. DOI:10.1095/biolreprod19.2.389 |
[68] |
NISHIMURA K, UTSUMI K, OKANO T, et al. Separation of mounting-inducing pheromones of vaginal mucus from estrual heifers[J]. J Anim Sci, 1991, 69(8): 3343-3347. DOI:10.2527/1991.6983343x |
[69] |
AGBUGBA L C, OYEWUNMI A O, OGUNDUMADE T P, et al. Investigation of vaginal mucus parameters: Development of models for staging the oestrous cycle of the Bunaji cow[J]. Reprod Dom Anim, 2020, 55(9): 1044-1053. DOI:10.1111/rda.13694 |
[70] |
LE BERRE M, GERLACH J Q, LOUGHREY C, et al. Examination of oestrus-dependent alterations of bovine cervico-vaginal mucus glycosylation for potential as optimum fertilisation indicators[J]. Mol Omics, 2021, 17(2): 338-346. DOI:10.1039/D0MO00193G |
[71] |
MA W D, CLEMENT B A, KLEMM W R. Cyclic changes in volatile constituents of bovine vaginal secretions[J]. J Chem Ecol, 1995, 21(12): 1895-1906. DOI:10.1007/BF02033850 |
[72] |
SANKAR R, ARCHUNAN G. Gas Chromatographic/mass spectrometric analysis of volatile metabolites in bovine vaginal fluid and assessment of their bioactivity[J]. Int J Anal Chem, 2011, 2011: 256106. DOI:10.1155/2011/256106 |
[73] |
PLUTA K, JONES P R H, DRABI A'U SKA N, et al. The potential of volatile organic compound analysis in cervicovaginal mucus to predict estrus and ovulation in estrus-synchronized heifers[J]. J Dairy Sci, 2021, 104(1): 1087-1098. DOI:10.3168/jds.2020-19024 |
[74] |
IZARD M K, VANDENBERGH J G. Priming pheromones from oestrous cows increase synchronization of oestrus in dairy heifers after PGF-2α injection[J]. Reproduction, 1982, 66(1): 189-196. DOI:10.1530/jrf.0.0660189 |
[75] |
NORDÉUS K, BÅGE R, GUSTAFSSON H, et al. Changes in LH Pulsatility profiles in dairy heifers during exposure to oestrous urine and vaginal mucus[J]. Reprod Domest Anim, 2012, 47(6): 952-958. DOI:10.1111/j.1439-0531.2012.01997.x |
[76] |
NORDÉUS K, BÅGE R, GUSTAFSSON H, et al. The influence of oestrous substances on cyclicity and oestrous behaviour in dairy heifers[J]. Acta Vet Scand, 2012, 54(1): 26. DOI:10.1186/1751-0147-54-26 |
[77] |
KLEMM W R, HAWKINS G N, SANTOS E D L. Identification of compounds in bovine cervico-vaginal mucus extracts that evoke male sexual behavior[J]. Chem Senses, 1987, 12(1): 77-87. DOI:10.1093/chemse/12.1.77 |
[78] |
MUTHUKUMAR S, RAJKUMAR R, KARTHIKEYAN K, et al. Buffalo cervico-vaginal fluid proteomics with special reference to estrous cycle: Heat Shock Protein (Hsp)-70 appears to be an estrus indicator[J]. Biol Reprod, 2014, 90(5): 97. |
[79] |
SRINIVASAN M, ADNANE M, ARCHUNAN G. Significance of cervico-vaginal microbes in bovine reproduction and pheromone production-A hypothetical review[J]. Res Vet Sci, 2021, 135: 66-71. DOI:10.1016/j.rvsc.2021.01.003 |
[80] |
KIKUYAMA S, YAMAMOTO K, IWATA T, et al. Peptide and protein pheromones in amphibians[J]. Comp Biochem Physiol B Biochem Mol Biol, 2002, 132(1): 69-74. DOI:10.1016/S1096-4959(01)00534-6 |
[81] |
MELO A I, GONZÁLEZ-MARISCAL G. Chapter fifteen-Communication by olfactory signals in rabbits: its role in reproduction[J]. Vitamins & Hormones, 2010, 83: 351-371. DOI:10.1016/S0083-6729(10)83015-8 |
[82] |
ICHIMARU T, MOGI K, OHKURA S, et al. Exposure to ram wool stimulates gonadotropin-releasing hormone pulse generator activity in the female goat[J]. Anim Reprod Sci, 2008, 106(3-4): 361-368. DOI:10.1016/j.anireprosci.2007.05.012 |
[83] |
SCHAAL B. Mammary odor cues and pheromones: mammalian infant-directed communication about maternal state, mammae, and milk[J]. Vitam Horm, 2010, 83: 83-136. DOI:10.1016/S0083-6729(10)83004-3 |
[84] |
TOLEDO-ALVARADO H, VAZQUEZ A I, DE LOS CAMPOS G, et al. Changes in milk characteristics and fatty acid profile during the estrous cycle in dairy cows[J]. J Dairy Sci, 2018, 101(10): 9135-9153. DOI:10.3168/jds.2018-14480 |
[85] |
WILBURN D B, FELDHOFF R C. An annual cycle of gene regulation in the red-legged salamander mental gland: from hypertrophy to expression of rapidly evolving pheromones[J]. BMC Dev Biol, 2019, 19(1): 10. DOI:10.1186/s12861-019-0190-z |
[86] |
WOODLEY S K, STAUB N L. Pheromonal communication in urodelan amphibians[J]. Cell Tissue Res, 2021, 383(1): 327-345. DOI:10.1007/s00441-020-03408-1 |
[87] |
BLAZQUEZ N B, FRENCH J M, LONG S E, et al. A pheromonal function for the perineal skin glands in the cow[J]. Vet Rec, 1988, 123(2): 49-50. DOI:10.1136/vr.123.2.49 |
(编辑 郭云雁)