畜牧兽医学报  2022, Vol. 53 Issue (10): 3305-3315. DOI: 10.11843/j.issn.0366-6964.2022.10.004    PDF    
蛋鸡低蛋白日粮研究进展
邱凯, 常心雨, 车彦卓, 王晶, 张海军, 齐广海, 武书庚     
中国农业科学院饲料研究所 农业农村部饲料生物技术重点实验室,北京 100081
摘要:蛋白质饲料原料资源紧张和养殖氮排放污染是我国蛋鸡业面临的主要难题。为此,蛋鸡低蛋白日粮在近年来应运而生,逐渐成熟。相关研究多以标准回肠可消化氨基酸为依据来配制蛋鸡低蛋白日粮,以期减少蛋白质饲料原料消耗、降低养殖成本、减少氮排放。本文简述了低蛋白日粮技术的理论基础及其在蛋鸡上的研究进展,旨在为低蛋白饲料在蛋鸡生产上的应用提供参考。
关键词蛋鸡    低蛋白日粮    氨基酸平衡    能量平衡    功能性氨基酸    蛋清品质    
Research Advances on Low-Protein Diets of Laying Hens
QIU Kai, CHANG Xinyu, CHE Yanzhuo, WANG Jing, ZHANG Haijun, QI Guanghai, WU Shugeng     
Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Abstract: Scarcity of feed protein source and nitrogen emission pollution are important problems in poultry industry. For this reason, low-protein diets for laying hens came into being in recent years and was gradually widely used. Low-protein diets of laying hens in recent studies were mainly formulated according to the standard ileal digestible amino acid content of feedstuffs, in order to reduce protein resources consumption, feeding cost, and nitrogen emission. Here, the theoretical basis of low-protein diet and its research progress in laying hens were briefly reviewed, aiming to improve the application of low-protein diet in laying hens.
Key words: laying hens    low-protein diets    amino acid balance    energy balance    functional amino acid    albumen quality    

随着人民生活水平的提高,动物源食品的消费量逐年增长,而我国饲料粮生产受制于土地、水等资源,产量难以大幅度增加。早在2018年10月,我国已经开始在畜禽养殖业全面推行低蛋白日粮技术。低蛋白日粮可显著提高蛋白质利用率,具有节本增效、降氮减排、应用方便、性能稳定等优点,拥有十分广阔的应用前景[1],科学配制低蛋白日粮不仅能确保动物蛋白质营养充足,还可提高饲粮蛋白的利用效率,对家禽生产有积极影响[2-3]。在蛋鸡上推行低蛋白日粮技术,可有效减少蛋白原料使用量,改善肠道健康,减轻氮排泄污染,但主要面临两大难题,即日粮的精准配制和鸡蛋品质调控。因此,概述蛋鸡低蛋白日粮技术的相关研究进展,对于促进蛋鸡低蛋白日粮的应用具有重要意义。

1 低蛋白日粮的理论基础

动物对饲粮粗蛋白(CP)的需要实际上是对氨基酸(AA)的需要,蛋白质营养的实质是AA营养。低蛋白日粮是基于理想AA模式(IAAP),以及能量-蛋白质-氨基酸平衡理论,将饲粮CP降低2~4个百分点,通过添加适宜种类和数量的晶体AA,补足必需AA,满足动物的AA需要,并能改善动物肠道健康和养殖环境的饲粮[2-5]

1.1 理想氨基酸模式

IAAP是低蛋白日粮研究的理论基础,最初由Howard于1958年提出,指饲粮蛋白质AA在组成和比例上与动物所需蛋白质AA组成和比例一致,实质上是指必需AA之间、必需与非必需AA之间在组成和比例上具有最佳的平衡[4]。IAAP有三方面含义:动物对饲粮CP的消化率最佳;饲粮AA组成和比例与动物维持基本生命活动、保证生产性能时的体蛋白AA组成和比例相同;各种AA对机体的限制作用相同,缺乏任何一种都影响生产潜能发挥。蛋鸡IAAP一直是动物营养学研究的重点。任冰[5]表明,采用IAAP,把蛋鸡饲粮CP由17%降低到15%,对产蛋性能未产生负面影响,对CO2和CH4排放量无显著影响,但减少了排泄物中氮的排放量。针对产蛋鸡日粮的IAAP,刘庚等[6]根据产蛋量得出30~38周龄海兰褐产蛋鸡的理想标准回肠可消化(SID)AA模式为:Lys∶Met∶Trp∶Thr= 100∶46∶24∶73,但与赢创和巴西饲养标准(2017)分别推荐的产蛋鸡SID AA有一定差异。这说明已发表的蛋鸡IAAP普适性不强,需要根据产蛋鸡的品种、阶段、生产目标等进一步优化。

在高峰期蛋鸡的常规饲粮中,产蛋率、产蛋量及料蛋比在0.35% Met水平最优。然而,在低蛋白日粮中,高峰期蛋鸡SID Met需要量为0.408%~0.419%,Lys为0.76%,含硫AA与Lys最佳比例为90.15%~91.61%[4]。也有研究指出,蛋鸡低蛋白日粮中保证0.72%(Met+Cys)可获得最佳生产条件[7]。此外,按照蛋鸡IAAP来制定低蛋白饲料配方,首先应考虑饲料AA的消化率,以AA的消化率评价其有效性。畜禽种类、品种和生长阶段以及蛋白原料种类、来源均会导致饲粮AA消化率和利用率的不同。畜禽AA平衡饲料的配制大多采用可消化AA(DAA)体系,DAA包括表观DAA和回肠DAA,基于IAAP和DAA体系配制饲粮,结果更具有可比性[8]

1.2 标准回肠可消化氨基酸

基于前人研究,Lemme等[9]在肉仔鸡上提出了标准回肠可消化AA(SID AA)的概念,克服了表观消化率的局限性,消除了尿氮和后肠道微生物发酵产生AA的影响,同时也以“酪蛋白酶解法”评估了回肠内源性氮损失,排除了内源性氮损失的干扰[10]。本课题组比较了豆粕日粮在21日龄肉鸡与35周龄蛋鸡的AA消化率变化,发现产蛋鸡的内源性AA损失高于肉仔鸡;产蛋鸡所有AA的表观消化率均低于肉仔鸡;除了个别AA以外,产蛋鸡的SID AA消化率低于肉仔鸡。Bregendahl等[11]通过剂量-最大产蛋量的回归分析,得出蛋鸡饲粮SID AA的IAAP为Lys∶Met∶Trp∶Thr∶(Met+Cys)∶Arg∶IIe∶Val=100∶50∶21∶70∶91∶104∶80∶88[12]。饲料原料的SID AA含量为多次动物消化代谢试验的平均值,目前蛋鸡大都延用饲料原料在肉鸡上测定的SID值[9],并且饲粮CP水平越低,动物内源氮损失越多[12]。因此,要用好蛋鸡低蛋白日粮技术,就必须建立产蛋鸡饲料原料的SID-AA数据库。

2 蛋鸡低蛋白日粮的氨基酸平衡

低蛋白日粮技术的推广与应用,不仅能降低蛋鸡养殖过程中的饲料成本,还能提高蛋鸡的产蛋性能[13]。在必需AA平衡的条件下,降低CP水平对育成阶段蛋鸡生长性能、骨骼发育及性成熟等指标无显著影响,但显著降低粪便中氮的排放量,有助于节约饲料成本及保护环境[14]。将饲粮CP由16.5%降至12.0%,添加必需AA,有利于提高蛋鸡在高温条件下的抗应激能力和粪便评分,同时保持良好的生产性能[15]。低蛋白日粮可显著降低血浆尿酸浓度,减少甲烷排放,但会对蛋壳质量产生负面影响,这可能是由于采食量减少导致钙摄入不足。在蛋鸡低蛋白日粮中,随着CP浓度不断降低,非必需AA含量减少,要维持正常生产性能,需增加以Lys为代表的必需AA供应[16]。蛋鸡AA缺乏引起的肠道菌群改变与关键生理及生产参数(尿酸、终体重、腹脂、采食量、产蛋率、蛋重、产蛋量、料蛋比)的变化密切相关。因此,在低CP饲粮结构中需添加适当必需AA,尤其是Met、Lys、Ile和Thr等[17]

低蛋白日粮添加适量Met对蛋鸡肠道微生物组成、生产性能、繁殖系统和营养物质代谢具有显著改善作用,Met水平为0.38%时,蛋鸡生产性能较好[18]。晶体Lys和Met的胶囊化缓释处理,可减缓肠内释放速度,改善吸收后AA平衡,降低饲粮晶体AA添加水平[19]。蛋鸡饲粮CP水平下降,对生产性能、蛋品质、免疫力无显著影响,但会降低机体抗氧化性能,改变盲肠菌群结构;补充复合酶制剂可有效提高生产性能、蛋品质、抗氧化性能,改善肠道形态结构;搭配α-月桂酸单甘油酯使用,效果更加显著[20]。低蛋白日粮添加β-甘露聚糖酶会降低蛋鸡采食量和饲料转化率,但能提高玉米/大豆饲粮中关键氨基酸的消化率[21]。由以上研究可知,在蛋鸡上应用低蛋白日粮技术,会影响肠道微生态平衡,饲粮IAAP也发生了变化,需深入研究。

3 蛋鸡低蛋白日粮的能量平衡 3.1 主要问题

与常规饲粮相比,低蛋白日粮更接近IAAP,减少了机体蛋白质代谢对能量的消耗,但某些AA不足会影响肠道供能,如谷氨酸。开产前蛋白质营养不足导致母鸡将更多的能量转移到生长和维持上,而将较少的能量用在生殖能力上[22]。肝作为蛋鸡脂质代谢周转的重要器官,不仅要合成疏水性脂类,如三酰甘油、胆固醇酯和游离脂肪酸,而且还要合成卵黄蛋白的前体物质,如低密度脂蛋白和卵黄蛋白源颗粒,经体循环转移至卵母细胞,形成卵黄[23]。机体蛋白缺乏会导致亲脂因子和脂蛋白生成不足,脂肪不能及时运出肝,沉积于肝,引起脂肪肝出血综合征(FLHS);能量过剩转化成脂肪在肝中沉积,也会导致FLHS。高脂肪低蛋白日粮是诱发蛋鸡FLHS的自然原因[24]

产蛋鸡是生理状态高度敏感的生物转化器,长期饲喂低蛋白日粮极易引发FLHS[24]。在高能低蛋白日粮诱发FLHS的影响下,蛋鸡肝中调控脂肪酸合成的AMPK信号通路紊乱,能量平衡被破坏,加剧脂肪在肝中沉积[25-26]。糖、脂和AA等代谢过程的失调引发胰岛素抵抗,致使FLHS进一步恶化[27]。蛋鸡患FLHS后,脂肪组织代谢失常,导致机体IL-6水平升高,从而诱发肝的肿大、出血等症状[28]。自由基在高能低蛋白日粮致脂肪肝出血综合征的发生、发展过程中起重要作用[29]。也有研究指出,CideaCidec基因参与了蛋鸡高能低蛋白日粮诱导的FLHS形成途径[30]。由此可见,蛋鸡低蛋白日粮中的能量相对过剩极易诱发FLHS,需加以重视。

3.2 应对措施

3.2.1 能氮比   饲粮能氮比与高峰期蛋鸡FLHS发病率紧密相关,当饲粮CP与能量维持适宜比例时,蛋鸡生产性能最佳。用饲粮代谢能(MJ)与CP含量(%)的比值计算能氮比,其适宜比例对于50%、60%、70%、80%和90%产蛋率的蛋鸡分别为0.36、0.26、0.29和0.26[31]。研究表明,当产蛋鸡饲料能量为11.51 MJ·kg-1,CP为16.78%时,FLHS的发病率最低[32]。饲粮代谢能和CP水平对蛋鸡产蛋率、产蛋量和料蛋比的影响存在交互作用。通过响应面分析方法得出,当饲粮代谢能为10.04 MJ·kg-1,CP水平为16%时,蛋鸡生产性能最佳[33]。因此,使用蛋鸡低蛋白日粮时,需及时调整饲粮能氮比。

3.2.2 添加剂   高能低蛋白日粮添加0.5%卵磷脂,可减少高产蛋鸡肝中的脂肪沉积,减少脂肪肝综合征的发生[34]。添加0.3 mg·kg-1生物素也有一定的预防作用[35]。鸡骨草提取液对高能低蛋白日粮诱导的蛋鸡血脂紊乱具有调节作用[36]。不同剂量盐酸小檗碱能够缓解高能低蛋白日粮导致的血脂紊乱,减轻肝损伤,并通过调控肝脂合成与氧化分解代谢信号通路来降低肝脂沉积,从而有效防治高能低蛋白日粮诱导的蛋鸡FLHS[37]。在产蛋后期,饲粮添加苜草素能够降低FLHS的发生[38]。添加甜菜碱可通过改变肝组织的脂类合成及转运相关基因启动子上的甲基化状态和GR结合改变其表达,从而促进肝中卵黄前体物质的合成和释放[39]。低蛋白日粮添加血根碱能提高蛋鸡免疫力,增强机体抗氧化能力,提高营养物质消化率,改善蛋鸡肠道健康[40-41]。白藜芦醇能够显著改善高能低蛋白日粮致FLHS蛋鸡脂质代谢紊乱、胰岛素及其信号通路传导障碍,从而降低FLHS所致的肝损伤与脂质沉积水平,可作为一种饲料添加剂有效减轻FLHS母鸡的氧化应激和炎症[42-43]。吡咯喹啉醌可增强肝细胞脂质代谢能力、抗氧化性能、线粒体功能和抗凋亡能力,对蛋鸡FLHS具有很好的预防作用[44]。由此可见,为预防蛋鸡FLHS,应用低蛋白日粮技术时,需搭配使用脂肪代谢调节类的饲料添加剂。

3.2.3 净能体系   目前,动物饲料营养价值体系主要有消化能、代谢能和净能体系。家禽因粪尿难以分离,广泛采用的是代谢能体系。NRC(1994)推荐采用更加准确的氮矫正代谢能(AMEn),但仍有约15%的能量在代谢过程中以热增耗的方式损失[45]。不同饲料原料的热增耗有别,原料的净能值测定困难,少部分净能值是由AMEn计算而来。随着蛋鸡低蛋白日粮技术研究的不断深入,继续使用代谢能体系会造成饲粮能量浪费、蛋鸡FLHS等问题。产蛋鸡依据饲粮能量水平调整采食量,保持总能摄入量基本不变。当饲粮CP水平为16%~17%,能量水平低至11.00 MJ·kg-1时,依然存在蛋白质摄入过多的问题,不利于蛋鸡生产性能的发挥和甲烷的减排[46]。低能低蛋白日粮补充100 IU·kg-1复合酶可以提高蛋鸡的饲料转化效率,改善肠内氨浓度和食糜黏度,降低盲肠有害微生物数量[47]。有研究表明,饲粮CP水平降低两个百分点显著降低了蛋鸡的生产性能和蛋品质,但利用净能体系配制日粮可保持稳定的生产性能,更适合蛋鸡的实际需要[48]。显然,采用净能体系配制蛋鸡低蛋白日粮更具科学性,但净能体系下的适宜能氮比还需要进一步探索。

4 蛋鸡低蛋白日粮的功能性氨基酸需求

功能性AA不仅是蛋白质合成的底物,还能作为生物活性物质参与细胞内的信号传导。蛋鸡低蛋白日粮添加功能性AA可改善蛋鸡生产性能和蛋品质,主要包括Thr、Trp、Gln、Arg、Gly、Glu、含硫AA和支链AA等[49-50]。低蛋白日粮的研究基础是IAAP和SID模式,但在蛋鸡低蛋白日粮中,功能性AA添加量的研究较少。为进一步优化IAAP和SID模式,提高蛋鸡低蛋白日粮使用效率,应将功能性AA纳入蛋鸡IAAP和SID模式开展相关研究。

4.1 色氨酸和苏氨酸

在15% CP的玉米-豆粕型低蛋白日粮中,补充2% Trp对蛋鸡的生产性能和蛋品质有明显改善作用,产蛋率可提高4.40%,料蛋比下降7.985%,血清蛋白含量和蛋白高度均有提高,同时有效降低氮排泄对环境的污染[51]。在14.56% CP的低蛋白日粮中添加0.2% Thr,可显著提高蛋鸡的产蛋率、饲料转化率和蛋壳质量,促进蛋白质沉积[52]。在14% CP的产蛋高峰期低蛋白日粮中添加0.57%~0.66% Thr,能通过刺激肠黏膜免疫系统,提高回肠黏蛋白2和分泌型免疫球蛋白(SIgA)的表达水平,增加肠道微生物多样性和益生菌丰度,改善蛋鸡肠道健康和生产性能[53-54]。回归分析表明,最优产蛋率、血清尿酸、血清抗氧化能力的饲粮Thr需要量分别为0.58%、0.59%和0.56%[55]。饲粮CP水平从15.5%降低到13%,对高峰期蛋鸡的产蛋率、产蛋量和料蛋比有负面影响,但在低蛋白日粮中单独或者联合补充晶体Thr、Trp和Ile,能显著改善蛋鸡生产性能,并达到与15.5% CP组相当的水平,同时降低血清尿酸和血清氨浓度[56]。由此可见,低蛋白日粮添加Trp和Thr可明显改善蛋鸡生产性能和蛋品质。

4.2 支链氨基酸

支链AA包括Ile、Leu和Val,可作为信号分子,通过介导细胞内的mTOR和GCN2信号通路,调节蛋白质周转。Ile、Val和Leu因竞争同一个转运载体且均由α酮酸支链脱氢酶水解,存在拮抗作用[57]。肉鸡低蛋白日粮添加Leu和Val,可线性降低腹脂率,显著增加胸肌率和肌纤维直径[58]。在平衡Lys、Met、Thr、Trp和Val的蛋鸡低蛋白日粮中,添加不同剂量Ile均未影响蛋鸡的产蛋性能、蛋品质、血清抗氧化能力和机体免疫力,说明Ile不是产蛋鸡低蛋白日粮的限制性AA[59]。Ile可用于调节平均蛋重,但会降低总产蛋重。在利用晶体AA平衡Met、Lys、Thr、Trp的基础上,饲粮添加Ile可在不影响蛋鸡生产性能和蛋品质的情况下降低饲粮CP水平2个百分点,SID Ile∶Lys的最佳添加量为82%~88%[60]。有研究指出,蛋鸡低蛋白日粮中支链AA平衡的适宜含量为1.01% Leu、0.40% Val和0.29% Ile[56]。因此,蛋鸡低蛋白日粮补充支链AA虽对生产性能影响不大,但对蛋品质的调控作用不容忽视。

4.3 甘氨酸、丝氨酸和精氨酸

胆汁酸进入小肠,与游离的Gly结合生成胆盐,可促进脂质和脂溶性营养物质的吸收[61]。蛋鸡饲粮添加Gly,可线性增加肠道对脂溶性物质的吸收率,有助于提高产蛋率和蛋重[62-63]。在CP水平为15.3%的低蛋白日粮中添加Ser,能增加平均蛋重[64]。饲粮蛋白水平为15.00%情况下,添加0.1% Gly对蛋鸡生产性能无不良影响[65]。饲粮CP降低2.44%,在添加一定必需AA后,可维持蛋鸡生产性能,但伴有回肠炎症,且蛋清品质较差;添加Ser可提高蛋鸡免疫力,减轻回肠炎症,改善生产性能[66]。在CP水平为16%的肉仔鸡低蛋白日粮中添加2.44% Gly或Ser,可提高生产性能,并达到与23% CP饲粮相当的水平[67]。Gly和Ser在动物体内可相互转化,两者在蛋鸡低蛋白日粮中的研究较少。目前,普遍认为卵黏蛋白β亚基降解是储存期鸡蛋蛋清稀化、蛋清品质下降的主要原因[68-69]。Ser作为鸡蛋蛋清卵黏蛋白β亚基的主要成分,对于改善鸡蛋蛋清品质的研究具有重要意义。

蛋鸡饲粮添加适宜的Arg,可降低蛋鸡肝脂肪酸相关蛋白的表达,提高肝TOR表达水平,抑制组织蛋白酶B和20S蛋白酶体的表达水平,促进肝中蛋白沉积[70];同时也能通过调节下丘脑神经肽的分泌,降低胃饥饿素的分泌量,进而调节蛋鸡采食量,改善产蛋鸡生产性能和蛋品质[71]。另外,要维持蛋鸡健康生产,Arg与非必需AA的适宜比例约为14.6%~15.7%[72]。由此可见,蛋鸡低蛋白日粮补充Gly、Ser和Arg可有效改善生产性能和蛋品质,其适宜添加量值得深入研究。

5 蛋鸡低蛋白日粮的蛋白源选择

随着饲粮CP水平的降低,通过添加晶体AA平衡饲粮必需AA可最大限度地维持产蛋鸡的生产性能,但当饲粮CP水平降低到一定程度时,即使添加晶体AA,也无法维持其生产性能,这可能由于饲粮中小肽和非必需AA无法满足蛋鸡的最低需要,或者晶体AA和蛋白结合型AA的吸收速率不匹配,影响利用效率。研究发现,利用多种饲料蛋白源相互组合使用,可以起到补充非必需AA和小肽的作用[48]

以脱酚棉籽蛋白完全替代豆粕饲喂产蛋鸡6周,对蛋重、产蛋率和蛋品质无显著影响[73]。在SID模式下,以脱酚棉籽蛋白替代50%的豆粕饲喂高峰产蛋鸡12周,对生产性能和蛋品质也无显著影响[74]。然而,以脱酚棉籽蛋白完全替代豆粕作为唯一蛋白质来源长期饲喂高峰产蛋鸡,会降低鸡蛋蛋清品质;若在蛋鸡饲粮中长期使用脱酚棉籽蛋白,其添加比例不宜超过10%[73, 75-76]。在IAAP下,用双低菜粕替代50%豆粕饲喂蛋鸡,对生产性能没有影响,但长期使用全双低菜粕饲粮会导致鸡蛋储存期蛋清品质变差[77]。蛋鸡低蛋白日粮添加不同比例的葵花粕[78]或膨化大豆[79]替代豆粕,可以在一定程度上改善蛋品质,提高鸡蛋营养价值。黑水虻、黄粉虫、蝇蛆蛋白等都是优质新型动物源性蛋白,研究发现,以黑水虻完全替代豆粕作为产蛋鸡唯一蛋白质来源,可提高饲料利用率,但会降低产蛋率、采食量和平均蛋重;可提高蛋黄比重,使蛋黄富集更多叶黄素、生育酚和胡萝卜素,且能降低蛋黄胆固醇含量[80-81]。饲喂蝇蛆蛋白可使蛋鸡提早开产,增强蛋鸡的抗病性和免疫力,提高产蛋量,降低鸡蛋胆固醇含量[82-83]。在14.85% CP低蛋白日粮中添加6.6%蝇蛆蛋白替代部分豆粕,对蛋鸡生产性能和蛋清品质无不良影响[84]。蛋鸡饲粮添加4%黄粉虫替代部分豆粕,可获得较好的产蛋性能和蛋品质[85]。蛋鸡饲粮添加高达20%的亚麻荠粕可以改善老龄蛋鸡的蛋壳品质[86]。总之,不同蛋白源只可部分替代豆粕,其相互组合可为缓解蛋鸡低蛋白日粮的负面影响提供思路,但其添加比例和组合方式还需进一步探究。

6 低蛋白日粮对鸡蛋品质的影响

鸡蛋品质包括蛋壳品质、蛋清品质和蛋黄品质等。蛋白高度和哈氏单位是衡量蛋清品质的重要指标。低蛋白日粮主要影响蛋清品质,有研究证实,蛋鸡输卵管膨大部卵清蛋白的表达水平与蛋鸡生产性能无关,但受饲粮CP水平的调控[87]。与16% CP的常规饲粮相比,饲喂Lys、Met和Thr平衡的13% CP低蛋白日粮,高峰期产蛋鸡能维持较好的生产性能[88]。在蛋鸡饲粮CP水平较低时,补充必需AA不影响蛋清的蛋白高度和哈氏单位[89];当饲粮SID Met、(Met+Cys)、Thr、Trp、Arg、Ile、Val含量与SID Lys含量的比值依次为50、91、70、21、104、80、88时,鸡蛋的蛋白高度、哈氏单位和蛋组分,以及血浆的氨和尿酸含量在高蛋白组(18% CP)和低蛋白组(16% CP)之间均无显著差异[90]。在饲粮满足Met和Lys需求的基础上,低蛋白(12%~14% CP)与高蛋白(15%~18% CP)日粮对蛋鸡整个产蛋周期(22~66周龄)的蛋重均无显著影响[91]。在必需AA平衡的前提下,将饲粮CP水平从16.5%降低到12%,对产蛋后期蛋鸡的鸡蛋哈氏单位没有负面影响[65];将饲粮CP水平降低1个百分点后补充蛋白酶,对高峰期蛋鸡所产鸡蛋的蛋白高度和哈氏单位均没有显著影响[92]。在总含硫AA与Lys比例恒定的情况下,蛋鸡饲粮CP水平降低1.5个百分点不影响鸡蛋的蛋白高度[93]。低蛋白日粮(13% CP)添加由Met、Lys和Thr组成的AA补充剂,可有效提高蛋鸡产蛋率和蛋重[94]。在高温条件下,蛋鸡饲粮在必需AA平衡的基础上将CP水平从16.5%降低至12.0%时,对产蛋量和产蛋率无显著影响,进一步降低至10.5%时,产蛋性能和蛋清品质均显著下降。当低蛋白日粮CP水平为15%时,在蛋鸡饲粮中添加0.1%甘氨酸,可避免对生产性能和蛋品质造成负面影响[92]。在15.2% CP低蛋白日粮中添加0.34% Glu,对鸡蛋组分有改善作用,但饲粮CP水平降至14%时,无改善作用[95]。由此可见,在必需AA平衡的基础上,蛋鸡饲粮CP水平降低2~4个百分点,对生产性能和蛋清品质无显著负面影响。但需要重视的是,目前低蛋白日粮技术在蛋鸡上长期试验的文献匮乏,而蛋鸡的饲养周期长,影响因素多,育雏或育成期营养也可能对产蛋期产生影响,因此, 蛋鸡饲粮CP水平的降低应适度。

7 小结和展望

基于IAAP模式,依据SID AA营养标准配制蛋鸡低蛋白日粮,可提高饲粮CP利用率,节约饲料成本,降低氮排放,改善蛋鸡肠道健康和生产性能。配制蛋鸡低蛋白日粮时,应着重考虑饲粮的能量水平,可改用净能体系,预防FLHS的发生。此外,添加一些功能性AA或者组合使用多种蛋白原料,可有效降低低蛋白日粮的负面影响。为了更精准地配制蛋鸡低蛋白日粮,饲料原料的SID AA和净能含量等数据库尚需进一步完善,适用于蛋鸡的蛋白原料有待于进一步开发和扩充。

参考文献
[1]
赵卿尧, 顾宪红. 低蛋白日粮应用前景与研究进展[J]. 家畜生态学报, 2020, 41(3): 9-14.
ZHAO Q Y, GU X H. Application prospect and research progress of low protein diet[J]. Acta Ecologae Animalis Domastici, 2020, 41(3): 9-14. (in Chinese)
[2]
邵钰, 沈杰, 王志跃, 等. 低蛋白饲粮在家禽生产中的研究与应用[J]. 中国饲料, 2021(15): 64-67.
SHAO Y, SHEN J, WANG Z Y, et al. Research and application of low protein diet in poultry production[J]. China Feed, 2021(15): 64-67. (in Chinese)
[3]
宋博, 尹杰, 郑昌炳, 等. 低蛋白质日粮在畜禽生产中的应用研究进展[J]. 中国饲料, 2020(3): 8-15.
SONG B, YIN J, ZHENG C B, et al. Advances in application of low protein diets in livestock and poultry production[J]. China Feed, 2020(3): 8-15. (in Chinese)
[4]
郭丹. 正常及低蛋白饲粮下产蛋高峰期蛋鸡蛋氨酸需要量的研究[D]. 哈尔滨: 东北农业大学, 2016.
GUO D. Research on methionine requirement under nomal protein and low protein diet for laying hens[D]. Harbin: Northeast Agricultural University, 2016. (in Chinese)
[5]
任冰. 理想氨基酸模式下低蛋白日粮对产蛋鸡生产性能及氨氮排放的影响[D]. 杨凌: 西北农林科技大学, 2012.
REN B. Effects of low protein diet in ideal amino acid pattern on laying performance and N excretion of laying Hens[D]. Yangling: Northwest A&F University, 2012. (in Chinese)
[6]
刘庚, 武书庚, 计峰, 等. 30~38周龄产蛋鸡理想氨基酸模式的研究[J]. 动物营养学报, 2012, 24(8): 1447-1458.
LIU G, WU S G, JI F, et al. Ideal amino acid pattern for laying hens aged thirty to thirty-eight weeks[J]. Chinese Journal of Animal Nutrition, 2012, 24(8): 1447-1458. (in Chinese)
[7]
ALAGAWANY M, EL-HINDAWY M M, EL-HACK M E A, et al. Influence of low-protein diet with different levels of amino acids on laying hen performance, quality and egg composition[J]. An Acad Bras Ciênc, 2020, 92(1): e20180230. DOI:10.1590/0001-3765202020180230
[8]
齐广海, 岳洪源, 武书庚, 等. 蛋鸡氨基酸营养的研究进展[J]. 动物营养学报, 2014, 26(10): 3108-3113.
QI G H, YUE H Y, WU S G, et al. Recent development on amino acid nutrition in laying hens[J]. Chinese Journal of Animal Nutrition, 2014, 26(10): 3108-3113. (in Chinese)
[9]
LEMME A, RAVINDRAN V, BRYDEN W L. Ileal digestibility of amino acids in feed ingredients for broilers[J]. World's Poultry Sci J, 2004, 60(4): 423-438.
[10]
STEIN H H, TROTTIER N L, BELLAVER C, et al. The effect of feeding level and physiological status on total flow and amino acid composition of endogenous protein at the distal ileum in swine[J]. J Anim Sci, 1999, 77(5): 1180-1187.
[11]
BREGENDAHL K, ROBERTS S A, KERR B, et al. Ideal ratios of isoleucine, methionine, methionine plus cystine, threonine, tryptophan, and valine relative to lysine for white leghorn-type laying hens of twenty-eight to thirty-four weeks of age[J]. Poult Sci, 2008, 87(4): 744-758.
[12]
LEMME A. Amino acid recommendations for laying hens[J]. Lohmann Information, 2009, 44(2): 21-31.
[13]
练泳洋. 低蛋白饲料在蛋鸡生产有效利用及推广[J]. 中国畜禽种业, 2019, 15(10): 181-182.
LIAN Y Y. Effective utilization and promotion of low protein feed in layer production[J]. The Chinese Livestock and Poultry Breeding, 2019, 15(10): 181-182. (in Chinese)
[14]
陈晓慧, 孙冬艳, 王通, 等. 低蛋白氨基酸平衡饲粮对蛋鸡育成阶段生长性能的影响[J]. 饲料工业, 2021, 42(18): 24-28.
CHEN X H, SUN D Y, WANG T, et al. Effects of low protein and amino acid balanced diet on growth performance of laying hens at growing stage[J]. Feed Industry, 2021, 42(18): 24-28. (in Chinese)
[15]
TORKI M, MOHEBBIFAR A, GHASEMI H A, et al. Response of laying hens to feeding low-protein amino acid-supplemented diets under high ambient temperature: performance, egg quality, leukocyte profile, blood lipids, and excreta pH[J]. Int J Biometeorol, 2015, 59(5): 575-84.
[16]
张健. 产蛋鸡低蛋白饲粮主要必需氨基酸适宜水平研究[D]. 哈尔滨: 东北农业大学, 2018.
ZHANG J. Estimation of optimum requirements for major essential amino acids in low-protein, amino acid-supplemented diets foraying hens[D]. Harbin: Northeast Agricultural University, 2018. (in Chinese)
[17]
GENG S H, HUANG S M, MA Q G, et al. Alterations and correlations of the gut microbiome, performance, egg quality, and serum biochemical indexes in laying hens with low-protein amino acid-deficient diets[J]. ACS Omega, 2021, 6(20): 13094-13104.
[18]
MA M L, GENG S J, LIU M L, et al. Effects of different methionine levels in low protein diets on production performance, reproductive system, metabolism, and gut microbiota in laying hens[J]. Front Nutr, 2021, 8: 739676.
[19]
SUN M F, ZHAO J P, WANG X J, et al. Use of encapsulated L-lysine-HCl and DL-methionine improves postprandial amino acid balance in laying hens[J]. J Anim Sci, 2020, 98(10): skaa315.
[20]
张恒硕. 低蛋白日粮对蛋鸡产蛋后期生产性能影响及营养调控技术研究[D]. 杭州: 浙江大学, 2020.
ZHANG H S. Effects of low protein diet on late production performance and nutritional regulation of laving lens[D]. Hangzhou: Zhejiang University, 2020. (in Chinese)
[21]
WHITE D, ADHIKARI R, WANG J Q, et al. Effects of dietary protein, energy and β-mannanase on laying performance, egg quality, and ileal amino acid digestibility in laying hens[J]. Poult Sci, 2021, 100(9): 101312.
[22]
LESUISSE J, LI C, SCHALLIER S, et al. Multigenerational effects of a reduced balanced protein diet during the rearing and laying period of broiler breeders.1.Performance of the F1 breeder generation[J]. Poult Sci, 2018, 97(5): 1651-1665.
[23]
LI H, WANG T A, XU C L, et al. Transcriptome profile of liver at different physiological stages reveals potential mode for lipid metabolism in laying hens[J]. BMC Genomics, 2015, 16(1): 763.
[24]
ROZENBOIM I, MAHATO J, COHEN N A, et al. Low protein and high-energy diet: A possible natural cause of fatty liver hemorrhagic syndrome in caged White Leghorn laying hens[J]. Poult Sci, 2016, 95(3): 612-621.
[25]
姜家麟. 高能低蛋白日粮致FLHS蛋鸡的血清代谢组学分析[D]. 南昌: 江西农业大学, 2019.
JIANG J L. Serum metabolomics analysis of laying hens with FLHs induced by high energy and low protein diet[D]. Nanchang: Jiangxi Agricultural University, 2019. (in Chinese)
[26]
GAO X N, LIU P, WU C, et al. Effects of fatty liver hemorrhagic syndrome on the AMP-activated protein kinase signaling pathway in laying hens[J]. Poult Sci, 2019, 98(5): 2201-2210.
[27]
ZHUANG Y, XING C H, CAO H B, et al. Insulin resistance and metabonomics analysis of fatty liver haemorrhagic syndrome in laying hens induced by a high-energy low-protein diet[J]. Sci Rep, 2019, 9(1): 10141.
[28]
王玉洁, 刘佳, 魏庆, 等. 高能低蛋白日粮诱导的脂肪肝出血综合征(FLHS)蛋鸡脂肪组织代谢差异的比较[J]. 中国兽医学报, 2020, 40(10): 2061-2065.
WANG Y J, LIU J, WEI Q, et al. Comparison of adipose tissue metabolism differences in fatty liver hemorrhage syndrome(FLHS) hens induced by high energy and low protein diet[J]. Chinese Journal of Veterinary Science, 2020, 40(10): 2061-2065. (in Chinese)
[29]
郭小权. 高能低蛋白日粮致脂肪肝出血综合征鸡抗氧化能力和肝损伤的研究[D]. 南昌: 江西农业大学, 2020.
GUO X Q. Study on the antioxidant capacity and liver damage of fatty liver hemorrhagic syndrome chickens induced by high-energy and low-protein diet[D]. Nanchang: Jiangxi Agricultural University, 2020. (in Chinese)
[30]
PENG G, HUANG E F, RUAN J M, et al. Effects of a high energy and low protein diet on hepatic and plasma characteristics and Cidea and Cidec mRNA expression in liver and adipose tissue of laying hens with fatty liver hemorrhagic syndrome[J]. Anim Sci J, 2019, 90(2): 247-254.
[31]
王子强. 利用低蛋白净能拟合日粮对蛋鸡生产性能的影响研究[D]. 济南: 山东农业大学, 2012.
WANG Z Q. Effect of diet formulation with low protein and net energy on the laying performance of hens[D]. Ji'nan: Shandong Agricultural University, 2012. (in Chinese)
[32]
何维明, 杨福有, 刘慧珍, 等. 饲粮蛋白能量比值与产蛋鸡脂肪肝综合症发生率的关系研究[J]. 畜牧兽医学报, 1992, 23(2): 107-111.
HE W M, YANG F Y, LIU H Z, et al. Study on relationship between energy-protein ratio and frequency of fatty liver syndrome in laying hens[J]. Acta Veterinaria et Zootechnica Sinica, 1992, 23(2): 107-111. (in Chinese)
[33]
LI F, ZHANG L M, WU X H, et al. Effects of metabolizable energy and balanced protein on egg production, quality, and components of Lohmann Brown laying hens[J]. J Appl Poultry Res, 2013, 22(1): 36-46.
[34]
陆江, 朱道仙, 卢劲晔, 等. 卵磷脂对饲喂高能低蛋白饲粮青年蛋鸡肝脏脂肪代谢的影响[J]. 中国家禽, 2018, 40(12): 55-58.
LU J, ZHU D X, LU J Y, et al. Effect and mechanism of lecithin on liver lipometabolism by high-energy diet in yong layers[J]. China Poultry, 2018, 40(12): 55-58. (in Chinese)
[35]
郭小权, 曹华斌, 胡国良, 等. 高能量低蛋白质日粮中添加生物素对蛋鸡脂类代谢的影响[J]. 中国兽医学报, 2012, 32(5): 754-758.
GUO X Q, CAO H B, HU G L, et al. Effect of high-energy low-protein diet supplemented with biotin on fat metabolism of laying hens[J]. Chinese Journal of Veterinary Science, 2012, 32(5): 754-758. (in Chinese)
[36]
刘海隆, 崔静, 王令令, 等. 鸡骨草提取液对高能低蛋白饲料饲喂蛋鸡血脂指标的影响[J]. 饲料研究, 2021, 44(8): 41-44.
LIU H L, CUI J, WANG L L, et al. Effect of Abrus cantoniensis Hance extract on blood lipid of laying hen feed with high energy and low protein diet[J]. Feed Research, 2021, 44(8): 41-44. (in Chinese)
[37]
陈毅燕. 盐酸小檗碱对高能低蛋白日粮诱导的蛋鸡脂肪肝出血综合征防治作用研究[D]. 南昌: 江西农业大学, 2020.
CHEN Y Y. The prevention and treatment effect of berberine hydrochloride on fatty liver hemorrhagic syndrome in laying hens induced by high-energy and low-protein diet[D]. Nanchang: Jiangxi Agricultural University, 2020. (in Chinese)
[38]
杨长进. 苜草素对蛋鸡脂肪肝出血综合征预防效果的研究[D]. 杨凌: 西北农林科技大学, 2015.
YANG C J. Prophylactic effect of poly savone on fatty liver hemorrhagic syndrome in laying hens[D]. Yangling: Northwest A&F University, 2015. (in Chinese)
[39]
OMER N A, HU Y, IDRISS A A, et al. Dietary betaine improves egg-laying rate in hens through hypomethylation and glucocorticoid receptor-mediated activation of hepatic lipogenesis-related genes[J]. Poult Sci, 2020, 99(6): 3121-3132.
[40]
BAVARSADI M, MAHDAVI A H, ANSARI-MAHYARI S, et al. Effects of different levels of sanguinarine on antioxidant indices, immunological responses, ileal microbial counts and jejunal morphology of laying hens fed diets with different levels of crude protein[J]. J Anim Physiol Anim Nutr, 2017, 101(5): 936-948.
[41]
BAVARSADI M, MAHDAVI A H, ANSARI-MAHYARI S, et al. Sanguinarine improved nutrient digestibility, hepatic health indices and productive performance in laying hens fed low crude protein diets[J]. Vet Med Sci, 2021, 7(3): 800-811.
[42]
WANG X Y, XING C, YANG F, et al. Abnormal expression of liver autophagy and apoptosis-related mRNA in fatty liver haemorrhagic syndrome and improvement function of resveratrol in laying hens[J]. Avian Pathol, 2020, 49(2): 171-178.
[43]
XING C H, WANG Y, DAI X Y, et al. The protective effects of resveratrol on antioxidant function and the mRNA expression of inflammatory cytokines in the ovaries of hens with fatty liver hemorrhagic syndrome[J]. Poult Sci, 2020, 99(2): 1019-1027.
[44]
QIU K, ZHAO Q, WANG J, et al. Effects of pyrroloquinoline quinone on lipid metabolism and anti-oxidative capacity in a high-fat-diet metabolic dysfunction-associated fatty liver disease chick model[J]. Int J Mol Sci, 2021, 22(3): 1458.
[45]
邓雪娟. 肉仔鸡饲料原料可消化氨基酸和代谢能的生物学评定及可加性研究[D]. 北京: 中国农业科学院, 2008.
DENG X J. Study on additivity and biological value of digestible amino acid and metabolizable energy in ingredients for broilers[D]. Beijing: Chinese Academy of Agricultural Sciences, 2008. (in Chinese)
[46]
付胜勇, 武书庚, 张海军, 等. 饲粮代谢能和粗蛋白质水平对21~34周龄海兰灰蛋鸡生产性能与蛋品质的影响[J]. 动物营养学报, 2013, 25(11): 2601-2611.
FU S Y, WU S G, ZHANG H J, et al. Effects of dietary metabolizable energy and crude protein levels on performance and egg quality of Hy-Line laying hens aged 21 to 34 weeks[J]. Chinese Journal of Animal Nutrition, 2013, 25(11): 2601-2611. (in Chinese)
[47]
焦莉, 王春明, 王洪芳, 等. 低营养水平日粮添加复合酶对蛋鸡生产性能、蛋品质和抗氧化的影响[J]. 中国饲料, 2021(6): 63-66.
JIAO L, WANG C M, WANG H F, et al. Effects of adding complex enzymes to low nutrient level diets on performance, egg quality and antioxidant activity of laying hens[J]. China Feed, 2021(6): 63-66. (in Chinese)
[48]
张利敏. 氨基酸平衡饲粮的代谢能和粗蛋白质水平对产蛋鸡生产性能及养分利用的影响[D]. 杨凌: 西北农林科技大学, 2009.
ZHANG L M. Effects of dietary metabolizable energy and crude protein on performance and nutrient retention of laying hens[D]. Yangling: Northwest A&F University, 2009. (in Chinese)
[49]
KIM S W, MATEO R D, YIN Y L, et al. Functional amino acids and fatty acids for enhancing production performance of sows and piglets[J]. Asian-Australas J Anim Sci, 2007, 20(2): 295-306.
[50]
WU G Y, BAZER F W, DAVIS T A, et al. Important roles for the arginine family of amino acids in swine nutrition and production[J]. Livest Sci, 2007, 112(1-2): 8-22.
[51]
侯海锋, 李茜. 低蛋白质日粮添加色氨酸对蛋鸡生产性能、蛋品质及蛋白质代谢的影响[J]. 中国饲料, 2017(13): 13-15, 23.
HOU H F, LI Q. Effects of adding tryptophan in low-protein diets on production performance, egg quality and protein metabolism of laying hens[J]. China Feed, 2017(13): 13-15, 23. (in Chinese)
[52]
刘国花, 邹晓庭, 谢正军, 等. 低蛋白饲粮添加苏氨酸对蛋鸡生产性能及蛋品质的影响[J]. 中国家禽, 2012, 34(9): 33-36.
LIU G H, ZOU X T, XIE Z J, et al. Effects of adding threonine in low-protein diet on production performance and egg quality in laying hens[J]. China Poultry, 2012, 34(9): 33-36. (in Chinese)
[53]
AZZAM M M M, DONG X Y, ZOU X T. Effect of dietary threonine on laying performance and intestinal immunity of laying hens fed low-crude-protein diets during the peak production period[J]. J Anim Physiol Anim Nutr, 2017, 101(5): e55-e66.
[54]
DONG X Y, AZZAM M M M, ZOU X T. Effects of dietary threonine supplementation on intestinal barrier function and gut microbiota of laying hens[J]. Poult Sci, 2017, 96(10): 3654-3663.
[55]
AZZAM M M, ALHOTAN R, AL-ABDULLATIF A, et al. Threonine requirements in dietary low crude protein for laying hens under high-temperature environmental climate[J]. Animals, 2019, 9(9): 586.
[56]
OSPINA-ROJAS I G, MURAKAMI A, FANHANI J C, et al. Tryptophan, threonine and isoleucine supplementation in lowprotein diets for commercial laying hens[J]. Semina: Ciências Agrárias, 2015, 36(3): 1735-1743.
[57]
HARRIS R A, KOBAYASHI R, MURAKAMI T, et al. Regulation of branched-chain α-keto acid dehydrogenase kinase expression in Rat Liver[J]. J Nutr, 2001, 131(3): 841S-845S.
[58]
OSPINA-ROJAS I C, MURAKAMI A E, DUARTE C R A, et al. Leucine and valine supplementation of low-protein diets for broiler chickens from 21 to 42 days of age[J]. Poult Sci, 2017, 96(4): 914-922.
[59]
DONG X Y, AZZAM M M M, ZOU X T. Effects of dietary L-isoleucine on laying performance and immunomodulation of laying hens[J]. Poult Sci, 2016, 95(10): 2297-2305.
[60]
PARENTEAU I A, STEVENSON M, KIARIE E G. Egg production and quality responses to increasing isoleucine supplementation in Shaver white hens fed a low crude protein corn-soybean meal diet fortified with synthetic amino acids between 20 and 46 weeks of age[J]. Poult Sci, 2020, 99(3): 1444-1453.
[61]
STAMP D, JENKINS G J S. An overview of bile-acid synthesis, chemistry and function[J]. Issues in Toxicology, 2008. DOI:10.1039/9781847558336-00001
[62]
HAN Y K, THACKER P A. Influence of energy level and glycine supplementation on performance, nutrient digestibility and egg quality in laying hens[J]. Asian-Australas J Anim Sci, 2011, 24(10): 1447-1455.
[63]
ALZAWQARI M H, KERMANSHAHI H, MOGHADDAM H N. The effect of glycine and desiccated ox bile supplementation on performance, fat digestibility, blood chemistry and ileal digesta viscosity of broiler chickens[J]. Global Veterinaria, 2010, 5(3): 1945-1953.
[64]
李亚杰, 刘禹辰, 曾丹, 等. 添加不同水平丝氨酸对蛋鸡生产性能和蛋品质的影响[J]. 中国畜牧杂志, 2019, 55(2): 86-89.
LI Y J, LIU Y C, ZENG D, et al. Effects of adding different levels of serine on layer performance and egg quality[J]. Chinese Journal of Animal Science, 2019, 55(2): 86-89. (in Chinese)
[65]
陶红旭, 隋炳毅, 龙烁, 等. 低蛋白日粮对蛋鸡生产性能和蛋品质的影响[J]. 中国家禽, 2014, 36(24): 38-42.
TAO H X, SUI B Y, LONG S, et al. Effect of low-protein diet on production performance and egg quality of laying hens[J]. China Poultry, 2014, 36(24): 38-42. (in Chinese)
[66]
ZHOU J M, QIU K, WANG J, et al. Effect of dietary serine supplementation on performance, egg quality, serum indices, and ileal mucosal immunity in laying hens fed a low crude protein diet[J]. Poult Sci, 2021, 100(12): 101465.
[67]
DEAN D W, BIDNER T D, SOUTHERN L L. Glycine supplementation to low protein, amino acid-supplemented diets supports optimal performance of broiler chicks[J]. Poult Sci, 2006, 85(2): 288.
[68]
WANG Y Y, WANG Z H, SHAN Y Y. Assessment of the relationship between ovomucin and albumen quality of shell eggs during storage[J]. Poult Sci, 2019, 98(1): 473-479.
[69]
王晓翠, 武书庚, 岳洪源, 等. 卵黏蛋白: 结构组成、理化性质、在浓蛋白液化中的作用及营养调控[J]. 动物营养学报, 2015, 27(2): 327-333.
WANG X C, WU S G, YUE H Y, et al. Ovomucin: structure composition, physicochemical properties the role in egg white thinning and nutritional modulation[J]. Chinese Journal of Animal Nutrition, 2015, 27(2): 327-333. (in Chinese)
[70]
YUAN C, BU X C, YAN H X, et al. Dietary L-arginine levels affect the liver protein turnover and alter the expression of genes related to protein synthesis and proteolysis of laying hens[J]. Poult Sci, 2016, 95(2): 261-267.
[71]
袁超. 精氨酸对蛋鸡采食及组织蛋白质代谢调控的机理研究[D]. 杭州: 浙江大学, 2016.
YUAN C. Research on the mechanism of l-arginine on the regulation of feed intake and tissue protein metabolism in laying hens[D]. Hangzhou: Zhejiang University, 2016. (in Chinese)
[72]
李君. 蛋鸡低蛋白日粮应用合成氨基酸的制约因素研究[D]. 泰安: 山东农业大学, 2017.
LI J. A study of constraints on the use of crystalline amino acids in low-protein diets for laying hens[D]. Tai'an: Shandong Agricultural University, 2017. (in Chinese)
[73]
WANG X C, ZHANG H J, WANG H, et al. Effect of different protein ingredients on performance, egg quality, organ health, and jejunum morphology of laying hens[J]. Poult Sci, 2017, 96(5): 1316-1324.
[74]
HE T, ZHANG H J, WANG J, et al. Application of low-gossypol cottonseed meal in laying hens' diet[J]. Poult Sci, 2015, 94(10): 2456-2463.
[75]
何涛. 脱酚棉籽蛋白对鸡蛋品质的影响及其机理[D]. 北京: 中国农业科学院, 2016.
HE T. Study on the application of low-gossypol cottonseed meal in laving hen diets[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese)
[76]
WANG X C, ZHANG H J, WANG H, et al. Effect of dietary protein sources on production performance, egg quality, and plasma parameters of laying hens[J]. Asian-Australas J Anim Sci, 2017, 30(3): 400-409.
[77]
王晓翠. 理想蛋白模式下饲粮蛋白源对蛋品质的影响及其机理研究[D]. 哈尔滨: 东北农业大学, 2015.
WANG X C. Effects of dietary protein sources on egg quality and its mechanism under ideal protein mode[D]. Harbin: Northeast Agricultural University, 2015. (in Chinese)
[78]
KOÇER B, BOZKURT M, EGE G, et al. Effects of sunflower meal supplementation in the diet on productive performance, egg quality and gastrointestinal tract traits of laying hens[J]. Br Poultry Sci, 2020, 62(1): 101-109.
[79]
王娇, 李军国, 谷旭, 等. 膨化大豆代替豆粕对鸡蛋营养指标和蛋品质的影响[J]. 饲料工业, 2019, 40(3): 39-43.
WANG J, LI J G, GU X, et al. Effects of extruded soybean substitution for soybean meal on nutritional indicator of eggs and egg quality of laying hens[J]. Feed Industry, 2019, 40(3): 39-43. (in Chinese)
[80]
SECCI G, BOVERA F, NIZZA S, et al. Quality of eggs from Lohmann Brown Classic laying hens fed black soldier fly meal as substitute for soya bean[J]. Animal, 2018, 12(10): 2191-2197.
[81]
MARONO S, LOPONTE R, LOMBARDI P, et al. Productive performance and blood profiles of laying hens fed Hermetia illucens larvae meal as total replacement of soybean meal from 24 to 45 weeks of age[J]. Poult Sci, 2017, 96(6): 1783-1790.
[82]
宋宇琨, 何俊. 4种动物性蛋白质饲料的营养特性及其在畜禽养殖中的应用[J]. 动物营养学报, 2019, 31(1): 109-118.
SONG Y K, HE J. Nutritional characteristics of four animal protein feeds and their application in livestock and poultry breeding[J]. Chinese Journal of Animal Nutrition, 2019, 31(1): 109-118. (in Chinese)
[83]
车彦卓, 黄振吾, 武书庚, 等. 不同饲粮粗蛋白质水平下黑水虻蛋白替代豆粕对蛋鸡生产性能、蛋清品质及血清蛋白质代谢指标的影响[J]. 动物营养学报, 2020, 32(4): 1632-1640.
CHE Y Z, HUANG Z W, WU S G, et al. Effects of soybean meal replaced by Hermitia illucens L. protein in different dietary crude protein levels on performance, albumen quality and serum proteometabolism indexes of laying hens[J]. Chinese Journal of Animal Nutrition, 2020, 32(4): 1632-1640. (in Chinese)
[84]
车彦卓, 宣秋希, 武书庚, 等. 不同饲粮粗蛋白质水平下蝇蛆蛋白替代豆粕对蛋鸡生产性能、蛋清品质及血清蛋白质代谢指标的影响[J]. 动物营养学报, 2020, 32(4): 1624-1631.
CHE Y Z, XUAN Q X, WU S G, et al. Effects of soybean meal replaced by fly maggot protein in different dietary crude protein levels on performance, albumen quality and serum proteometabolism indexes of laying hens[J]. Chinese Journal of Animal Nutrition, 2020, 32(4): 1624-1631. (in Chinese)
[85]
张京和, 杨久仙, 彭晓培, 等. 黄粉虫对蛋鸡产蛋性能和蛋品质影响的研究[J]. 饲料研究, 2013(6): 62-64.
ZHANG J H, YANG J X, PENG X P, et al. The effect of Tenebrio molitor on laying performance and egg quality of laying hens[J]. Feed Research, 2013(6): 62-64. (in Chinese)
[86]
LOLLI S, GRILLI G, FERRARI L, et al. Effect of different percentage of Camelina sativa cake in laying hens diet: Performance, welfare, and eggshell quality[J]. Animals, 2020, 10(8): 1396.
[87]
张琦. 蛋鸡输卵管卵清蛋白表达的研究[D]. 泰安: 山东农业大学, 2015.
ZHANG Q. A study on the expression of ovalbumin in the oviduct magnum of laying hens[D]. Tai'an: Shandong Agricultural University, 2017. (in Chinese)
[88]
KESHAVARZ K, AUSTIC R E. The Use of Low-protein, low-phosphorus, amino acid- and phytase-supplemented diets on laying hen performance and nitrogen and phosphorus excretion[J]. Poult Sci, 2004, 83(1): 75-83.
[89]
BURLEY H K, PATTERSON P H, ELLIOT M A. Effect of a reduced crude protein, amino acid-balanced diet on hen performance, production costs, and ammonia emissions in a commercial laying hen flock[J]. J Appl Poultry Res, 2013, 22(2): 217-228.
[90]
JI F, FU S Y, REN B, et al. Evaluation of amino-acid supplemented diets varying in protein levels for laying hens[J]. J Appl Poult Res, 2014, 23(3): 384-392.
[91]
KESHAVARZ K, JACKSON M E. Performance of growing pullets and laying hens fed low-protein, amino acid-supplemented diets[J]. Poult Sci, 1992, 71(5): 905-918.
[92]
孟艳莉, 白修云, 张甦寅, 等. 低蛋白质平衡氨基酸日粮对蛋鸡生产性能、蛋品质和氮排泄的影响[J]. 中国饲料, 2014(10): 20-24.
MENG Y L, BAI X Y, ZHANG S Y, et al. Effects of low protein diets balanced with amino acids on laying performance, egg quality and nitrogen excretion in laying hens[J]. China Feed, 2014(10): 20-24. (in Chinese)
[93]
KHAJALI F, KHOSHOUIE E A, DEHKORDI S K, et al. Production performance and egg quality of Hy-line w36 laying hens fed reduced-protein diets at a constant total sulfur amino acid: lysine ratio[J]. J Appl Poult Res, 2008, 17(3): 390-397.
[94]
李永洙. 氨基酸对蛋鸡生产性能及盲肠微生物菌群结构的影响[J]. 中国农业大学学报, 2012, 17(2): 108-116.
LI Y Z. Effect of amino acids supplementation in low-protein feed on the performance and cecal microflora structure of laying hens[J]. Journal of China Agricultural University, 2012, 17(2): 108-116. (in Chinese)
[95]
BEZERRA R M, COSTA F G P, GIVISIEZ P E N, et al. Glutamic acid supplementation on low protein diets for laying hens[J]. Acta Sci, 2015, 37(2): 129.

(编辑   范子娟)