畜牧兽医学报  2022, Vol. 53 Issue (2): 520-528. DOI: 10.11843/j.issn.0366-6964.2022.02.018    PDF    
滑液支原体WVU1853株热不稳定延伸因子的表达及黏附特性分析
岳亚辉, 邢小勇, 武小椿, 温峰琴, 张宏燕, 龙翠琴, 张立, 马海云, 包世俊     
甘肃农业大学动物医学院, 兰州 730000
摘要:旨在探究滑液支原体(Mycoplasma synoviae,MS)热不稳定延伸因子(elongation factor thermo unstable,EF-Tu)的黏附特性。参照GenBank中MS WVU1853株EF-Tu序列,设计引物对Tu-F/Tu-R,利用PCR扩增获得MS EF-Tu基因后,将其克隆入pET-28a(+)构建重组质粒pET-EF-Tu,继而转化大肠杆菌BL21(DE3)并经IPTG诱导表达。纯化表达产物免疫新西兰兔制备抗血清,进而利用Western blot、ELISA和免疫荧光试验分别分析重组蛋白的免疫原性及EF-Tu在MS中的分布,利用补体介导的杀菌试验分析重组蛋白抗血清的补体介导杀支原体活性,利用黏附及抑制试验分析EF-Tu的黏附特性。结果表明,重组蛋白在大肠杆菌中呈可溶性表达,其相对分子质量约43 ku,并具有良好的免疫原性,其抗血清具有补体介导的杀支原体活性;EF-Tu在MS的细胞膜和细胞质中均有分布,且是MS的一种黏附相关蛋白。EF-Tu是MS膜表面黏附相关的免疫原性蛋白,研究结果为深入研究MS EF-Tu生物学功能奠定了基础。
关键词滑液支原体    热不稳定延伸因子    免疫原性    膜蛋白    黏附    
Expression of Elongation Factor Thermo Unstable of Mycoplasma synoviae WVU1853 Strain and Analysis of Its Adherence Characterization
YUE Yahui, XING Xiaoyong, WU Xiaochun, WEN Fengqin, ZHANG Hongyan, LONG Cuiqin, ZHANG Li, MA Haiyun, BAO Shijun     
College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730000, China
Abstract: The aim of this study was to investigate the adhesive function of elongation factor thermo unstable (EF-Tu) of Mycoplasma synoviae (MS). The primer pairs Tu-F/Tu-R were designed according to the sequence of EF-Tu gene of MS WVU1853 strain in GenBank. The MS EF-Tu gene was amplified by PCR and cloned into pET-28a (+). The recombinant plasmid pET-EF-Tu was constructed and transformed into Escherichia coli (E. coli) BL21(DE3). Then the recombinant proteins (rMSEF-Tu) were expressed after induction by IPTG, and the expression product was purified and used to immunize New Zealand rabbits to prepare anti-serum. Subsequently, the immunogenicity of the rMS EF-Tu and the distribution of EF-Tu in MS were respectively analyzed by Western blot, ELISA and immunofluorescence tests. The complement mediated mycoplasmacidal activity of recombinant protein antiserum was assessed by complement mediated bactericidal assay, and the adhesion function of MS EF-Tu was evaluated by adhesion and inhibition assay. The results showed that MS EF-Tu was expressed mainly in soluble form in E. coli. The relative molecular mass of rMS EF-Tu was about 43 ku, and had good immunogenicity. The anti-rMS EF-Tu serum has complement-mediated mycoplasmacidal activity. In addition, the MS EF-Tu was distributed both in MS membrane and cytoplasm, and was an adhesion-related protein of MS. This study showed that EF-Tu was an immunogenic protein related to MS membrane surface adhesion. The verification of its biological function laid a foundation for further study of MS EF-Tu.
Key words: Mycoplasma synoviae    elongation factor thermo unstable (EF-Tu)    immunogenicity    membrane protein    adhesion    

滑液支原体(Mycoplasma synoviae,MS)是禽类的一种重要的致病性支原体,主要感染鸡和火鸡,导致呼吸道病症、腱鞘炎、关节炎及关节滑膜炎[1-2]。病禽常表现为生长迟滞、脱水、消瘦、跛行,蛋鸡产蛋减少、蛋壳异常且蛋品质量差,种鸡种蛋孵化率低下,肉鸡胴体降级[3-4]。更为严重的是,MS感染鸡免疫力下降,常引发继发感染或混合感染,从而使病情加剧、诊疗困难,淘汰率和病死率大幅增加[5-6]。MS感染呈世界性流行,大部分地区蛋鸡场中MS血清阳性率高于70%,其危害性或将超越鸡毒支原体(Mycoplasma gallisepticum,MG),从而给世界造成了巨大的经济损失,并严重制约了全球养禽业的发展[7-9]。因此,开展MS相关的研究,将为其感染的预防、诊断和有效防治奠定理论基础。

EF-Tu是蛋白质生物合成过程中的关键因子之一,在多种生物中广泛存在[10-11]。研究表明,EF-Tu还参与细胞的多种生理和病理过程,如细胞骨架的组成、细胞信号转导、肿瘤的发生等[12-13]。此外,EF-Tu亦是一种新型病原相关模式分子(pathogen-associated molecular patterns,PAMPs),其与其他蛋白结合后被分泌到细胞表面,从而被宿主细胞识别和捕获[14-15]。王艳芳等[16]证实牛支原体(Mycoplasma bovis,Mb)EF-Tu为其膜表面免疫原性蛋白,并基于此建立了相关检测方法。Yu等[17]发现猪肺炎支原体(Mycoplasma hyopneumoniae,Mhp)可通过EF-Tu与补体系统的调节剂H因子结合从而逃脱补体的杀伤。Balasubramanian等[18]研究证实肺炎支原体(Mycoplasma pneumoniae,Mp)EF-Tu通过其羧基端区域与胞外基质成分纤连蛋白结合,促进肺炎支原体与宿主细胞的黏附,激活炎性反应。但迄今为止,尚无MS EF-Tu生物学功能相关的研究报道。因此,本研究拟在MS WVU1853 EF-Tu原核表达的基础上,通过对rMS EF-Tu免疫原性和EF-Tu在MS内分布的分析,以及对rMS EF-Tu抗血清的补体介导杀支原体活性和MS EF-Tu细胞黏附特性的研究,为MS EF-Tu生物学功能的深入研究奠定基础。

1 材料与方法 1.1 材料

1.1.1 试验菌株、载体、细胞与动物   MS WVU1853株购自中国兽医微生物菌株保藏管理中心;pET-InaZN-EGFP(+)膜表面展示载体、DF-1细胞为本实验室保存;pET-28a(+)购自宝生物工程(大连)有限公司;新西兰兔购自兰州兽医研究所实验动物中心。

1.1.2 主要试剂   支原体培养基基础购自青岛海博生物技术有限公司;PrimeSTAR Max Premix(2×)、T4 DNA连接酶、限制性内切酶BamHⅠ和XhoⅠ均购自宝生物工程(大连)有限公司;DNA Marker购自北京康为世纪生物科技有限公司;预染蛋白Marker购自Thermo公司;Ni-NTA His Bind购自QIAGEN公司;胎牛血清(FBS)购自BI公司;DMEM培养基、0.25%胰酶-EDTA溶液购自上海源培生物有限公司;山羊抗兔HPR-IgG、FITC-IgG、Cy3-IgG均购自北京博奥森公司;ECL化学发光试剂盒、DiI (细胞膜红色荧光探针)、DAPI染色液购自碧云天生物技术有限公司;兔抗MS血清为本实验室制备。

1.2 方法

1.2.1 MS基因组DNA提取   MS培养及提取其基因组DNA参照任峰等[19]所述方法。

1.2.2 MS EF-Tu基因的扩增   参考GenBank中MS WVU1853株(NZ_CP011096.1)EF-Tu基因序列,设计引物对(Tu-F: GCGGGATCCATGGCAAAATTAGATTTTG/Tu-R:CGCCTCGAG- TTATTTAACGATTTTTGTA;分别引入BamHⅠ、XhoⅠ酶切位点)。取MS基因组溶液4 μL,Tu-F与Tu-R溶液各1 μL,PrimeSTAR Max Premix(2×)20 μL,无菌水补足40 μL后进行PCR扩增。扩增条件:98 ℃预变性3 min;98 ℃变性10 s,52 ℃退火15 s,72 ℃延伸80 s,30个循环,72 ℃延伸7 min,产物回收备用。

1.2.3 pET-EF-Tu原核表达载体的构建   回收产物与pET-28a(+)质粒分别经BamHⅠ和XhoⅠ双酶切后连接,连接产物转化大肠杆菌(Escherichia coliE.coli)感受态细胞DH5α,37 ℃过夜培养后挑取单菌落经PCR和酶切鉴定,阳性克隆测序,正确质粒命名为pET-EF-Tu。

1.2.4 重组蛋白的原核表达   重组质粒pET-EF-Tu转化E.coli BL21(DE3),以终浓度1.0 mmol·L-1的IPTG诱导16 h后8 000 r·min-1离心10 min,弃上清,菌体经超声裂解后按Ni-NTA His Bind试剂盒说明纯化重组蛋白(rMS EF-Tu)并用SDS-PAGE分析。

经SDS-PAGE分离的rMS EF-Tu转印至NC膜,依次经5%的脱脂乳4 ℃过夜封闭、1∶1 000稀释的MS抗血清室温孵育2 h、1∶5 000稀释的羊抗兔HRP-IgG室温孵育1.5 h,ECL试剂盒显色。

1.2.5 rMS EF-Tu抗血清的制备   取纯化的重组蛋白rMS EF-Tu适量,参考Bao等[20]方法免疫新西兰兔以制备多克隆抗体。按0.5 μg·孔-1MS菌体蛋白包被酶标板,应用间接ELISA检测抗血清效价。

1.2.6 MS EF-Tu在MS中分布的分析   取培养至对数生长后期的MS菌液100 mL,参考刘佳等[21]所述的方法提取MS细胞膜蛋白及细胞质蛋白。将提取的MS菌体蛋白、胞膜蛋白和胞质蛋白分别包被酶标板,以1∶400稀释的rMS EF-Tu抗血清为一抗,应用ELISA方法分析EF-Tu在MS中的分布。同时,将提取的MS细胞膜、细胞质及其菌体蛋白制样后取15 μL上样,按“1.2.4”所述进行Western blot分析,一抗为1∶1 000稀释的rMS EF-Tu抗血清,牛血清白蛋白(BSA)为阴性对照,纯化的rMS EF-Tu为阳性对照。

以免疫荧光试验分析EF-Tu在MS表面的分布,步骤如下:取对数生长期的MS液体培养物1 mL,8 000 r·min-1离心10 min,弃上清,沉淀用50 μL无菌PBS重悬后取适量涂片,自然风干后用4%多聚甲醛固定,PBST洗涤后用1∶1 000稀释的rMS EF-Tu抗血清室温孵育2 h,经PBST洗涤后用1∶500稀释的羊抗兔FITC-IgG于37 ℃避光孵育1 h,PBST充分洗涤后封片观察。

1.2.7 补体杀菌试验   试验所用血清56 ℃灭活30 min。取2 mL对数生长期的MS菌液(1.5×108CFU·mL-1)经8 000 r·min-1离心10 min后弃上清,沉淀用无菌PBS悬浮洗涤3次后重悬于1 mL PBS。取血清60 μL与180 μL MS菌体悬液混合,37 ℃孵育30 min后加入60 μL的补体,充分混匀,37 ℃孵育1 h后10倍比稀释,选取103、104、105稀释度的悬液按分别涂布60 mm固体培养基(100 μL·板-1),每个稀释度平行重复3个。37 ℃、5% CO2的温箱中培养3~5 d后计数菌落。试验设rMs EF-Tu抗血清组、MS菌体抗血清组、免疫前血清组、补体对照组(用60 μL PBS替代血清),重复3次后按照以下公式计算杀支原体率(%):

$ \text { 杀菌率 }(\%)=\frac{\mid \text { 试验组CFU-阴性对照组 } \mathrm{CFU} \mid}{\text { 阴性对照组 } \mathrm{CFU}} \times \\100\% $

1.2.8 黏附及抑制试验   黏附及抑制试验参考Bao等[22]所述:构建重组质粒pET-InaZN-EGFP-EF-Tu后转化E. coli BL21(DE3)并诱导表达,表达菌经无菌PBS洗涤后以无抗无血清DMEM重悬。按100 MOI的量取样,无抗无血清DMEM定容至1 mL后加入六孔板中单层DF-1细胞,于37 ℃、5% CO2的培养箱中孵育2 h后用37 ℃预热的PBS洗涤,除去未黏附菌体,用4%多聚甲醛固定后应用细胞膜红色荧光探针和DAPI染色液分别对细胞膜和细胞核染色,最后经PBST洗涤后封片观察。黏附抑制试验时于表达菌中加入50 μL血清(1∶20),混匀并于37 ℃孵育1 h后加入DF-1细胞,按前述步骤完成黏附试验。以pET-InaZN-EGFP转化E.coli BL21(DE3)的菌株作为阴性对照。试验重复3次。

2 结果 2.1 MS EF-Tu基因的扩增及pET-EF-Tu载体的构建

MS EF-Tu基因经PCR扩增、产物回收、双酶切后与pET-28a(+)连接,转化至E. coli DH5α后涂布卡那霉素抗性平板,挑取长出的单菌落菌液PCR鉴定后以BamHⅠ和XhoⅠ双酶切鉴定,目的条带约1 185 bp(图 1),测序结果均与MS WVU1853株EF-Tu序列一致,表明pET-EF-Tu载体构建成功。

M. DNA相对分子质量标准;1. pET-EF-Tu经BamHⅠ、XhoⅠ双酶切的产物 M. DNA marker; 1. Product from pET-EF-Tu digested with BamHⅠ and Xho 图 1 pET-EF-Tu双酶切鉴定 Fig. 1 Identification of pET-EF-Tu by double endonucleases digestion
2.2 rMS EF-Tu的原核表达

pET-EF-Tu转化E. coli BL21(DE3)后以IPTG诱导表达,SDS-PAGE结果表明,重组蛋白在大肠杆菌中成功表达,大小约为43 ku(图 2);经Western blot分析,重组蛋白rMS EF-Tu可与MS菌体抗血清发生特异性反应,说明其具备反应原性(图 3)。

M. 蛋白质相对分子质量标准;1. IPTG诱导pET-28a (+) 表达菌;2. IPTG诱导pET-EF-Tu表达菌;3. IPTG诱导pET-EF-Tu表达菌上清;4. IPTG诱导pET-EF-Tu表达菌沉淀;5. 纯化的重组蛋白rMS EF-Tu M. Protein molecular weight marker; 1. Expression from pET-28a (+) after IPTG induction; 2. Expression from pET-EF-Tu after IPTG induction; 3. Supernatant of product from pET-EF-Tu after IPTG induction; 4. Sediment of product from pET-EF-Tu after IPTG induction; 5. Purified recombinant protein rMS EF-Tu 图 2 原核表达pET-EF-Tu的SDS-PAGE分析 Fig. 2 SDS-PAGE analysis about prokaryotic expression of pET-EF-Tu
M. 蛋白质相对分子质量标准;1. IPTG诱导pET-28a (+) 表达菌;2. 纯化的重组蛋白rMS EF-Tu M. Protein molecular weight marker; 1. Expression from pET-28a (+) after IPTG induction; 2. Recombinant protein rMS EF-Tu 图 3 Western bolt分析rMS EF-Tu Fig. 3 Western bolt analysis of rMS EF-Tu
2.3 rMS EF-Tu多克隆抗体的制备

以纯化的重组蛋白免疫新西兰白兔,经四次免疫,间接ELISA检测rMS EF-Tu抗血清效价高于1∶16 000,表明重组蛋白具有免疫原性。

2.4 EF-Tu在MS细胞中的分布

将提取的MS细胞膜蛋白、细胞质蛋白以及菌体蛋白等体积包被酶标板后应用ELISA分析EF-Tu在MS的分布,同时将其等体积上样后进行Western blot分析。结果表明,EF-Tu在MS细胞膜、细胞质蛋白中均有分布(图 4图 5),免疫荧光试验亦证实EF-Tu在MS膜表面有分布(图 6)。

图 4 ELISA检测EF-Tu在MS细胞中的分布 Fig. 4 Determination of the distribution of EF-Tu in MS cell by ELISA
M. 蛋白质相对分子质量标准;1. BSA;2. MS菌体蛋白;3. MS细胞膜蛋白;4. MS细胞质蛋白;5. 纯化的重组蛋白rMS EF-Tu M. Protein molecular weight marker; 1. BSA; 2. Total cellular proteins of MS; 3. The membrane proteins of MS; 4. The cytosolic proteins of MS; 5. Purified recombinant protein rMS EF-Tu 图 5 Western blot检测EF-Tu在MS细胞中的分布 Fig. 5 Determination of the localization of EF-Tu in MS cell by Western blot
A. 阴性对照(免疫前血清);B. 阳性对照(MS菌体抗血清);C. 试验组(rMS EF-Tu抗血清) A. Negative control (Pre-immune serum); B. Positive control (Anti-MS serum); C. Experimental group (Anti-rMS EF-Tu serum) 图 6 免疫荧光试验验证EF-Tu在MS细胞膜表面的分布 Fig. 6 Verification of the distribution of EF-Tu on MS cell membrane surface by immunofluorescence tests
2.5 补体杀菌试验

补体杀菌试验中,杀菌率计算结果显示,MS菌体抗血清补体介导的杀支原体率为48.4%,而rMS EF-Tu抗血清补体介导的杀支原体率为16.15%,表明rMS EF-Tu抗血清具有补体介导的杀支原体活性(表 1)。

表 1 rMS EF-Tu抗血清的杀菌率 Table 1 Bactericidal rate of anti-rMSEF-Tu serum
2.6 黏附及黏附抑制试验

pET-InaZN-EGFP-EF-Tu转化E. coli BL21(DE3)诱导表达的SDS-PAGE结果显示,重组蛋白约为96 ku(图 7);免疫荧光试验结果显示,经rMS EF-Tu抗血清处理的大肠杆菌能被红色荧光标记的二抗特异性结合(图 8),表明MS EF-Tu成功展示在大肠杆菌膜表面,即获得E. coli-InaZN-EGFP菌株;黏附及抑制试验结果表明,E. coli-InaZN-EGFP-EF-Tu可有效黏附至DF-1细胞(图 9A),E. coli-InaZN-EGFP菌株对DF-1无黏附作用(图 9B),且E. coli-InaZN-EGFP-EF-Tu对DF-1细胞的黏附可被rMS EF-Tu抗血清或MS菌体抗血清有效抑制(图 9CD),表明EF-Tu是MS的一种黏附相关蛋白。

M. 蛋白质相对分子质量标准;1、2. IPTG诱导pET-InaZN-EGFP、pET-InaZN-EGFP-EF-Tu表达菌 M. Protein molecular weight marker; 1, 2. Expression from pET-InaZN-EGFP, pET-InaZN-EGFP-EF-Tu after IPTG induction 图 7 原核表达pET-InaZN-EGFP-EF-Tu的SDS-PAGE分析 Fig. 7 SDS-PAGE analysis about prokaryotic expression of pET-InaZN-EGFP-EF-Tu
A. 通过GFP观察的E. coli-InaZN-EGFP-EF-Tu;B. rMS EF-Tu抗血清和Cy3-IgG偶联物标记的E. coli-InaZN-EGFP-EF-Tu;C. E. coli-InaZN-EGFP-EF-Tu荧光图像的合并;D. 通过GFP观察的E. coli-InaZN-EGFP;E. rMS EF-Tu抗血清和Cy3-IgG偶联物标记的E. coli-InaZN-EGFP;F. E. coli-InaZN-EGFP荧光图像的合并 A. The E. coli-InaZN-EGFP-EF-Tu was observed by GFP; B. E. coli-InaZN-EGFP-EF-Tu labeled with anti-rMS EF-Tu serum and Cy3-IgG conjugate; C. Fluorescence images of E. coli-InaZN-EGFP were merged; D. The E.coli-InaZN-EGFP was observed by carried GFP; E. E. coli-InaZN-eGFP marked with anti-rMS EF-Tu serum and Cy3-IgG conjugate; F. Fluorescence images of E. coli-InaZN-EGFP were merged 图 8 免疫荧光试验检测pET-InaZN-EGFP-EF-Tu在大肠杆菌膜表面的表达 Fig. 8 The expression of pET-InaZN-EGFP-EF-Tu displayed on the E.coli surface was detected by immunofluorescence tests
A. E. coli-InaZN-EGFP-EF-Tu黏附DF-1细胞;B. E. coli-InaZN-EGFP黏附DF-1细胞;C. rMS EF-Tu抗血清对E. coli-InaZN-EGFP-EF-Tu黏附DF-1细胞的抑制;D. MS菌体抗血清对E. coli-InaZN-EGFP-EF-Tu黏附DF-1细胞的抑制 A. The E. coli-InaZN-EGFP-EF-Tu adhered to the DF-1 cells; B. The E. coli-InaZN-EGFP adhered to the DF-1 cells; C. The E. coli-InaZN-EGFP-EF-Tu adhered to the DF-1 cells were inhibited by anti-rMS EF-Tu serum; D. The E. coli-InaZN-EGFP-EF-Tu adhered to the DF-1 cells were inhibited by anti-MS serum 图 9 表面展示MS EF-Tu的大肠杆菌对DF-1细胞的黏附及黏附抑制 Fig. 9 The adhesion and adhesion inhibition of MS EF-Tu displayed E. coli to DF-1 cells
3 讨论

支原体对宿主细胞的黏附是其感染宿主的先决条件[1]。研究表明,MS膜表面蛋白与其致病性和免疫应答有关。报道最多的有膜表面可变脂蛋白血凝素(variable lipoprotein haemagglutinin,VlhA),VlhA经核糖体翻译后被切割成羧基端(MSPA)和氨基端(MSPB)两部分,其中MSPA主要参与MS对宿主细胞的黏附,MSPB是高频可变性抗原,重点参与MS对免疫的逃避[23-25]。而烯醇化酶(enolase,Eno)[26],丙酮酸脱羧酶(pyruvate decarboxylase,PDC) α、β亚基[20],NADH氧化酶(NADH oxidase,NOX)[27],乳酸脱氢酶(lactate dehydrogenase,LDH)[19]和二硫辛酸脱氢酶(dihydrolipoamide dehydrogenase,DLD)[28]等的黏附功能和抗原性亦陆续被证实。

EF-Tu是细菌中最丰富的蛋白之一,在一些病原侵入机体后引起的宿主免疫应答等生物过程中发挥重要作用[29]。研究发现,牛支原体、布鲁氏菌(Brucella)、绵羊支原体(Mycoplasma ovipneumoniae,Mo)、肺炎球菌(Streptococcus pneumoniae)、葡萄球菌(Staphylococcus)等病原菌的EF-Tu可作为相关疾病预防的候选抗原和诊断靶标[16, 30-34]。本研究在MS EF-Tu基因克隆及原核表达的基础上,利用Western blot和间接ELISA证实了rMS EF-Tu具有良好的免疫原性和抗原性,为MS的血清学诊断及亚单位疫苗研制提供理论依据。补体杀菌试验证实了rMs EF-Tu抗血清的补体介导杀支原体活性,表明MS EF-Tu在宿主对其免疫应答中发挥作用。

EF-Tu在病原菌生物被膜形成及与细胞外基质结合等发挥着重要作用[35-37]。Yu等[38]发现rMhp EF-Tu能够黏附于猪气管上皮细胞(STEC),rMhp EF-Tu抗血清可以有效地抑制其对STEC的黏附。Ramiah等[39]在对植物乳杆菌(Lactobacillus plantarum)的研究过程中发现去除EF-Tu等3个表面蛋白后,其黏附性下降了40%。本研究结果证实EF-Tu在MS胞膜和胞质均有分布,且在MS膜表面有定位。因此,该蛋白可能参与MS对宿主的感染与免疫应答。本研究通过黏附及抑制试验,证实rMS EF-Tu能够有效介导大肠杆菌黏附DF-1细胞,确证MS的EF-Tu是其黏附相关蛋白。

4 结论

本研究在构建热不稳定延伸因子(EF-Tu)原核表达载体pET-EF-Tu的基础上,证实EF-Tu是具有免疫原性的MS膜表面相关蛋白,rMS EF-Tu产生的抗体具有补体介导的杀支原体作用,且EF-Tu可介导大肠杆菌黏附宿主细胞DF-1,表明其与MS感染宿主细胞和引起免疫应答有关。这一研究结果对进一步探究EF-Tu在MS甚至其他支原体等胞内寄生致病菌侵入及其致病机理的研究意义重大。

参考文献
[1]
吴移谋, 叶元康. 支原体学[M]. 2版. 北京: 人民卫生出版社, 2008.
WU Y M, YE Y K. Mycoplasma[M]. 2nd ed. Beijing: People's Medical Publishing Press, 2008. (in Chinese)
[2]
包世俊, 丁小琴, 邢小勇, 等. 滑液支原体WVU1853株免疫相关膜蛋白的初步分析[J]. 畜牧兽医学报, 2017, 48(2): 316-323.
BAO S J, DING X Q, XING X Y, et al. Preliminarily analysis of immune-related membrane proteins from Mycoplasma synoviae WVU1853 strain[J]. Acta Veterinaria et Zootechnica Sinica, 2017, 48(2): 316-323. (in Chinese)
[3]
招丽婵, 覃健萍, 王占新, 等. 鸡滑液囊支原体的流行调查及不同地区分离株药物敏感性分析[J]. 中国兽医杂志, 2019, 55(6): 9-13.
ZHAO L C, QIN J P, WANG Z X, et al. Epidemic investigation and drug sensitivity analysis of Mycoplasma synoviae from different geographical locations[J]. Chinese Journal of Veterinary Medicine, 2019, 55(6): 9-13. (in Chinese)
[4]
LORENC Z, PAŚKO S, KURSA O, et al. Spectral technique for detection of changes in eggshells caused by Mycoplasma synoviae[J]. Poult Sci, 2019, 98(9): 3481-3487. DOI:10.3382/ps/pez150
[5]
董亚青, 刘博, 王永娟. 鸡滑液囊支原体病危害及防控[J]. 中国畜禽种业, 2020, 16(10): 192.
DONG Y Q, LIU B, WANG Y J. The harm and prevention of Mycoplasma synoviae disease of chicken[J]. The Chinese Livestock and Poultry Breeding, 2020, 16(10): 192. DOI:10.3969/j.issn.1673-4556.2020.10.149 (in Chinese)
[6]
费强. 鸡滑液囊支原体病的特点及防控措施[J]. 家禽科学, 2020(1): 60.
FEI Q. The characteristics of Mycoplasma synoviae and its prevention and control measures[J]. Poultry Science, 2020(1): 60. (in Chinese)
[7]
FELICE V, LUPINI C, MESCOLINI G, et al. Molecular detection and characterization of Mycoplasma gallisepticum and Mycoplasma synoviae strains in backyard poultry in Italy[J]. Poult Sci, 2020, 99(2): 719-724. DOI:10.1016/j.psj.2019.12.020
[8]
LANDMAN W J M. Is Mycoplasma synoviae outrunning Mycoplasma gallisepticum? A viewpoint from the Netherlands[J]. Avian Pathol, 2014, 43(1): 2-8. DOI:10.1080/03079457.2014.881049
[9]
YADAV J P, TOMAR P, SINGH Y, et al. Insights on Mycoplasma gallisepticum and Mycoplasma synoviae infection in poultry: a systematic review[J]. Anim Biotechnol, 2021, 1-10.
[10]
KAMLA V, HENRICH B, HADDING U. Phylogeny based on elongation factor Tu reflects the phenotypic features of mycoplasmas better than that based on 16S rRNA[J]. Gene, 1996, 171(1): 83-87. DOI:10.1016/0378-1119(95)00884-5
[11]
KRAB I M, PARMEGGIANI A. EF-Tu, a GTPase odyssey[J]. Biochim Biophys Acta (BBA) - Gene Struct Expr, 1998, 1443(1-2): 1-22. DOI:10.1016/S0167-4781(98)00169-9
[12]
SOUFO H J D, REIMOLD C, LINNE U, et al. Bacterial translation elongation factor EF-Tu interacts and colocalizes with actin-like MreB protein[J]. Proc Natl Acad Sci U S A, 2010, 107(7): 3163-3168. DOI:10.1073/pnas.0911979107
[13]
王晓霖. 乳酸菌表面蛋白鉴定及其细菌延伸因子EF-Tu的免疫生物学特性研究[D]. 扬州: 扬州大学, 2016.
WANG X L. Study on the identification of Lactic acid bacteria and immunomy biological characteristics of bacterial extension factor EF-Tu[D]. Yangzhou: Yangzhou University, 2016. (in Chinese)
[14]
ZIPFEL C, KUNZE G, CHINCHILLA D, et al. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation[J]. Cell, 2006, 125(4): 749-760. DOI:10.1016/j.cell.2006.03.037
[15]
孟宪邑. 大肠杆菌EF-Tu多蛋白复合物诱导THP-1细胞免疫应答的研究[D]. 厦门: 厦门大学, 2008.
MENG X Y. The cellular immune response induced by EF-Tu multiple protein complex of Escherichia coli[D]. Xiamen: Xiamen University, 2008. (in Chinese)
[16]
王艳芳, 周雅坪, 郭婷, 等. 牛支原体EF-Tu基因的克隆表达、亚细胞定位及间接ELISA方法建立[J]. 畜牧兽医学报, 2019, 50(1): 134-142.
WANG Y F, ZHOU Y P, GUO T, et al. Cloning, expression, subcellular localization and indirect ELISA method of EF-Tu gene in Mycoplasma bovis[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50(1): 134-142. (in Chinese)
[17]
YU Y F, WANG J, HAN R, et al. Mycoplasma hyopneumoniae evades complement activation by binding to factor H via elongation factor thermo unstable (EF-Tu)[J]. Virulence, 2020, 11(1): 1059-1074. DOI:10.1080/21505594.2020.1806664
[18]
BALASUBRAMANIAN S, KANNAN T R, BASEMAN J B. The surface-exposed carboxyl region of Mycoplasma pneumoniae elongation factor Tu interacts with fibronectin[J]. Infect Immun, 2008, 76(7): 3116-3123. DOI:10.1128/IAI.00173-08
[19]
任峰. 滑液支原体乳酸脱氢酶生物学功能的研究[D]. 晋中: 山西农业大学, 2014.
REN F. Study on the biological functions of LDH from mycoplasma synoviae[D]. Jinzhong: Shanxi Agricultural University, 2014. (in Chinese)
[20]
BAO S J, DING X Q, YU S Q, et al. Characterization of pyruvate dehydrogenase complex E1 alpha and beta subunits of Mycoplasma synoviae[J]. Microb Pathog, 2021, 155: 104851. DOI:10.1016/j.micpath.2021.104851
[21]
刘佳, 张生英, 邢小勇, 等. 滑液支原体DnaK的原核表达及免疫原性分析和亚细胞定位[J]. 中国兽医科学, 2020, 50(8): 1029-1036.
LIU J, ZHANG S Y, XING X Y, et al. Prokaryotic expression, immunogenicity analysis and subcellular localization of DnaK of Mycoplasma synoviae[J]. Chinese Veterinary Science, 2020, 50(8): 1029-1036. (in Chinese)
[22]
BAO S, YU S, GUO X, et al. Construction of a cell-surface display system based on the N-terminal domain of ice nucleation protein and its application in identification of Mycoplasma adhesion proteins[J]. J Appl Microbiol, 2015, 119(1): 236-244. DOI:10.1111/jam.12824
[23]
BENCINA D. Haemagglutinins of pathogenic avian mycoplasmas[J]. Avian Pathol, 2002, 31(6): 535-547. DOI:10.1080/0307945021000024526
[24]
MAY M, DUNNE D W, BROWN D R. A sialoreceptor binding motif in the Mycoplasma synoviae adhesin VlhA[J]. PLoS One, 2014, 9(10): e110360. DOI:10.1371/journal.pone.0110360
[25]
KHIARI A B, MARDASSI B B A. Characterization of the antigenic and functional domains of a Mycoplasma synoviae variant vlhA gene[J]. Vet Microbiol, 2012, 156(3-4): 322-329. DOI:10.1016/j.vetmic.2011.11.016
[26]
BAO S J, GUO X Q, YU S Q, et al. Mycoplasma synoviae enolase is a plasminogen/fibronectin binding protein[J]. BMC Vet Res, 2014, 10: 223. DOI:10.1186/s12917-014-0223-6
[27]
李浩然. 滑液囊支原体NADH氧化酶酶学活性及粘附特性研究[D]. 合肥: 安徽农业大学, 2020.
LI H R. Study on the enzymatic activity and adhesion characteristic of NADH oxidase from Mycoplasma synoviae[D]. Hefei: Anhui Agricultural University, 2020. (in Chinese)
[28]
王宇. 滑液支原体二氢硫辛酸脱氢酶的生物学功能研究[D]. 扬州: 扬州大学, 2019.
WANG Y. Study on biological function of dihydrolipoamide dehydrogenase of Mycoplasma synoviae[D]. Yangzhou: Yangzhou University, 2019. (in Chinese)
[29]
HARVEY K L, JAROCKI V M, CHARLES I G, et al. The diverse functional roles of elongation factor Tu (EF-Tu) in microbial pathogenesis[J]. Front Microbiol, 2019, 10: 2351. DOI:10.3389/fmicb.2019.02351
[30]
姜岳. 布鲁氏菌的EF-Tu蛋白单克隆抗体制备及其识别表位的鉴定[D]. 泰安: 山东农业大学, 2018.
JINAG Y. Preparation of the monoclonal antibody against EF-Tu protein and identification of the B-cell epitope in the Brucella[D]. Taian: Shandong Agricultural University, 2018. (in Chinese)
[31]
王方昆. 马耳他型布氏杆菌弱毒疫苗株M5-90致弱分子机制的研究[D]. 北京: 中国农业科学院, 2011.
WANG F K. Attenuation molecular basis of Brucella melitensis vaccine strain M5-90[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011. (in Chinese)
[32]
张洁, 曹军军, 祝明松, 等. 基于绵羊肺炎支原体EF-Tu蛋白间接ELISA方法的建立[J]. 动物医学进展, 2019, 40(11): 6-13.
ZHANG J, CAO J J, ZHU M S, et al. Establishment of an indirect ELISA method based on Mycoplasma ovipneumoniae elongation factor Tu protein[J]. Progress in Veterinary Medicine, 2019, 40(11): 6-13. (in Chinese)
[33]
NAGAI K, DOMON H, MAEKAWA T, et al. Immunization with pneumococcal elongation factor Tu enhances serotype-independent protection against Streptococcus pneumoniae infection[J]. Vaccine, 2019, 37(1): 160-168. DOI:10.1016/j.vaccine.2018.11.015
[34]
张鑫宇, 周花艳, 刘潇羽, 等. 一种基于EFTu的双抗体夹心胶体金试纸、葡萄球菌检测方法及应用: 中国, 110161239A[P]. 2019-08-23.
ZAHNG X Y, ZHOU H Y, LIU X Y, et al. Double-antibody sandwich colloidal gold stripe based on EFTu, Staphylococcus detection method and application thereof: CN, 110161239A[P]. 2019-08-23. (in Chinese)
[35]
LÓPEZ-OCHOA J, MONTES-GARCÍA J F, VÁZQUEZ C, et al. Gallibacterium elongation factor-Tu possesses amyloid-like protein characteristics, participates in cell adhesion, and is present in biofilms[J]. J Microbiol, 2017, 55(9): 745-752. DOI:10.1007/s12275-017-7077-0
[36]
DALLO S F, ZHANG B L, DENNO J, et al. Association of Acinetobacter baumannii EF-Tu with cell surface, outer membrane vesicles, and fibronectin[J]. Sci World J, 2012, 2012: 128705.
[37]
KUNERT A, LOSSE J, GRUSZIN C, et al. Immune evasion of the human Pathogen Pseudomonas aeruginosa: elongation factor tuf is a factor H and plasminogen binding protein[J]. J Immunol, 2007, 179(5): 2979-2988. DOI:10.4049/jimmunol.179.5.2979
[38]
YU Y F, WANG H E, WANG J, et al. Elongation factor thermo unstable (EF-Tu) moonlights as an adhesin on the surface of Mycoplasma hyopneumoniae by binding to fibronectin[J]. Front Microbiol, 2018, 9: 974. DOI:10.3389/fmicb.2018.00974
[39]
RAMIAH K, VAN REENEN C A, DICKS L M T. Surface-bound proteins of Lactobacillus plantarum 423 that contribute to adhesion of Caco-2 cells and their role in competitive exclusion and displacement of Clostridium sporogenes and Enterococcus faecalis[J]. Res Microbiol, 2008, 159(6): 470-475. DOI:10.1016/j.resmic.2008.06.002

(编辑   白永平)